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Prime ideals yield almost maximal ideals
by

Andreas Blass * (Ann Arbor, Mich.)

Abstract. We prove that Johnstone’s almost maximal ideal theorem follows (in set theory
without the axiom of choice) from the Boolean prime ideal theorem. In view of earlier work of John-
stone and of Banaschewski and Harting, this result immediately gives several new equivalents for
the Boolean prime ideal theorem, for example the Tychonoff theorem for compact sober spaces
and the existence of prime ideals in arbitrary (not necessarily commutative) rings with unit. We
also give a combinatorial characterization of the permutation models that satisfy the Boolean prime
ideal theorem,

We shall be concerned with three existence principles for ideals in distributive
lattices: the maximal ideal theorem, the prime ideal theorem, and the almost maximal
ideal theorem, (We adopt the convention that lattices are required to have a bottom
element 0 and a top element 1; ideals are subsets that are closed downward and closed

under finite joins.)

The maximal ideal theorem asserts that every nontrivial distributive lattice has
a maximal (proper, of course) ideal. Klimovsky [10] proved that this theorem is
equivalent to the axiom of choice (AC). (The proof will also be in the forthcoming
revised edition of [13],) It is well-known that AC is needed for the proofs of many
mathematical theorems (see, for example, [7]) and is in fact equivalent to many of
them [13]. Among these equivalent theorems are (in addition to the maximal ideal
theorem for lattices) the maximal ideal theorem for rings with unit (or just for integral
domains) [6] and Tychonof’s theorem that products of compact spaces are com-
pact [9].

Here and throughout this paper “equivalent” means provably equivalent in
Zeomelo-Fraenkel set theory without the axiom of choice or in the theory obtained
from it by deleting the axiom of regularity and weakening the axiom of extensionality
to allow the existence of atoms.

The prime ideal theorem, which asserts that every nontrivial distributive lattice
has a prime ideal (i, e., an ideal which, whenever it contains the meet of finitely many
elements of the lattice, also contains one of those elements), is equivalent [14] to the
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special case where the lattice is assumed to be a Boolean algebra. It is therefore
usually called the Boolean prime ideal theorem (BPI). It is known [3], [4] to be
strictly weaker than AC, but not provable in ZF [2]. Like AC, it is equivalent to
many mathematical theorems. Among these are the prime ideal theorem for comniu-
tative rings with unit [14], Tychonoff’s theorem for compact Hausdor(f spaces [11], [7],
and the compactness theorem for first-order logic (or just for sentential logic) [5].

Since we shall need to use the fact that BPI implics the sentential compactness
theorem, we digress briefly to sketch the proof. Let 0 be a sct of sentences built from
some sentential variables by means of the usual connectives A, V, and 7. Assume
that every finite subset 0, is satisfable by some assignment of truth values to the
variables. Sentential compactness asserts that then 0 is also satisfiable. To prove
this, define two sentences « and § (built from the variables used in 0) to be cquivalent
if there is a finite 0, < such that every assignment satis{ying 0, gives o and f the
same truth value. Then verify that the equivalence classes form a Boolean algebra,
with Boolean operations given by the connectives. The hypothesis of finite satis-
fiability makes this algebra nontrivial, so BPI provides a prime ideal I. Assign to
each variable the value true (resp. false) if its equivalence class is not (resp. is) in J,
and verify by induction on sentences that this assignment satisfies exactly those sen-
tences whose equivalence classes are not in I. Among these are all the sentences in 0,

for they are in the equivalence class 1. Thus, the assignment satisfies 0 and the proof

sketch is complete.
To introduce the concept of almost maximal ideals, and to simplify some later
arguments, it is convenient to define the dual I* of an ideal J by

I* = {a| for some iel,iva=1}.

Distributivity of the lattice implies that I* is a filter, i.e., closed upward and closed
under finite meets. Note that an ideal [ is proper if and only if it is disjoint from I*.
To define almost maximal ideals, Johnstone [8] first introduced an operation j on
ideals by )

j) ={a| for all b, if av b =1 then beI*}.

It is easily verified that j(I) is an ideal including 7 and that j (/) is proper if £ is. /() is
the largest ideal having the same dual as 1. An ideal I is almost maximal if it is prime
and j(I) = I. Since j preserves properness and maximal ideals are prime, it follows
that maximal ideals are almost maximal. Johnstone [8] gives examples showing that
almost maximality is strictly intermediate between primeness and maximality.

The almost maximal ideal theorem (AMIT) asserts that every nontrivial distri-
butive lattice has an almost maximal ideal. It is clearly intermediate in strength
between AC and BPL By adapting Halpern’s argument [3], Johnstone [8] showed
AMIT holds in Mostowski’s lineatly ordered model [12, 7] and is therefore strictly
weaker than AC.

Although it was introduced quite recently, AMIT already has some interesting
equivalents (mostly in the topology of locales) and consequences. Johnstone [8]
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showed that AMIT implies the Tychonoff theorem for compact sober spaces and is
equivalent to the assertion that every compact locale has at least one point. Bana-
schewski and Harting [1] defined Wallman locales (a generalization of compact T,
spaces) and showed that all of these are spatial if and only if AMIT holds. They
also deduced from AMIT that every (not nccessarily commutative) ring with unit
has a prime ideal.

Although Johnstone proved that AMIT is strictly weaker than AC, he left
open the question whether it is strictly stronger than BPL The main result of this
paper is a negative answer to this question.

TuroreM 1. The Boolean prime ideal theorem implies the almost maximal ideal
theorent.

After seeing a preprint of this paper, B. Banaschewski found a considerably
shorter proof of this thcorem than the one given here. His proof will appear in [0].

Proof. Assume that BPI and therefore the compactness theorem for sentential
logic are true. Let L be a nontrivial distributive lattice. We intend to apply com-
pactness to the sct ( of sentences defined as follows.

The sentential variables are to be all the ordered triples (I, x, y) where I is
a proper ideal of L and where x and y are elements of L satisfying x A y € I. For
each proper ideal J, cach finite subset F of L whose join \/ F is in the dual I* of I,
and each function f: F~»L such that x A f(x)e I for all x ¢ F, 0 is to contain the
two sentences

EUIL R f) = vF I, x,f(x))  and
nd, F.fy =\ (LF(),5).

yeF

Note that the restriction on f ensures that the ordered triples occurring in (7, F,f)
and n{I, F,f) are sentential variables. Note also that no sentence in 0 involves two
sentential variables with distinet first components 1.

To apply (sentential) compactness to 0, we must first verify that every finite
0, < 0 is satisfiable. Let 0, be given; it is the union of finitely many (because 0, is
finite) subsets 04(1), each consisting of those sentences in 0, in which all the variables
have first component /. We shall show that each 04(f) is satisfied by some assignment
of truth values to the variables occurring in it; since these are different variables for
different 1's, we can simply combine the assignments to satisfy 0o, (AC is-not needed
to choose an appropriate assignment for cach I, since only finitely many I’s occur.)

So we concentrate on one of the sets 0,(7). Let Q be the st of pairs (x, y) such
that (I, x, ) occurs in (at Jeast one formula in) 0,(T). By definition of sentential
variables, we have x A y & I for every such pair. Since I is an ideal and Q is finite
(because 0y(J) is), I contains

Vo xa),

(%) eQ
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which can be rewritten, by distributivity, as

ANV 9vC Vo),

C  (xy)eC (x,y)eQ-C
where C ranges over all subsets of Q. Since [ is proper, this element of 7 cannot be
in the dual filter I*. So there must be a subset C of Q such that

CV v\ eI
(x,y)eC (x,y)eQ~C
Fix such a C, and assign the value true (resp. false) to (7, v, ») if (x, ) belongs to ¢
(resp. Q—C). By choice of C, neither the join of

{x| for some vy, (x,3) e C}
nor the join of
{y for some x, (v,))e @~C}

(nor even the join of both of these joins) is in I*. Consider any &I, F,f) or
(I, F, f) in 0,(I). By definition of 0, the join of F is in I*, so F cannot be a subset
of either of the two sets just displayed. Thus, F contains an x, such that (xy,») ¢ C
for any y, and F contains a y, such that (x, o) ¢ Q—C for any x. In particular,
(x0,/ (x0)) ¢ C and (f(yo), yo) & Q—C. Tf E(I, F,f) € Op(I), then (%o, f(xo)) € O;
since (x,,./ (o)) ¢ C, the sentential variable (T, %9,f (xo)) was assigned the value
false. This suffices to make £(I, F, f) true. If 5 (L F, f) € 0p(D), then (f (3o, Yo)€ Q;
since (1 (¥o),¥o) ¢ Q—C, the sentential variable (1.1 (o), 7o) was assigned the
value true. This suffices to make 5(, F, 1) true. Thus, the assignment defined above
from C makes all sentences in 04(7) true.

As indicated above, such assignments, obtained for (finitely many) different I’s,
can be combined into an assignment satisfying 6,. Since 0o was an arbitrary finite
subset of 0, we can apply the compactness theorem to obtain an assignment A that
satisfies 6. Fix such an A.

Define, for any proper ideal J,

X(I) == {x| for some y, A makes (Z, x,y) true},

and consider an arbitrary finite subset F of X (I). For each x e F, let £'(x) be such
that 4 makes (7, x, f (x)) true; such an f(x) exists as x ¢ X (1), and the function f can
be produced without using AC since F is finite. The choice of f ensures that A makes
the sentence x\E/F I, x, £ (%)) false. If the join of F were in the dual filter I *, then

this sentence would be an elément ¢, F, 1) of 0, so A would make it true. Therefore,
\/ F¢I*. We bave shown that no finite subset of X(I) has join in I'*, which means
that Ju X(7) generates a proper ideal (consisting of all elements <iv \/ Fforiel
and finite F < X(7)) which we call X *().

Similarly, let

Y(I) := {y| for some x, 4 makes (, x, y) false} ,
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and consider any finite F< Y(I). Eor cach y e F, let f(3) be such that 4 makes
(1, f (), ) false. Thus, 4 makes \/F (. (9), y) false. If \/ F were in I*, this sentence
yel

would be an clement n(Z, F, ) of 0, so A would make it true. Therefore \/ F¢*.
It follows, as above, that JTu Y (I) generates a proper ideal ¥Y™*(I).

We define a non-decreasing sequence of proper ideals 1, by the following trans-
finite recursion.

To = {0}. (Here we use that L is nontrivial.)
Toy= U I, if X is a limit ordinal,
%< A
XL i I X,
[m-bl = Y".(]az) If Iz = X"‘(Im) % Y+(Ia) ’

J) otherwise ,

where j is the operation used in the definition of almost maximality. (Recall that X+,
¥*, j, and unions of chains all preserve properness of ideals.)

Since there are a proper class of ordinals but only a set of ideals, this transfinite
sequence cannot be strictly increasing. So fix an « with I, = I+1. By definition
of I,.q, we have

[u = X‘F(Im) = Y"‘(]m) "_"j(lm) .

We shall show that I, is prime; since J, = j(I,), we will then have an almost maximal
ideal, as desired.

Suppose x A y € 1,. Then (I, x, ») is one of the sentential variables introduced
in the definition of 0, so it is assigned a truth value by 4. If this value is true, then

xeX(I)sX*(I)=1,.
If the value is false, then
yeY()s Y1) =1I,.

Thus, x or y is in I,, and I, is prime, as required. M -

By combining Theorem 1 with the results about AMIT in [1] and [8], we obtain
several new cquivalents of BPI., In the following corollary we list those arising from
the equivalents and consequences of AMIT cited earlier. Note that the consequences
have become equivalents because they imply BPI,

CoROLLARY. The following are equivalent.

(&) The Boolean prime idecl theorem (BPY),

(b) The almost maximal ideal theorem (AMIT).

(e) Every compact locale has a point.

(d) The Tyehonoff' theorem for compact sober spaces,

() Every Wallman locale is sputial.

(€) Every ring with unit has a prime ideal. B
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An eatly version of Theorem 1 established the equivalence between AMIT
and BPI only for Fraenkel-Mostowski-Specker permutation models of set theory
with atoms; it did this by characterizing the groups and filters of subgroups that
give rise to models of AMIT and BPL Although the equivalence result is, of course,
superseded by Theorem 1, the characterization. is not and seems to be worth record-
ing. It involves some combinatorial concepts that may be of independent interest.
It also shows that the method used by Haipern [3] and Johnstone [8] to prove BPI
and AMIT in the ordered Mostowski model, namely to show that an ideal maximal
among those with a certain (suitable) invariance group is necessarily prime, is a com-
pletely general method; whenever BPI holds in a permutation model, it can be estab-
lished in this way.

Let G be a group and X a G-set, L.¢., a set equipped with a left action of G,
We write the action as multiplication and, if ¥ < X, we write g ¥ for {gy|re ¥}
X has the Ramsey property if, for every finite F'< X, there exists a finitc YSX
such that, whenever Y is partitioned into two pieces, at least one of the pieces in-
cludes gF for some geG.

For example, suppose X is the set [Q]" of n-element sets of rational numbers
and G = Aut(Q) is the group of order-automorphisms of @, with the obvious
action on X. Since every finite F< X is included in one of the form [P]", with P
a finite subset of @, the Ramsey property easily reduces to: For every finite P < Q,
there exists a finite Z = Q such that, whenever [Z" is partitioned into two pieces, then
at least one of the pieces includes [gP]" for some g & G. Since every subset of @ of the
same cardinality as. P-is gP for some g € G, the Ramsey property for this example
amounts to (the finite form of) Ramsey’s theorem.

The example relevant to the proofs of BPI and AMIT in the ordered Mostowski
model is a generalization of the preceding one. Let (Aut(Q))* act componentwise
on [QT" x...x [@]™. The Ramsey property for this example reduces to the assertion
that, for any natural numbers p, ..., py, there exist finite sets Z,, ..., Z; such that,
whenever [Z,]" X ... x [Z,]™ is partitioned into two parts, then there exist p;-element
subsets H; = Z; fori = 1, ..., k, such that [H, 1" X... x [H,]™ is included in one piece.
This assertion is the main combinatorial lemma in [3].

An example of a different sort is given by taking X = Q with ¢ being the group
of affine transformations (x b ax+b, with constant g and b in @, and « # 0).
Now every finite < X is included in a finite arithmetic progression. It easily follows
that the Ramsey property for X amounts to van der Waerden’s partition theorem
for arithmetic progressions [15].

We leave it to the reader to formulate other well-known partition theorems as
instances of the Ramsey property.

A subgroup H of a group G is called a Rumsey subgroup if the G-set G/H of
left cosets g H (with the obvious G-action) has the Ramsey property. A normal filter &
of subgroups of a group ¥ has the Ramsey property if it has a basis 4 of groups G
such that every subgroup of G in # is a Ramsey subgroup of G. (For the definition

icm

Prime ideals yield almost maximal ideals 63

of normal filters and other concepts related to permutation models, see [7],
chapter 4.)

Let M be the permutation model defined by a set U of atoms, a group % of per-
mutations of U, and a normal filter & of subgroups of . We may assume that
every group G e # occurs as the stabilizer of some clement of M, for if not then the
groups that do occur constitute another normal filter that also defines M.

TwiorEM 2. With M, U, &, F as above, the following are equivalent.

(a) BPY holds in M.

(b) F haw the Ramsey property,

(c) AMIT holds in M.

Proof. It is trivial that (c) implies (2). We prove (a)— (b)—(c).

(a)-+(b). Assume that M satisfics BPI, and consider an arbitrary K € #. Define
a K-sct X as follows. Whenever G, H & are subgroups of K and Fis a counter-
example to the Ramsey property of some G-orbit in K/H (i.e., F is a finite subset
of a G-orbit in K/H and every finite subset ¥ of that orbit can be partitioned into
two pieces neither of which includes gF for any g & G), X will have a subset, called
the (F, G, H)-orbit, isomorphic as a K-set to K/H. The orbits labeled by distinct
triples (F, G, H) are to be distinct, hence disjoint.

Since every group in & is the stabilizer of some set in M, it is easy to see that
X is K-isomorphic to some set in M, stabilized by X, with the K-action induced by
the action of % on M. For notational simplicity, this set in 3 will also be called X,

Using the members of X as sentential variables, define 0 to consist of the sen-
tences

EI,G, H k) = \/ "kx,
xekFt

n(r, G k) = \/ kx,
xekF’

where & € K, where (I, G, H) labels a K-orbit isomorphic to X/H in X, and where F’
is the image in this orbit, under this isomorphism, of F < K/H. 0 is invariant under K
and its members are in M, so 0 ¢ M. We intend to apply the sentential compactness
theorem to it.

Notice that each sentence in 0 contains sentential variables from only a single
¢, G, H)-orbit in X, and indeed from only a single K-translate k7' of the G-orbit
that contains ¥, Thus, to show that every finite 0, < 0 is satisfiable, it suffices to
treat the case where all sentential variables in 0, are in the same set k7" of this sort,
for then, given an arbitrary finite 0y, we can treat each of the subsets involving
one kT separately and combine the assignments satisfying these subsets into one
satisfying 0y (An assignment of truth values to finitely many elements of M is,
of course, in M.) So let a finite 0, & 0 be given, involving sentential variables from
a single K-translate kT" of the G-orbit T' containing F’ (in the K-orbit labeled
(F, G, H)). Replacing 0, by k~10,, we may assume that all variables in 0, are in 7.
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Let Y be the set of all the elements of 7" that occur as variables in 0. By the definition
of what it means for (F, G, H) to label an orbit in X, there must be a partition of ¥
into two pieces, neither of which includes gF for any g € G. Then all the sentences
in By, being of the form &(F, G, H, g) or n(F, G, H, g) with g e G (since the va-
riables of 6, are from T), will be satisfied if we assign the value true to all the variables
in one piece of this partition of ¥ and the vatue fulse to all the variables in the other
piece.

Thus, cach finite 6, €0 is satisfiable. Applying the compactness theorem
inside M, let A be an assignment of truth values to all the variables in X, making
all of 0 true. Since 4 € M, let G € & stabilize A; replacing G by G n K, we may assume
that G K.

We shall show that every subgroup H e & of (' is a Ramsey subgroup. Suppose
not, and let H be a counterexample. Let F be a finite subsct of G/H < K/H such
that every finite Y= G/H can be partitioned into two pieces neither of which includes
gF for any g € G. Then (¥, G, H) labels an orbit in X, and 0 contains sentences
E(F,G, H,1) and n(F, G, H, 1) which require A to assign false to some variables
and true to other variables in F’. But all the variables in F’ lie in the same G-orbit
in X, and 4 is G-invariant, so this is impossible. This contradiction proves that
every subgroup of G in & is a Ramsey subgroup.

We have found a G € # with this property inside an arbitrary prescribed K ¢ &,
This means that these G’s form a basis for &, so & has the Ramsey property.

(b)—(c). This is essentially an abstract version of the Halpern—Johnstone
argument; indeed, the Ramsey property was found by asking what is nceded for that
argument to work.

Given a nontrivial distributive lattice L in M, choose a G e # (the basis given
by the Ramsey property of &) stabilizing L. By Zorn’s lemma in the real world,
let I be a maximal G-invariant proper ideal of L. G-invariance implics that Ie M.
Since j(I) is a proper G-invariant (because definable from L and I) ideal including /,
maximality implies that j(J) = I. It remains to prove that I is prime.

Suppose a,b ¢ Ibut 2 A bel. The ideal generated by Ju {gualg € G} is G-in-
variant and extends J properly as it contains 2. So it is the improper ideal, which
means that the join of finitely many- of the elements ga is in the dual filter I*. Say

giav..vguaelt,
Similarly,

gibv..vgbel*;
if the sets of g's are different in these two formulas, replace them by their union to
make them the same.

. Let H be the stabilizer in G of the ordered pair (¢, b). Then, being a subgroup
in 5 of Ge#, His a Ramsey subgroup of G. This means that the G- orbit X of
(@, b), which is isomorphic to G/H, has the Ramsey property. Let

F = {91(17, b), “rva gk(aa b)} a2
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and apply the Ramsey property to obtain ¥ = (e, by, ..., Vu(a, b)), where
P15 s Vy € G, such that, whenever Yis partitioned into two pieces, one of the pieces
includes g# for some g e G.

Since a A b e and I is stabilized by ¢ which contains y, ..., ¥u» I must contain.
each y(a A b) and therefore also their join

iyl."t(" Ab) = p\/l (nile) A () = /c\ { l\[!{:.t’z(fl))v(l\’fé.l’z(b)))~

Here the first equation follows from the G- invariance of A and the second, in which C°
ranges over all subsets of {I,2, ..., n}, follows from distributivity.
Consider any term in the last meet in this equation; it is the term

(Vo) v\ yih)
1214 e

corresponding to a particular C. By choice of Y, there exists g € G such that
gF = {gg/u, b)|j = 1, ..., k}is included in either {y,(a, b)|ie C} or {ya, b)li¢ C}.
In the first case, each gg,(a), forj = 1, ..., k, is p(a) for some i & C, so the term under-
consideration Is

k k
2 V) gy = g \/ gla) e gI* = I*,
¢ I J=1

where we used that g e ¢ leaves the lattice operations and I and therefore I'* in--
variant, Similarly, in the second case, the term under consideration is

ke k
2 ‘yc b = ;\/L yg,b) = gj\/1 g,b) € gI* = I*.

Thus, the term under consideration is in I*. But it was an arbitrary term in the meet

A (( \ @) v ( \/J"t(b))) ,
4 14c 14C

so this meet is in J* also, since J* is 4 filter. But we saw above that this meet is in J,.
which contradicts the fact that J, being proper, is disjoint from I*. B

Remark, The only information we used about the operation j is that, for every
proper ideal £, j(I) is & proper ideal that includes 1, Thus, BPI implies that, in any
non-trivial distributive lattice, each operation with this property fixes at least one
prime ideal. In fact, a slight moditication of the proof of Theorem 1 shows that any
well-ordered set of such operations has a common fixed prime ideal. The modification
affects only the last clause in the definition of the sequence I,, which should now
read as follows, It I, = X '(J) = Y(L), then L, =j(J) where j is the first
operation in the given well-ordered set such that s j(Z,) provided such a j exists,
and L,y = I, otherwise. Then J, = /.4, implies that J, is fixed by all the given
operators and, as before, prime.
§ — Pundumenta Mathemubiene 127.1
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Counting 4, sets

Jo Paris and A, Wilkie (Manchester)

Abstract, Y this paper we consider the {ollowing well-known problem “Let B be a 4,-definable
set of natural numbers. Is the function G(n) = [BAn| also Ap-definable?”.

We shall show that the answer is yes iff B'is a very sparse set. We shall also show that for
any B we can obtain a fair approximation to G which is 4, definable.

Notation. The notation we shall use is entirely standard, see for example [1], [2].
In particular we use 4) to denote the class of subsets of N* k € N, definable in the
standard model by a 4, formula in the language of first order arithmetic. For a finite
set B, |B| denotes the number of elements in B. All logarithms are to the base 2 and
in expressions like log(x), x (« rational), etc. we shall always mean the integer parts
of these quantitics, whenever they appear in 4, formulae.

Introduction, The following problem was previously considered in [1].
“Let B 4%, B< N. Is the function G defined by G:(n) = |B | also in 457

The general feeling is that the answer to this problem is no, for example for B = set
of primes. However we shall show in Theorem 5 that the answer is yes if B is very
sparse. In Corollary 7 we show that in any case we can always obtain a fair approxi-
mation to ¢ which is in 4%,

In what follows let A& A}, 4= N™* and let

AfX) = {m|(E,mnyed&m<n}sn.

In the lemmas which follow we shall be {rying to count |4,(X)]. To simplify matters
we shall omit mention of the purameters X although as we shall see it will be critical
that our results are uniform in the parameters,

Throughout » will stand for a large natural number. It should be clear that our
results are trivial for n small, Throughout this paper we use the notation f: 4 I+ B
St 4 I+ B, ft A -» B to denote that f is respectively a bijective, injective, surjective
function from 4 to B.

Our first lemma was previously proved in [1] but for the sake of completeness
we repeat the proof here.
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