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THEOREM. Let F: (X, ¥) — (¥, *) be a shape n-equivalence between connected
locally compact metric spaces. If sd, X <n— 1 and sd,, Y < n, then F is an isomorphism

in weak shape theory.
In a similar way we can obtain counterparts to Theorem 2, 3 and 4. We can

also state similar theorems in CG-shape theory (without assumption of local
compactness).
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Equivariant shape
by

S. A. Antonian (Yerevan) and S. Mardesié (Zagreb)

Abstract. The paper introduces an equivariant shape category ShC. Its objects are G-spaces,
i.e., topological spaces endowed with an action of a given compact group G. The category Sh%
is constructed using the method of resolutions.

1. Introduction. The aim of this paper is to define a shape category for G'-spaces,
i.e., topological spaces endowed with an action of a given compact group G. In
our development we follow the method of resolutions, introduced in the case of
ordinary shape by S. Marde$i¢ [14], [15] (also see [16]).

More precisely, in § 4 we define the notion of a G-resolution of a G-space
and we show that every G-space admits a G-ANR-resolution, i.e., a G-resolution
consisting of G-ANR’s (Theorem 1).

In § 5 we prove that every G-ANR-resolution induces in the G-homotopy
category [Topo] a G-ANR-expansion in the sense of [16, I, § 2.1]. This means
that the full subcategory [ANRS] of [Top?], which consists of spaces having the
G-homotopy types of G-ANR’s, is dense in [Top®] [16, I, § 2.2].

In [16, I, § 2] a general procedure is described, which associates a shape
category Shyg with every pair consisting of a category & and of a dense sub-
category #. The equivariant shape category Sh¢ is the shape category associated
in this way with the pair = [Top %], # = [ANR .

Note that Sh® coincides with the ordinary shape category Sh if G = {e} is
the trivial group.

In the realization of the outlined program (just as in the case of ordinary shape)
the crucial tool is a G-embedding and G-extension theorem (Proposition 1). It
asserts that every metric G-space X equivariantly embeds as a closed subset in
a normed linear G-space L, which is a G-absolute extensor. This fact is the result
of the work of several authors (see § 3 and for a detailed proof see [6]). Other
results on G-ANR’s needed in this paper were obtained by considering equivariant
versions of appropriate proofs of analogous results in the ordinary case. In several
instances the proofs given in [16] were appropriate. However, in some cases we
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had to change the argument to avoid using polyhedra, because a suitable theory
of G-polyhedra does not seem to have been developed as yet. For G = {¢} our
approach shows how one can define the ordinary shape category Sh using only
ANR’s.

In the special case of metrizable G-spaces X an equivariant shape category
has been previously announced by Yu. M. Smirnov [20], [21], [22], who used an
equivariant version of the R. H. Fox approach to shape [12]. This amounts to
considering the special G-ANR resolution of X' <L, which consists of all open
invariant neighborhoods of X in L. Since shape does not depend on the choice
of resolutions, Smirnov’s category is the restriction of our category Sh® to metrizable
G-spaces.

Recently, I. Pop [18] has defined a shape category ShY for arbitrary topological
spaces. However, he assumes that G is a finite group.

This paper was written during 1984/85, while S. A. Antonian, on leave from
the Yerevan State University, was visiting the University of Zagreb. He wishes
to express his thanks to his University for the leave and to the Department of
Mathematics of the University of Zagreb for its kind hospitality.

2. Basic notions and conventions concerning G-spaces. Throughout this paper G
denotes a compact (Hausdorff) group, which we keep fixed. An action of G on
a topological space X is a (continuous) map (g, x) ~gx of the direct product
Gx X into X such that (g,g,)x = g,(g,x) and ex = x, where xe X, J1,92,€GC
and e is the unity of G. A very special example is the trivial action of G on X, where
gx = x for all g € G, x e X. Another example is the action of the group G on itself
defined by (g, x)b xg™%, geG, xeG (Alternatively, one can put (g, x) = gx).

By a G-space we mean a topological space X together with an action of G
on X. If X and Y are G-spaces then 50 is X'x ¥, where g(x,») = (gx, g»), gy € G,
(x,p)e Xx Y.

By a normed linear G-space we mean a real normed vector space X endowed
with an action of G, which is linear, i.e.,

0 g Ax+ ) = dgx+ugy,

where ge G, x,ye X and A, u are real numbers. :

A subset 4 of a G-space X is called invariant provided g € G, ae A implies
gae A. Clearly, an invariant subset of a G-space is itself a G~ space. If X is a G-space
and 4 <X is an invariant subset, then every neighborhood of 4 contains an open
and invariant neighborhood of 4 (see [17], Proposition 1.1.14).

A map f: X—Y between G-spaces is called a G-map, or an equivariant map,
provided f(gx) = g(/(x)) for every geG, xeX. Note that the identity: map
is equivariant and the composition of equivariant maps is equivariant. Therefore,
G-spaces and equivariant maps form a category, which we denote by Top€.

Let X and ¥ be G-spaces and let f,, f;: X— ¥ be G-maps. A G-homotopy
or equivariant homotopy, from f, to f, is a homotopy F: Xx7 - ¥ from Jo to fis
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which is @ G-map. Hereby we assume that G acts trivially on 7 so that g(x, t)
= (gx, t), (x, 1) € Xx I. If for G-maps f;, f; there is 2 G-homotopy from f; to f;,
we say that fy and f; are G-homotopic and we write f, ~gf;.

The relation =g is an equivalence relation and we denote the class containing
a G-map f by [f]. The relation =~ is compatible with the composition, i.e.,
fogfit X=X and fomgfi: X'— X' implies f3fo~sfif;. Therefore, one
can define composition of classes of G-homotopic G-maps [f]: X - X*, [f']:
X'— X' by composing representatives, i.e., [f'][f] = [ff]. In this way one
obtains a category [Top¥], whose objects are G-spaces and whose morphisms
are classes of G-homotopic G~-maps. There is a homotopy functor: Top® — [Top €],
which keeps the objects fixed and takes G-maps f into their G-homotopy classes [f].

For further information concerning G-spaces see [17], [9] and [10].

3. Basic facts concerning G-ANR’s. Let Z be a G-space and let Y= Z be an
invariant subset. A G-retraction of Z to ¥ is a G-map r: Z - Y such that
HY = 1y.

A G-space Y is called a G-absolute neighborhood retract or a G-ANR
(G-absolute retract or a G-AR), provided ¥ is metrizable and whenever Y'is a closed
invariant subset of a metrizable G-space Z, then there exist an invariant neighbor-
hood U of Y and a G-retraction r: U — Y (there exists a G-retraction r: Z — ¥).
For ¢ = {e} this definition yields the usual notion of an ANR (AR) for metric
spaces.

A G-space Y is called a G-absolute neighborhood extensor or a G-ANE
(G-absolute extensor or a G-AE), provided for any metrizable G-space X and any
closed invariant subset -4 € X, every equivariant map f: A4 — Y admits an equi-
variant extension J% U — Y, where U is an invariant neighborhood U of 4 in X
(f: X = Y.

Tt is easy to seo that an open invariant subset of a G-ANE is itself a G-ANE.
Moreover, the product ¥,x ¥, of two G-ANE’s is a G-ANE. '

Crucial for our development is the following G-embedding and G-extension
theorem.

PROPOSITION 1. For every metrizable G-space X there exists a normed linear
G-space L such that the weight

(1) w(L) <max{w(G), w(X), %},

Lis a G-AE and there exists an equivariant embedding iz X — L, whose image i(X)
is closed in L.

The proposition is proved in. [6] and it easily follows from the following three
lemmas.

Lemma 1. Let T be a compact G-space and let ¥ be a metric (normed Yector)
space, Let C(T, Y) be the space of all continyous maps ¢: T-+ Y endowed with the

metric (norm)
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@ oo, ") = sup{d(p(1), o'(1)): te T}
(@ lloll = sup{lp@)]: e T}).
Then C(T, Y) is a (linear) G-space with the action of G defined by

(&) (90)(®) = 9(g™"), geG, e C(T,Y), tel,
and the weight w(C(T, Y)) satisfies
“@ . w(C(T, Y)) < max{w(T), w(Y), 8} .

Moreover, if Y is an ANR (AR), then C(T, Y) is a G-ANE (G-AE) Jor p-pary-
compact G-spaces.

(4) is proved in [11] (Ch. XII, Theorem 5.2), The last assertion follows from
Theorem 1 of [3], using Yu. T. Lisica’s theorem ([13], Theorem 1) that ANR’s
(AR’s) are ANE'’s (AE’s) for p-paracompact spaces.

LemMA 2. Let X be a metrizable G-space and let C(G, X) be the G-space of
continuous maps endowed with the action (3). Leti: X - C(G, X ) be the map defined by

) N =tx, teG,xeX.

Then 1 is an equivariant embedding and i(X) is closed in C(G, X).

This was proved by Yu. M. Smitnov ([19], Theorems 4 and 5). Note that the
action of G on itself maps (g, t) to 1g™%, so that (3) becomes (go)(2) = (tg),
g,teG, ¢ €C(G, X).

LemMA 3. Every metrizable space ¥ can be embedded as a closed subset in
a normed vector space L.

This is a result due to R. F. Arens and J. Eells, Jr [7] (see also [8], Ch. II,
Corollary 1.1).

In order to prove Proposition 1, one first embeds X equivariantly as a closed
subset of C(G, X) (Lemma 2). By Lemma 3, one can assume that X is a closed
subset of a normed vector space M. One can also assume that X spans M and
therefore w(M) < max(w(X), 8;). Then C(G, X) is a closed and equivariant subset
of the normed linear G-space I, = C(G, M). By the Dugundji extension theorem
(see [11], IX, Theorem 6.1. or [161, I, § 3.1, Theorem 3), M is an AR. Therefore,
by Lemma 1,L is a G-AE satisfying .

Remark 1. If instead of Lemma 3 one uses the well-known Kuratowski-
Wojdystawski embedding theorem (see [16], I, § 3.1, Theorem 2), one obtains

a weaker version of Proposition 1, which however, suffices for all our further
arguments.

Remark 2. If G is a compact Lie group, then every normed linear G-space
is a G-AE [5]. This fact and the equivariant version of Lemma 3 (established in
[6]) yield for compact Lie groups G a shorter proof of Proposition 1. However,
Antonian has recently shown [6] that for any compact group G, which is not a Lie
group, there exists a normed linear G-space which is not even a G-ANE.

icm

Equivariant shape 217

PROPOSITION 2. A4 metrizable G-space Y is a G-ANR (G-AR) if and only if
it is a G-ANE (G-AE).

This is proved by Antonian in [6] (for complete metrizable spaces see [1];
[2) and it is an immediate consequence of Proposition 1.

Let: ¥ be a covering of a space Y. We say that maps f, f': X = Y are ¥ -near
provided every xe X admits 2 Ve ¥ such that f(x), £'(x) e V. For a homotopy
F: XxI— Y we say that it is a ¥"~homotopy provided every x & X admits a Ve ¥
such that FixxI) g V.

PROPOSITION 3. Let ¥ be a G-ANR. Then every open covering ¥ of Y admits
an open covering V"' of Y such that whenever fy,f,: X — ¥ are ¥"'-near G-maps
from an arbitrary G-space X to Y, then there exists an equivariant ¥ -homotopy
F from fy to fi. Moreover, if for a given x € X, fo(x) = f,(x), then F|xx I is constant.

Proof. By Proposition 1, we can assume that ¥ is an invariant closed subset
of a normed linear G-space L. Since Y is a G-ANR, there exists an open invariant
neighborhood U of ¥ in L and an equivariant retraction r: U — Y. Let # be an
open covering of U, which refines »~*(¥") and consists of balls from L. Put ¥~
={WnY: Wew}. We claim that ¥ has the desired properties.

Let fo, f1: X = Y& L be ¥”-near G-maps. We define a homotopy ¢: XxJ—L
from f, to f; by putting

6) ®(x, 1) = (I-) ful()+1fi(x), (x,0)eXxI.

For every x € X there is a We % which contains f,(x) and f,(x). Since W is convex,
we conclude that @(xxI)S W< U. However, W is contained in a set r~(V),
where Ve . Therefore F=rd: XxI— Y is a ¥ -homotopy from fp to fi.
Moreover, if fy(x) = fi(x), then F|xx I is constant., F is equivariant because f,, i
and r are equivariant and G acts linearly on L, which makes also & equivariant.

ProPOSITION 4. Let X be a metrizable G-space, let A< X be an invariant
closed subset of X and let ¥ be a G-ANR. Moreover, let f,,f,: X — Y be equivariant
maps and let F: Ax I — Y be an equivariant homotopy from fy|A to fi|A. Then there
exists an invariant neighborhood V of A in X and there exists an equivariant homotopy
F: VXTI Y from f,|V fo f,|V, which extends F.

Proof. The set T'== (AxI)u (Xx0) U (Xx1) is clearly a closed invariant
subset of X'/, Consider the cquivariant map f: T'— Y defined by

(N fla.t) = Fa, ty, (a,t)edxl,

®) S0 =f@), f6D=f), xeX.

Since Y is a G-ANE, f extends to an equivariant map f: U— ¥, where U is an
invariant neighborhood of Tin X x I. Using compactness of I one can find a neighbor-
hood ¥ of 4 in X such that ¥xI<U. One can also achieve that ¥ be an open

invariant neighborhood of 4 in X. Then F = f|V'x I has all the desired properties.
For a survey of results on G-ANR’s see [4].
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4. Equivariant resolutions. In this section we consider inverse systems X
= (X, pyye» A) in the category Top©. This means that every X;, 4 € 4, is a G-space
and every p;.0 X, - X, A<, is a G-map. If every X,, e 4, is a G-ANR, we
speak of a G-ANR-system. In particular, a single G-space X can be viewed as
an inverse system in Top. A morphism of pro-Top€ p: X — X consists of G-maps
Pt X = X, Le d, such that p; = p,p;, A< A (see [16], 1. § L1.1).

DermNITION 1. A morphism p: X — X of pro-Top€ is called a G-resolution
of the G-space X or an equivariant resolution, provided for every G-ANR P and
every open covering ¥~ of P the following two conditions are satisfied:

(GRD)Iff: X — Pisa G-map, then there is a Ae 4 and a G-map h: X; — P
such that /ip, and f are ¥ -near.

(GR2) There exists an open covering ¥~ of P with the following property.
Whenever 1€ A and Ay, by : X; + P are equivariant maps such that hypy, hip, are
#"'-near maps, then there exists a A’ > A such that hoPoae, hypyy are ¥ -near maps.

If in a G-resolution every X, is a G-ANR, then we speak of a G~ANR -resolu-
tion. Generalizing ([14], Theorem 12), we have the following result.

THEOREM 1. Every G-space X admits a G-ANR-resolution prX—-X.

In the proof we need the following lemma (generalizing [14], Lemma 1).

Lemma 4. Let X be a G-space, ¥ a G-ANR and J+ X = Y an equivariant map.
Then there exists a G-ANR Z of weight

@ w(Z) <max{w(G), w(X), 8}

and there exist equivariant maps h: X - Z, k: Z — Y such that f=kh
Proof. Using Proposition 1, we can assume that S(X) is an invariant closed
subset of a normed linear G-space L, which is a G-ANR and satisfies

@ w(L) < fmaxw(G), w( (X)), %o} -

Note that for metric spaces M weight w(M’ ) coincides with the degree of separability
s(M) (which is the least cardinal of a dense subset). Therefore,

G w(F(X) = s(f(X) < s(X) < w(X) .

Since Y is a G-ANE, the inclusion J(X) - Y extends to an equivariant map
h: Z — ¥, where Z is an open invariant neighborhood of f(X) in L. Consequently,
Zisa G-ANR. Let k: X — Z be the composition of f: X ~ f(X) with the inclusion
map f(X) ~ Z. Clearly, k is also an equivariant map ‘and hk = f. Moreover,
Ww(Z)<w(L) so that (2) and (3) imply (1). .

Proof of Theorem 1. Let P, P’ be G-spaces and let p: X - P, p': X — P’
be equivariant maps. We say that p and P’ are equivalent. provided there is an
equivariant homeomorphism A: P — P’ such that hp =p'. Let I' consist of all
equivalence classes of G-maps p: X — P, where P is a G-ANR of weight

(C)] w(P) <max{w(G), w(X), 8} = <.
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I' is a set because every metric space of weight <t embeds in the cube I°. For
every y €I we choose a G-map p,: X — P,, where P, is a G-ANR of weight
w(P) <.

Let 4 be the set of all finite subsets § = {y,, ..., y,} of I'. We order 4 by
inclusion and thus obtain a directed set. For & = {y,...,y,} €4 we put P,
= Py, % ... xP,. Letting G act on P; by g(x,,..., %) = (gx1, ..., g%,), § €G, P,
becomes a G-ANR of weight w(P) <. If 8 = {31, o0, 9} K {py e Voo oo0s V) = &,
we define ps: Py — P; as the natural projection. We also define p,: X — P; as
the map ps = py X ... X p,,. Clearly, ps and p, are G-maps, pssPssr = Dsgr,
¥ <" and py = pyypy, 6 <O, Therefore, P = (P;, psy, 4) is a G-ANR-system
and p = (p;, 4): X = P is a morphism of pro-Top®. Using Lemma 4, one readily
sees that p satisfies condition (GR1).

In order to obtain property (GR2) we must modify p: X — P as follows.
Let 4 be the set of all pairs 1 = (8, U), where 6e 4 and U is an invariant open
neighborhood of py(X) in P;. We put X, = U and observe that X, is a G-ANR.
We order A by putting A = (5, U)<(6', U") = 1’ whenever 6§ <& and p,;(U")
< U. We then define p,;.: X, — X, to be the map p;y|U’: U’ - U. Clearly, p,,- is
a G-map, X = (X;,pu,A) is 2 G-ANR-system and p=(p;,4): X=X is-
a morphism of pro-Top?%.

The morphism p: X — X still has property (GR1), because we have only
extended P to X. It has also property (GR2). Indeed, if P is a G-ANR and ¥ is
an open covering of P, then ¥~ = ¥ has the desired property (as seen by an
argument similar to the one used in the proof of Theorem 13 of [14]).

5. Equivariant expansions. We define equivariant expansions of G-spaces py
specializing the general notion of expansion with respect to a category J and its
full subcategory £ (see [16], I, § 2). In our case this is the category [Top ] (see § 2)
and its full subcategory [ANR], which consists of G-spaces having the G-homo-
topy types of G-ANR’s.

DEFINITION 2. A G-expansion, or equivariant expansion, of a G-space X consists
of an inverse system [X]= (X;, [paz], 4A) in [Top€] and of a morphism [p]:
X = [X] in pro-[Top?], i.e., a collection of G-homotopy classes [p;] of G-maps
it X— X, AeA such that pypy g pi, A<A. Moreover, the following two
conditions must be satisfied:

(GEI) If P is 2 G-ANR and f: X — P is a G-map, then there is a A€ 4 and
there is a G-map h: X, — P such that hp, ¢ f. o

(GE2) If P is a G-ANR, Aed, and ho, hy: X; - P are G-maps satisfying
hopy = hypy, then there is a A'> 1 such that

hoPay ¢ hyPa -

A G-ANR-expansion [p] is a G-expansion such that all X, aregq-AN'R’s. .
Every inverse system X = (X, Py, 4) in the category Top induces an in-

4 — Fundamenta Mathematicae 127. 3
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verse system [X]= (X, [ps], A) "in the category [Top®]. Moreover, every
morphism p = (p;, 4): X=X in pro-Top¢ induces a morphism [p] = ([p,], 4):
X - [X] in pro-[Top€]. In our development of equivariant shape the next result
is fundamental.
© THEOREM 2. Lét X be a G-space. If p: X =X is a G- resolutmn of X, rhen the
induced meorphism [pl: X —~[X]is a G -expansion of X.

" ‘order t6 prove Theorem 2 we need the following lemma which gener: ‘ﬂlzce
[16 I, §4.1, Lemma’l
_ Lemma 5. Lel X be a G- space, Jet P, P’ be G-ANR’s and let f: X = P', hy, }'1l
P =P be G- mapv such that

(_1), oo i hof =g hif.
Th@" ﬂ-“’;f‘ exist. a G-ANR P and G-maps f': X — P, h: P" — P’ such that L
(3) o ‘ 0/1 g hih.

Proof By (1), there eXlStS an equivariant homotopy Q XxI-~ P from hn f
to-h, f.- Consider the space C(I, P) of all continuous . maps ¢: I-~ P endowed with
the metric 3 (2) The action of G on P induces an action of G on C(, P) given by

@ GO =g(e®). geG. 9eCUP) tel

(see [1], Lemma 1). Let ¢: X - C(J, P) be the map defined by
OF ' q(x)(r);Q(x,z), xeX, tel.

The continuity of g follows from ([11], XII, Theorem 3.1.1). By (4),
6 . (g0 = Clgx, 1) = g0(x, 1) = g(g)®) = (gg () (1),

xed, te I
wtlxich‘means that ¢ is an equivariant map. Also notice that

¢ ge)0) = hof(x), (1) = hf(x).
We now define '+ X — P'x C(I, P) by
® W =(fx),9(), xeX.
Clearly, f' is an equivariant map. If we denote by r: P'x C(I, P) — P’ the first

projection, then / is also equivariant and. (2) holds.
We now define P = P'xC(I, P) by

O - P ={, ) eP'xCU P): 9(0) = ho(»), (1) = hy(3)} .
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(7) and (8) show that " is actually a map of X into P". P” is an invariant subset
of P'x C({, P), because (p,¢)eP" implies

(10) (g9)(0) = g(@ (@) = g(ho(») = holgy),  (go)(1) = hy(g¥)

so that g(y. ) = (gy.gp)e P, geG.
. We claim that the restrictions hgh[P"" and h h|P" are G-homotopic maps.
Indecd, let K: (P'x C(I, P))xI— P be the map given by

(1 Ky, @) t)=0(), yeP,@eC{,P),tel.
The continhity of K follows from ([11], XII, Theorem 2.4.2). K is an equivariant

homotopy because

(12) Klg(y, 9).1) = K((gy, 99), 1) = (@o)(1) = g( () = gK((¥, @), 1) -

Restricting K to P we obtain an eqyivariant homotopy P"x] - P from hoh to
hyh, because (y, @) e P’ implies

(13) K((y, 9),0) = 0(0) =he(3) = hoh(y, 9),
(14) K((y, ). 1)y =h Ay 9)

We have thus also verified (3) and the proof of Lemma 4 will be completed if we
show that P is a G-ANR or equivalently a G-ANE:

Let Z be a metric G-space, let 4 =Z be a closed invariant subset of Z and
let k: A= P'<P' xC(,P) be an equivariant’ map. We must find an invariant
neighborhood ¥ of 4 in Z and an equivariant extension k: vV —-P"of k.

-Denote by i': P'x C(I,P)—» C{, P) the second projection and observe that
it, Js an equwallant map. Therefore, i'k: 4 - C(I, P) is also an equivariant map
'md it induces a homotopy K: A xI— P, defined by

(15) K@= Fr@)), (a,t)edxl.
The contmulty of K follows from:([11], XTI, Themem?: 1.2). Kis equlvarlant because

(16)  K(g(a, 1) = K(ga, 1) = (W'k(ga))()
= [g(Wk@))(1) = g(W'k @) = gK(a, 1),
(a,t)edxl, geG.
By (9), we have
(17) (Wk(@))(0) = hohk(a), /z’lc(a))(l) =hhk(@), aeAd,

bemuse k(a) e P". This shows that K is a G-homotopy from hohk to hyhk.
Since P’ is a. G-ANE and hk: A = P’ is an equivariant map, there exists an

invariant nexghborhood U of A in Z and there exists an cquxvanant map k U—-P,

which extends hk. One can now. apply Proposition 4 to hok', hy k' and K and con-

I
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clude that there exists an equivariant' neighborhood ¥V of 4 in U and
a G-hox}lotopy R: VxI— P from hk'|V to h&|V. This G-homotopy induces
a map k': V- C(I, P), given by

(18) E'@)(@) = K(z, 1), zeV,tel.

The continuity of k" follows from ([11], XII, Theorem 3.1.1). & is equivariant
because

(19 F'(g2)(1) =R(gz,1) = gR(z, 1) = g(k"(2)(1))

= (gk"(®)(t), g€G, zeV, tel.

k" is an extension of i’k because
(20) (k" @)(t) =R(a, 1) = K(a, 1) = (Wk(@))(z), aed.
Consequently, if we define k: ¥ » P'x C(I, P) by
(21) k) = (k(), k"), zeV,
then k is an Equivariant map, which extends k.

Finally, k(z) e P" for, every ze V because
(22) K'(@)©0) = K(z, 0) = hk'(z),

(23) K'@)(1) = Rz, 1) = h,k ().
This completes the proof of Lemma 4.

The proof of. Theorem 2 now proceeds in the same way as the proof of the
analogous tesult in the case of ordinary shape, i.e., in the case G = {e} (see the
proof of I, § 6.1, Theorem 2 of [16]).

6..The equivariant shape category. We will now define the G-shape category
or eqfnvariant shape category Sh®. We apply the construction of the shape category
associated with an arbitrary category Z and a full subcategory # (see [16], 1, § 2.3).
The only requirement needed for the construction is that 2 be dense in 7 }Il the
sense that every object of J~ admits a 2-expansion.

In the case of equivariant shape we take as J the category [Top%] and as #
the category [ANRS] (see § 5). Therefore, we only need the following theorem.

THEOREM 3. Every G-space X admits a G-ANR-expansion.

Theorem 3 is an immediate consequence of Theorems 1 and 2.

AGccording to [16], I, § 2.3, the objects of Sh€ are all G-spaces. The morphisms
of Sh% between G-spaces X and Y are given by triples ([p], [g], [f]), where [pl:
XX, [g].: Y — Y are G-ANR-expansions of X and Y respectively and [f]:
[X]— [¥]is a morphism of pro-[Top ] (see [16], I, § 1.1). In particular, one can
take for [p] and [g] morphisms induced by G-ANR-resolutions p and g.’
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One also has a G-shape functor [Top®] — Sh€ (see [16), T, § 2.3). Therefore,
if G-spaces X and Y have the same G-homotopy type, they dlso have the same
G-shape, sh®(X) = sh®(Y), i.e., they are isomorphic objects of Sh®. Already for
G = {e} the converse does not hold. However, for G-ANR’s X and Y G-shape
morphisms X — Y coincide with G-homotopy classes of G-maps and, therefore,
for G-ANR’s classification "up to G-shape coincides with the classification up to
G -homotopy type. ‘

Remark 3. There is an alternative proof of Theorem 3 which does not use
G-resolutions. One uses instead the necessary and sufficient conditions for a sub-
category # to be dense in a category 7 (see [16], T, § 2.2, Theorem 2). }

Remark 4. We have defined the G-shape category Sh® for any compact
group G. However, there are reasons to believe that equivariant shape theory as
defined in this paper will prove useful primarily in the case when G is a compact
Lie group.
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Combinatorial aspects of measure and category .
by

Tomek Bartoszyhski (Warszawa)

Abstract. Tn this paper we study set-theoretical properties of the ideal of meager sets. We
prove that the real line is not the union of less than 2° meager sets iff for every family of reals of
cardinality less than 29 there exists an “infinitely equal” real. Wealso find a characterization of
uniformity of the ideal of meager sets.

0. Preface. The purpose of this paper is to give combinatorial description of
some elementary properties of the ideal of meager sets and the ideal of null sets.
In fact, we deal only with the ideal of meager sets. We find a characterization of
basic set-theoretical properties of this ideal. For a more complete picture we also
formulate, in the same language, the already known characterization of the
analoguous properties of the ideal of null sets.

Let us start with the following definition.

DEFINITION. For any ideal J< P(R) let c(I) denote the smallest 2¢-complete
ideal containing I. :

We define the following sentences.

AU) = ceDel,
B() = Réc(l),

U=YXSR Xel,
jxj< 20

¢ =VFclAHe VFeF H-F# a.

127 <2

Let I, and I, denote the ideal of meager subsets of R and the ideal of Lebesgue
measure zero sets, respectively. Let I, denote the o-ideal generated by compact
subsets of w®. We are interested in properties 4, 8, U and C for those ideals. For
simplicity let 4 (c) abbreviate 4(L), B(k) stand for B(J,) and so on. It is well known
that the properties 4, B, U and C are equivalent when stated for the real line R,
the Baire space w® or the Cantor set 2¢.

Throughout the paper we use the standard terminology. For any set X' we
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