

FUNDAMENTA MATHEMATICAE 127 (1987)

A note on a paper of J. A. Guthrie and M. Henry

by

Angel Gutiérrez and Salvador Romaguera (Valencia)

Abstract. In a recent paper, J. A. Guthrie and M. Henry assert that if \mathscr{F} is a family of continuous functions from a space X into [0,1] whose cozero sets form a hereditarily closure-preserving family, then \mathscr{F} is relatively complete. Here we show that this result is not correct in general, but it is true when every point in the space is a G_{δ} set.

In this paper we suppose that regular spaces are T_1 , and R will denote the set of real numbers with the usual topology.

In [1], Burke, Engelking and Lutzer prove the following generalization of the Nagata-Smirnov's theorem:

THEOREM A. A regular space is metrizable if, and only if, it has a σ -hereditarily closure-preserving (σ -HCP) base.

In [2], Guthrie and Henry deduce Theorem A from these results:

THEOREM B. A topological space is pseudometrizable if, and only if, it has the weak topology induced by a σ -relatively complete collection.

THEOREM C. Let \mathcal{F} be a family of continuous functions from a space X into [0, 1]. If the cozero sets of the functions in \mathcal{F} form a HCP collection, then \mathcal{F} is relatively complete.

The example given by Burke, Engelking and Lutzer in [1], Example 8, proves that Theorem C is not correct because if for every $H_{\alpha} \in \mathcal{H}$ we define

$$f_{\alpha}(x) = \begin{cases} 1 & \text{when } x \in H_{\alpha}, \\ 0 & \text{when } x \in X - H_{\alpha} \end{cases}$$

then the family $\mathscr{F} = \{f_{\alpha}, 0 \leq \alpha < \omega_1\}$ verifies the hypothesis of Theorem C but, obviously, it is not relatively complete.

However, we have the following result:

PROPOSITION 1. Let $\mathscr{F} = \{f_i, i \in I\}$ be a family of continuous functions from a space X into [0, 1], whose cozero sets form a HCP collection. Then \mathscr{F} is relatively complete if each point in X is a G_δ set.

Proof. Let $J \subset I$. Then $\sup\{f_j, j \in J\}$ is continuous (see the first part of [2] Theorem 6).

Let $f = \inf\{f_j, j \in J\}$ and let U_j be the cozero set of f_j . Clearly, f(x) is defined for each $x \in X$. If f(x) = 0, it is easily verified that f is continuous at x. If $f(x) \neq 0$ then $x \in \bigcap \{U_j, j \in J\}$. We can put $\{x\} = \bigcap_{n=1}^{\infty} V_n$ where every V_n is open. Well-order J and let

$$H_j = \begin{cases} U_j \cap V_j & \text{when } j < \omega_0 \\ U_j & \text{when } j \geqslant \omega_0 \end{cases}$$

By using the technique of [1], Lemma 4, we prove that $\bigcap [H_j, j \in J] = \{x\}$ is open. Consequently, f is continuous at the isolated point x. Then f is continuous in X and the proof is complete.

Now, Theorem A is an immediate consequence of Theorem B and Proposition 1. The authors are indebted to Dr. M. López-Pellicer for his many valuable suggestions.

References

- [1] D. Burke, R. Engelking and D. Lutzer, Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc. 51 (1975), 483-488.
- [2] J. A. Guthrie and M. Henry, Metrization, paracompactness and real-valued functions, II, Fund. Math. 104 (1979), 13-20.

DPTO. DE DIDÁCTICA DE LA MAT.
E.U. de Profesorado de E.G.B.
Alcalde Reig, 8
Valencia — 46006
Spain
DPTO. DE MATEMÁTICAS II
E.T.S.I. de Caminos, C.P.
Universidad Politécnica
Camino de Vera
Valencia — 460022
Spain

Received 23 May 1983; in revised form 20 June 1983

