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Spherical maps
by

Andrzej Dawidowicz (Olsztyn)

Abstract. In this work we discuss the class of multi-vatued upper semi-continuous maps
@: M~ R" of topological space M. Their values @(x) are non-empty continua of such nature
that if Bep(x) stands for the sum of bounded components R™\@(x) the graph of the map By is
open in M'x R* and (px) := @(x) U Bp(x) is acyclic for each x & M, For such — so called spherical
maps the following theorems are proven: (1) the Brouwer fixed point theorem, (2) the Poincaré
type coincidence theorem, (3) the Birkhofi~Kellogg theorem, (4) the theorem on antipodes, (5) the
theorem on invariance of domain.

1. Although a great number of papers have been published on the fixed point
theory of various classes of multi-valued mappings, but some strong conditions
about images of points by a multi-valued maps are always assumed. In the articles
[4], [5], [9], [10] it is assumed that considered multi-valued map has acyclic images
or, more generally, it is admissible multi-valued map (i.e. composition of acyclic
maps). In the articles [8], [11] multi-valued maps with images of points having
homology of the unit sphere S"~* in the Buclidean space R" are considered.

In the present paper we consider a class of multi-valued maps into Euclidean
space R", called spherical maps. In this case homological assumptions about
images of points are quite weak, although some additional non homological con-
ditions are needed. As a special case, our class contains acyclic maps of n-spherical
type in the sense of [8]. )

Next, we generalize from the case of admissible maps or n-spherical maps
on the case of spherical maps the following results: (1) the Brouwer fixed point
theorem, (2) the Poincaré type coincidence theorem, (3) the Birkhoff-Kellogg
theorem, (4) the theorem on antipodes, (5) the theorem on invariance of domain.
Note that in the case of n-spherical maps results (2), (3), (4), (5) have been un-
known.

The autor is indebted to Proressor Lech Gorniewicz for suggesting the
problem and valuable remarks and to Dr. Jerzy Jezierski for his helpful comments.

2. Spherical maps. We will consider subsets of the Euclidean space R". We
assume that n > 2. For any set X < R", the unbounded pseudo-component D (X)
of the set R™\X is defined as follows: x & D(X) iff for every r> 0 there exists
a continuous function 4: I — R™\X such that A(0) = x and ||A(1)|| > r, where
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I=10,1]. If X is a closed subset of R” then D(X) is open. If X is compact then
D(X) is the unique unbounded component of R™\X. We will use the notion
of pseudo-component D(X) only for compact X. Let us further denote X
1= RN\D(X), B(X) := X\X. The following proposition is evident

(2.1) ProposITION. Let X,Y be two compact subsets of R". Then we have

(2.1.1) D(X) = D(X);

(2.1.2) if X< Y then D(Y)<= D(X);

(2.1.3) X is a compact set;

(2.1.4) if X< B(Y) and Y is connected then Y < D(X);

(2.1.5) if X is a subset of an open or a closed ball K in R" then Y cek;

(2.1.6) D(X) is arcwise connected,;

(2.1.7) if Z is a subset of X open in R" then X\Z =X

(2.1.8) if X is connected then X is connected.

Let ¢o: M — R™ be a compact-valued map; we associate with ¢ the multi-
valued maps Bo, Do, G: M — R" defined by the formulae §(x) := ¢(x), Bo(x)
i= B(p(0), Do) := D(p(). By Hy= {Hi}ies(H* = {H'}ez) we denote
the Cech homology (cohomology) functor with coefficients in the field of rational
numbers. Let H, be the reduced functor of Hy. We will need the following well
known facts: )

(2.2) ([91 L.1.1) On the category. of compact subsets of R", the functors Hy
and Homy, o Hy are naturally isomorphic, here Homyg is the functor which assigns
to a graded vector space E the conjugate graded space Homg(E) = Hom(E, 0).

(2.3) The ALEXANDER DuaLiTy THEOREM [12]. For compact X < R" and
geZ we have Hy_, ((R™\X)~ H%X), where H, stands for the reduced functor
of singular homology.

Recall that a set X is acyclic iff H.(X) = 0. The compact-valued map ¢:
M — N is acyclic iff it is usc and ¢ (x) is acyclic for every x € M.

(2.4) DeFiNITION. Let M be an arbitrary topological space. A multi-valued

map ¢: M — R" is called spherical if the following conditions are satisfied:
(2.4.1) for every x e M the set ¢(x) is a nonempty continuum and ¢ is usc,
(2.4.2) the graph of the map By is an open subset of M x R",

(2.4.3) (/;(\xi is acyclic for each x e M.

(2.5) Remark. A map ¢: M — R" with the images of points having homology
of an (n—1)-dimensional sphere has been called an #-spherical map (comp. [8]).
Observe that an acyclic map ¢: M — R" is not n-spherical in the sense of [8].
In (2.4) we have defined a class of maps, which in particular contains acyclic maps
and maps of n-spherical type (see Theorem (2.6)), but for simplicity we use the
name “spherical map™ in place of “generalized spherical map”.

(2.6) THEOREM. Let X be a compact subset of R".

(2.6.1) If X is acyclic then X = X,
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(2.6.2) If X has homology of an {(n—1)-dimensional sphere then X is acyelic.

Proof. (2.6.1). Clearly, R"\X = D(X). In view of (2.3), H3(R™\X) = 0 and
the set R"\X is arcwise connected. Since D(X) is a component, D(X)> R™\X.
We have B(X) = & and X = X.

(2.6.2) Since n—1>0, we get A, (X)) = H,_,(X). Using (2.1.6) and (2.3),
we obtain 0 = A4(D(X)) = H* (X). Hence, by (2.2), H,_,(X) = 0, and so our
hypothesis holds for g = n—1. Assume that ¢ = n—1, g # 0:

= HY\X)~H;_ ;- (B(X)u D(X)) Hi i (B(X) v D(X)) = H,__(B(X))
@H,, ~1(P(X)), and hence 0xH,_,_,(D(X)) = HYX) » Hy(X). For g=0it
follows from (2.1.8) that Hy(X) = @ and the proof is completed.

(2.7) COROLLARY. Every acyclic map is spherical.

(2.8) THEOREM. Let M be a topological space and let p: M — R" satisfy (2.4.1).
Then ¢ is usc.

Proof. Take e>0 and x e M. We can cover the set R™\O,($(x)} by finite
by means balls K(a;, £/2) and the set R™\K(0, r}, with real r> 0, so that O, (ga ()
cK@©,7) (03(x)) := {acR"; there is be @ (x) such that ||b—al]<s}). We
join the points «; with an arbitrarily fixed point @ € R"™\K(0, r) with arcs lying
in R"™\@ (x), and we obtain a continuum C such that C U (R™\O,(5 (%)) = R\G(x)-
Let § := min{e/2, dist(C, $(x))}. We choose U 5 x such that ¢(y) < O4{p(x)) for
y & U. Moreover, the set R™\0,(¢(x)) is unbounded and contained in the unique
component of R™Os(¢(x)). We have R™\OS$(x)) = Do(y) and the proof is
completed.

2.9) LemMA. Let ¢, T: M — R" be two usc nonempty-continuum-valued maps.
If the graph of By is open then

(2.9.1) M is the disjoint union of the sets

My = {x; T(X) = Do(®)}, My:={x; T() o # S},
My := {x; T(x) = Bp (%)}

(2.9.2) My, My are open subsets of M,

(2.9.3) if M is connected and My, My, are nonempty then My is nonempty.

In the sequel we denote by S”~' the unit sphere in R" and by K" the unit
closed ball in R". From Lemma (2.9) we get

(2.10) CoROLLARY (comp. (3.1) in [8]). Let @: K" — R" be a spherical map
and @(S"" Yy« K". Then ¢ has a fixed point.

Proof. Take 7 = id in Lemma (2.9) and assume that My = 0. Of course,
S" ' < Mp. In view of (2.7) and [9] we infer that the map @ has a fixed point
ze K" Since z ¢ ¢(z), we have z € Bo{(z), but this contradiets (2.9.3).

3. Examples. In this section we explain the sense of the condition (24.2) in
the definition of spherical maps. We already know that for acyclic maps GO‘IIdl«tl.Onz
(2.4.2) is satisfied automatically. First we show that if a map is continuous with
2
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respect to the Borsuk continuity metric or with respect to the Borsuk homotopy
metric then (2.4.2) holds. Then we show that Hausdorff continuity is not sufficient
for (2.4.2) to hold.
We remind the notion of the Borsuk continuity metric (cf. [2]). Let (M, v)

be a metric space. By o o(M) we denote the class of all compact nonempty scts
in M. We define the Borsuk continuity metric on 4 o(M) by putting
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(X, ¥) := max{inf{| f]; fe C(X, ¥)}, inf{lgl; g € C(¥, X)}},

where C(X, Y) is the set of all continuous functions from X to ¥ and | f| is defined
byl f] := sup{v(x,f(x)), xe X}.

A (single-valued) function f: M — S" is called (topologically) essential if it is
not homotopic to a constant function from M to S".

(3.1) LEmMA. Let X, Y be two compact subsets of R". If ae D(Y) 0 B(X) then

inf{|f].fe C(X, Y)} > dist(a, X)+dist(a, ¥).

Proof. Let ry = dist(a, X), ry = dist(a, Y). We may assume without loss
of generality that @ = 0. Define

b
v X ST pab) =
Px 0 Bl

C
Pyt Yo ST pylO) = e

il

1t is well known (comp, 11.1.10 in [7]) that py is an essential function and py is not.
Let f: X — Y be a continuous function. Then the composition py © f of f and py
is not essential; hence there exists x & X such that py(x) = —py( f(x)). This implies
| £1 2 Hx—fCNI = lIxl|+[|fG)l = rx+ry and the proof is completed.

A nonempty-compact-valued map ¢: (M,v) = (N,n) is called continuous
with respect to the metric of continuity o, (C-contimtous) if @ (M, v) — (£ o(N), 02)
is a (single-valued) continuous function.

(3.2) Remark. We now give an example showing that the composition of
two C-continuous maps need not be C-continuous. Let ¢: I —» S and : S* -~ R®
be two maps defined as follows,

() :
U(z)

The maps ¢ and i are obviously C-continuous, but their composition

{zeS'; O<arg(z) <1},

I

e St arg(e)+1/2 < arg(v) < arg(z) +2n}) .

Vop: I- R Woq(t)={vesS; L<arg(v) <t+2n)

is not C-continuous at the point # = 1/2 (the proof follows from (3.1)).
(3.3) TueorReM. If ¢: (M,v) = R" is a C-continuous map then (2.4.2) holds.
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Proof. Let (x,a)e By, ie. ae Bp(x). We take two real numbers «, >0
such that o+ = dist(a, ¢(x)). Evidently,

(3.3.1) K(a,®) 0 Oy () = B.

By the C-continuity of ¢ there is an open nbd ¥ of x in M such that
od(e (x), @(»)) < B for every ye V. Therefore

(3.3.2) ¢(3) = Oy(ep(x)) for each ye V.

We will prove that I x K(a, &) is an open nbd of (x, 4) in the graph Iy, of Bp.
Assume on the contrary that there exist ze V and b e K(a, o) such that 5 ¢ Bo(z).
From (3.3.1) and (3.3.2) we infer that b ¢ ¢(z), and hence b e Dp(z). Obyiously,
be Bp(x). It follows (cf. 3.1)) that o (e (x). ¢ (M) =inf{|f]; fe Cle@), o (M)}
> B, a contradiction.

(3.4) COROLLARY. Every C-continuous mnonempty-continuum-valued map ¢:
(M, vy — R" satisfying condition (2.4.3) is a spherical map.

Proof. In view of (3.3) it remains to show that (2.4.1) is satisfied. We will
show that ¢ is continuous. It is not difficult to see that g5(X, ¥) <o (X, Y) for
every X, Ye A o(M), where g5(X, Y) denotes the classical Hausdorff distance
between two compact sets.

(3.5) O’ NenL's Examere [11]. Let ¢: K? — K* be the map defined as
follows,

@) = {ye K |ly—xll = £} v {ye St lly-xll= 5=},

where
E(x) = 1—{x][+(IxIi*.

1t is evident that ¢ is continuous with respect to gs. Moreover, the graph I'g, of
By is not an open subset of K?x K2, Finally, observe that ¢ has no fixed point.
In the preceding section we have pointed out that the Brouwer fixed point theorem
(2.10) is true for spherical maps.

4. A Poincaré type coincidence theorem. Let X be a subset of R". The set
Sw(X):= U A-X is called the shadow of X.
A>1

(4.1) ProrosiTioN. Let X be a compact subset of R". Then

(4.1.1) for every connected unbounded set M < R" we have X n M = & iff
XaoM=0,

(4.1.2) if X is connected then Sw(X) is connected,

(4.1.3) if O D(X) then B(X) = Sw(X) = Sw(X),

(4.1.4) for every compact Y= R", SW(X)n Y = @& implies X< Y u D(Y).

For any spherical map ¢: K" — R" such that 0 ¢ o (S""") we define the topo-
logical degres Deg(¢p, 0) of ¢ with respect to 0 by putting

Deg(p, 0) = {{0} if there exists x € S"~! such that 0 € Bp(x),
%) T \Deg(,0) if O Do(x) for every xe S"~*
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where Deg(@, 0) denotes the topological -degree for acyclic maps (see, for example,
[5). The topological degree just defined has the same properties as the Brouwer
degree.

Let & (K", R") be the class of all multi-valued maps from K" to R" which are
either admissible or spherical. The notion of an admissible multi-valued map has
been first considered in [9]. Also the notion of topological degree for admissible
maps was first defined in [9].

(4.2) TaoreM. Let @, Te o/ (K", R") be two multi-valued maps. Assume that
the following conditions are satisfied:

@.2.1) 0¢ 9(S"7Y),

(4.2.2) 0¢ Deg(yp, 0),

(4.2.3) Sw(p()) N T(x) = G for every xe Sl
Then there exists y € K" such that ¢(y) nT(y) # D.

Proof. (4.2.4) In the case where ¢ and T are admissible maps, Theorem (4.2)
was proved in [4].

(4.2.5) Thus, let us assume that ¢ is admissible and T is spherical. Assume,
contrary to the claim, that @(3) nT(y) = & for every ye K" Let iy be an
s-admissible selector of ¢ (i.e. a selector which is, in particular, continuum-valued
and usc — comp. [9]). By (2.8) T is admissible; thus, as we have noticed in (4.2.4),
there exists ze K" such that ¥(z) n T(z) # @. Consequently ¥ (z) = BI'(z) and
the set My = {z; ¥ (2) = BT(2)} is nonempty. By using (4.2.3) and (4.1) it is not
difficult to see that ¥ (x) = DT(x) for each x e S"~*. This implies that the set Mp
= {x; Y(x) = DT(x)} is nonempty and hence My = {x; ¥ (x) N T(x) # o) # @
(see (2.9.3)), a contradiction.

(4.2.6) In the case where ¢ is spherical and T'e & (K, R") we define T':K"-»R"
to be T if T is spherical and to be certain s-admissible selector of T'if T' is
admissible. In view of (4.2.4) and (4.2.5) there exists z e K" such that ¢(z) n T'(2)
# . Now assume that ¢(y) n T(») = @ for every ye K". Consequently T'(z)
< Bo(z) and the set My in Lemma (2.9) is nonempty. By (4.2.3) and (4.1) it is not
difficult to see that T"(x) = Do(x) for each xe S"”* and hence the set M) in
Lemma (2.9) is nonempty, a contradiction with (2.9.3).

5. Birkhoff-Kellogg thesrem. We will say that an admissible map ¢: M — 8"
is algebraically essential iff there exists a selected pair (p,q)=¢ such that
H()H(p)"! # 0 (for details, see [9]). In the case of single-valued maps this
notion was introduced by Borsuk in [3].

For X< R", by LC(X) we will denote the linear cone of X in R", which is
defined as LC(X) = U A+ X. First, we will generalize Theorem (3.1) of [10)].

AeR
(5.1) TueorEM. Let e: M — S*"~U be an algebraically essential map and let
@: M — P> 1= R IN{0} be an admissible map. Then there exists a point
xeM such that LC(e(x)) n ¢(x) # @.
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prroof. Let (s, r) be a selected pair of e such that
(5.1.1) Hype 1y (r) Haguo s ™1 # 0
and let (p, g) be a selected pair of ¢. Assume, on the contrary, that
(5.1.2) LC(e(®)) N ¢ (x) = @ for every xe M.
Consider the diagram

1
r\r&rz/

g2l ::::_—"_—::t P

in which TIy[X[I'y 1= {(my, my) e [y x Ty, s(my) = p(my)}, m;(my, my) 1= my,
my(my, my) 1= m,, i(x):=x, j(x) := —x, where the double arrows stand for
Vietoris maps (for definition see [8], [9], [5]). It is easy to see that z, and =, are
Vietoris maps. Evidently, (s, rry) is a selected pair of e. Define two homotopies
F,G: (I'(XI)xI—p*' by putting F(m,1) 1= t-irn,(m)+(1—1)-qr;(m),
G(m,t) := t-jra (m)+(1—1)-gry(m). The correctness of the above definitions
follows fron} (5.1.2). Therefore irm, is homotopic to jrm, and, since Hyg,-q){f)
= —H,,-1)(J), we have H,q,_)(r) = 0; but this contradicts (5.1.1).

(5.2) Remark. Theorem (5.1) remains true when ¢ is a spherical map. Indeed,
if 0 € B (x) for some x € M then our hypothesis is evident. Assume that 0¢ Bo(x)
and LC(e(x)) n ¢ (x) = @ for each xe M. Then LC{e(x)) = Dp(x), and hencc
LC(e(x)) n ¢(x) = @, which contradicts (5.1).

6. Borsuk-Ulam theorem. Consider two topological T3-spaces M and N.

(6.1) PROPOSITION. Let ¢: M — N be an usc nonempty-continuum-valued map.
If M is connected then the graph I', of ¢ is connected.

The proof of (6.1) is elementary.

An acyclic map «: S" — S with symmetric graph I, is called involution.

(6.2) TaeoreM. Let o: S" — S” be an involution and let ¢: S" — R" be a sphericc]
map. Then there exists a point (x,)) eI, such that ¢(x) n @(y) # B.

Proof. Consider the natural projections p, g: I, = S" given by the formulae
px, y) = x, g(x,¥) = y. Then « = gp~*. Assume that ¢ (x) n ¢ () = & for every
(x, y)‘el’ Consider the diagram
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In virtue of (6.5) of [5]; there exists m, € I', such that gp(mg) N Pq(m,) # O.
On the other hand, we know that ¢p(m) n @q(m) = O for every me I',. We have
the following two possibilities:

(6.2.1) ¢p(mo) = Bpg(mo),

(6.2.2) ¢q(mg) = Bopp(my).

Consider the case (6.2.1). From (2.9) it follows that the set I', is the disjoint
union of the sets

Iy :={meTl,, op(m) < Bpg(m)}, I'p 1= {meT,, pp(m) < Dpg(m)}

and
Iy :={meTl,, op(m) N eq(m) # B} .

From our assumptions we infer that I'y = @ and m, e I'y. Since o is an involution,
there exists ny € I, such that (p(mo), q(m,)) = (q{no), p(ny)); hence ny & I'p and,
in view of (2.9) and (6.1), we get a contradiction. Observe that in the case (6.2.2)
the proof is analogous.

7. Invariance of domain. Let (44,v) be a metric space. A multi-valued map
@: M — Y is called an ¢-map if, for every x,ye M, o (x) n @(p) # @ implies
v(x,y) <& A map p: M — Yis called strongly injective if it is an g-map for every
e>0 (cf. [5D).

(7.1) LemMA. Let ¢: R" — R" be a spherical map and let ¢ be a positive number.
Then ¢ is s-map iff ¢ is e-map.

Proof. Assume that ¢ is an g-map and let x,, x, € R" be two points such
that v(x,, x,) =>¢. Assume further that ¢(x,) N ¢(x,) # D. Since ¢ (x;) N @ (xy)
= (J, we have two possibilities: ’

(7.1.1) @(xp) = Bo(x,),

(7.1.2) ¢(x;) = Bo(xy)-

Assume that (7.1.1) holds. Applying Lemma (2.9) to the constant map ¢ (x,)
and ¢ on M := R"™\K(xy, €), we obtain ¢(x) = D¢ (x,) for every x e R™\K(x, €).
Applying Lemma (2.9) to ¢ and the constant map ¢(x,) on M := R™\K(x,, &),
we obtain ¢ (x) = Be (x,) for every x € R™K(x;, 2). Let x5 € R™\(K(x, 8) U K(x5, 8).
Take T := @(x;) to be the constant map on M := R™K(x,¢). Since ¢(x;)

< Do (x,) and ¢@(x3) = Bp(x,), we get that R"™\K(xs, &) is not connected, a con-
tradiction.

The proof for the case (7.1.2) is analogous.

(7.2) THEOREM. Assume that ¢: R* — R" is a spherical s-map for some &> 0.
Then @(R") is an open subset of R".

Proof. It follows from (7.1) and (7.5) in [5] that ¢ (R") is an open subset of R".
For the proof it is sufficient to show that @(R") = §(R"). Let ae ¢(x) for some
x € R™ and assume that y ¢ K(x, £). Since ¢ is ¢-map, we have a e Do(y). Using

(2.9), we obtain a point ze R” such that ae ¢(z). Since @(R") = (R"), the proof
is completed.
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Usually the theorem on invariance of domain is formulated for strongly in-
jective multi-valued maps from an open subset U of R" into R (comp. [5]). We
will show that if ¢: U — R" is a spherical strongly injective map then ¢ must be
an acyclic map. Thus the theorem on invariance of domain for strongly injective
spherical maps is exactly the same as for strongly injective acyclic maps.

(7.3) THEOREM. Let X be a subset of R" and let ¢: X — R" be an usc nonempty-
contimumm-valued strongly infective map such that B has an open graph. Then Bop(x)
is empty for every x e Int(X).

Proof. Let xe Int(X) and a e Bp(x). From our assumptions it follows that
the set {y e X; ae Bp(y)} is an open subset of X. However, there exists an open
ball XK= X with the center at x such that ae Bo(y) for every ye K. Decompose
the ball K into three disjoint subsets,

Kp={rek; ()= Bo(x)}, Kp={yek; o)< Do)}
and
Kx={yek; o) no(x) # B}

Of course the set Ky = {x} is a singleton and it does not separate the ball XK. There
are two possibilities:

(7.3.1) @(») = Bo(x) for each ye K\{x],

(7.3.2) @(») = Do(x) for each y e E\{x}.

Assume that (7.3.2) holds (the proof in the case (7.3.1) is similar). Since
ae Bp(y) n Bp(x) for ye K\{x}, we have ¢(x) = Bp(y) for each ye K\{x}. Let
¥1, ¥z € K be two points such that p, 5 y, # X, y, # x. Consider two different
decompositions of K; Kz = {y; ()= Bo(y)}, Kp: = {¥; 9G)<= Doy},
K= {y;00) 0 0(y;) # B} and K3:= {; 0 () = Bo(n)}, K= {¥; e (W)=
Do(y)}, Kz = {y; 9(0) 0 0(r) # O}

Of course, we have Ki = {¥;}, Kz = {y,}. Since xe€ K}, we have K} = @,
and hence y, ¢ K5 and ¢(y,) = Bp(y,). On the other hand, x € K} and so K2=0
and y, € K3. Therefore we obtain ¢(y;) < Bp(p,) and consequently ¢(y,) N
N~ o(¥,) # @; but this is impossible,
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The Hurewicz and Whitehead theorems with
compact carriers

by

Stanistaw Spiez (Warszawa)

Abstract. We prove analdgues of the classical Hurewicz and Whitehead theorems for Borsuk’s
weak shape theory or, more generally, for the category generated by the homotopy category of
pointed polyhedra. We also give a certain geometrical application of the modified Hurewicz
theoreni.

Introduction. The dual notion to that of a pro-category will be called an
in-category. By induction, we say that a category pro-%’ or in-%" is k- generated
by a category ¥ whenever provided %' is (k—1)-generated by ¥ (we assume that
¢ is 0-generated by €).

The classical Hurewicz and Whitehead theorems have their analogues in shape
theory and pro-homotopy theory (for example see [M~S]). We will prove analogues
of these theorems in a more general case, for any category generated by the
homotopy category of pointed polyhedra HPol,. As a consequence, we obtain
modified Hurewicz and Whitehead theorems for Bossuk’s weak shape theory
(i.e. shape theory with compact carxiers) and for compactly generated shape theory.
Under more restrictive assumptions a Whitehead type theorem for compactly
generated shape theory has been proved previously by T. J. Sanders [Sa2].

The inspiration to prove a Hurewicz type theorem in Borsuk’s weak shape
theory was the following question of H. Toruficzyk [T].

QuESTION 1. Let A be a .subset of R" such that every map I 25 R is ap-
proximable by mappings with images missing A. Let f: aI°* » R" be a map which
satisfies im(f) n A = @, where s+dimA <n. Is there a compact set C< R™NA
such that f is null homotopic in every neighborhood U of Cin R*?

If 4 is o-compact then {ge C[I, R"]| im(g) N A = @} is dense in C[I*, R"]
(see [S]). This needs be shown for compacta only and follows by induction on s
using Alexander duality and Hurewicz theorem. H. Torusiczyk asked if one can
prove a Hurewioz type theorem in Borsuk’s weak shape theory. He suggested
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