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Counting 4, sets

Jo Paris and A, Wilkie (Manchester)

Abstract, Y this paper we consider the {ollowing well-known problem “Let B be a 4,-definable
set of natural numbers. Is the function G(n) = [BAn| also Ap-definable?”.

We shall show that the answer is yes iff B'is a very sparse set. We shall also show that for
any B we can obtain a fair approximation to G which is 4, definable.

Notation. The notation we shall use is entirely standard, see for example [1], [2].
In particular we use 4) to denote the class of subsets of N* k € N, definable in the
standard model by a 4, formula in the language of first order arithmetic. For a finite
set B, |B| denotes the number of elements in B. All logarithms are to the base 2 and
in expressions like log(x), x (« rational), etc. we shall always mean the integer parts
of these quantitics, whenever they appear in 4, formulae.

Introduction, The following problem was previously considered in [1].
“Let B 4%, B< N. Is the function G defined by G:(n) = |B | also in 457

The general feeling is that the answer to this problem is no, for example for B = set
of primes. However we shall show in Theorem 5 that the answer is yes if B is very
sparse. In Corollary 7 we show that in any case we can always obtain a fair approxi-
mation to ¢ which is in 4%,

In what follows let A& A}, 4= N™* and let

AfX) = {m|(E,mnyed&m<n}sn.

In the lemmas which follow we shall be {rying to count |4,(X)]. To simplify matters
we shall omit mention of the purameters X although as we shall see it will be critical
that our results are uniform in the parameters,

Throughout » will stand for a large natural number. It should be clear that our
results are trivial for n small, Throughout this paper we use the notation f: 4 I+ B
St 4 I+ B, ft A -» B to denote that f is respectively a bijective, injective, surjective
function from 4 to B.

Our first lemma was previously proved in [1] but for the sake of completeness
we repeat the proof here.

5
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LemmMa 1. Let ke N, 0<a<l, 6 = log(m)® ~* and assume that A, < 250"
for all ne N. Then the function
H(n) = min(|4,], 85+1)

is in AY.
So if |4,] is small and the elements of A, are small then we can count |4,|.
Proof. By induction on k for all such 4 simultancously. For & == | we have

m = min(|4,|,§-+1) < Af, fi m i+ A, &m<d
or no such f exists & m = §41,

Since we can code f by the number
(14max(4,))"+ ¥ f()(1+max (AN < 2@ <25,

i<m )
this expression is 4,. (Notice that since the graph of exponentation is in 45 we can
recapture the vatues of f from this code using just 4y formulae. Henceforth we shall
use this fact without explicit mention.)

Now assume the result for k£ and all such 4, Then

m = min(ld,], F1+1) < 3 0 =iy ... <y = 289 such that

Z Ay [i, fpa )l =m &
0<r<s
for 0K <8, |4, i, ipy )| <
or no such 7 exists and m = &1 41
30 =iy <. <i5 =2 0= mo <y .. Sy = m,
such that, for 0 <1<,
Mgy —my = min([4, " [iy, iy 1) 6k+1) <o

or no such 7, m exist and m = 5** 141, . ;
Using the inductive hypothesis and the fact that the sequence i can be coded
by a number <2(Q2°™*? <2y and the sequence m by a number <2(5%
< 2log(m)t+1Viosm < 2, we see that this yields the required 4, definition, M
COROLLARY 2. Let q& N. Then there is a function H & AY such that whenever
A4,= log(®)?,
H(m) = |4, .

Proof. First notice that A,nlog(n)!s 2Vl and (A, log(n) < log()?.
Hence applying Lemma 1 to 4,nlog(m)? with ¢ = 1/2, k = 4q-+1 gives a Function
H e 4Y such that

H(n) = min(l4, nlog(n)Y, (log(m)'™#)4*1) = |4, ~log(n)|

and the result follows, B
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Lemma 1 gives counting for 4, small, provided that the elements of A, are also
small. We could remove this latter condition if we could define a function Fe 45
such that F,: 4, t— B, for some small §,. This we now do.

LEMMA 3. There is a function Fe AY such that

Fyi Ay |~ 14, log(n)* .

Proof. Let C = {a,~a,| a;,a, € 4, and a; >a,} 50 |C|<|4,|%. Bach be C
is divisible by at most log(b) (<log(n)) primes so

{plp prime and p|b some b e C}| < |d,/*log(n) .

Let p be the least prime not in this set. Then p < |4,|*log(n)® since by the prime
number theorem. there are more than |4,|*log(r) primes below | A4,|log(m)®. Then
for ay,ay€d, uy<dy, aymodp s a,modp since a,—a,eC and pJ}a —a,.
Now let F, be the map sending ¢ e 4, to a modp. B

We now have

COROLLARY 4. Let g€ N. Then the function G is in AY where

G(r) = min(|4,], log(m)*+1) .
Proof. By Lemma 3 there is Fe 4Y such that
Fy 4, 1= 4,12 log(m)® .

If max(F, 4,) = (log(n)?+1)*log(n)® then certainly |A,|>log(n)'+1 and we
can set G(n) = log(m)*+1.

Otherwise, F, 4, = (log(n)*+1)*log(n)’* =log(m)?***, and by Corollary 2
there is a function H e 4y such that, for such n, H(rn) = |Fy A, = |4,]. In this
case then set G(n) = min(H(n), log(n)?+1). B

By taking 4, = Brn for Be 45, BN we now have immediately

THEOREM 5 (The Counting Theorem). Let Be AY, BS N and suppose that for
some ke N, |Bon| <log®¥ for all n. Then the function G defined by

G(n) = |Bnn|
isin 4. W

This theorem shows that we can count very sparse sets. We conjecture that this
result cannot be improved (even though the best ‘oracle independence’ results
known are not this fine, see [1]).

However we shall later show that we can always find a ‘fair’ approximation
to G which is in 4%. This will be an immediate corollary to Theorem 6 which is an
improvement on Lemma 3.

Before proving Theorem 6 however we shall reconsider Theorem 5 from a dif-
ferent viewpoint.

An unfortunate feature of the proof of Theorem 5 is its reliance on the prime
number theorem. Consequently at this time the proof cannot easily be extended
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from the standard model to other weak number systems. To remedy this we shall
give an alternate proof of Theorem 5 which does generalize, (The reader who thinks
that one proof of Theorem 5 is more than enough can skip to Theorem 6 without
loss of continuity.)

We first introduce some notation, Let 74, be Peano’s Axioms but with induction
restricted to 4, formulae. Let M ¥ 4, and let A7 be those subsets of M k (ke N)
definable in M using a 4, formula and parameters from M. Generalizing for the
moment the earlier notations let A< M**2, 4 e A¥ and for ne M let

A5 = {m| (Z,n,myed&m<n}.

Again we suppress mention of %. Also n e M is always assumed large and standard
or nonstandard.

We now wish to prove Theorem 5 with M in place of N. An immediate difficulty,
however, is that for n e M the size of 4,, “|4,[”, may have no meaning in M. So
instead of talking about size we must talk about bijections, injections etc. Notice
that Lemma 1 holds for } using essentially the same proof. Precisely:

LemMA 1'. Let ke N, w< 1, a stenderd ratioral, and assume that for all ne M,
A, 2" Then there is an increasing fimction G € A such that for all ne M either
3p<n, G,: log@) 1 4,0 or 3B <log(), G,: 1+ 4, B

A second difficulty in the proof of Theorem 5 for M is that since it is still open
whether the 4, pigeon hole principle, 4,-PHP, (see [1]) holds in M it would seem
possible that 4, could have several different ‘sizes’. Fortunately for small sets this
cannot occur. This is a consequence of the following result which is proved in [1].

log-A,PHP. Let Fe AY, a e M, k € N. Then F does not map log(a)*-+1 1—1 into
log(e)t. ®

We shall use this result repeatedly in what follows, We are now ready to prove:

THEOREM 5. Let k€ N, A € AY. Then there is a function F e AM such that for all
ne M, either F,: log(n)* 1» 4, or Ap <log(m), F,: B 1-» 4,.

Proof. We shall prove the theorem with  replaced by « for an unbounded set
of standard rational o. More exactly we shall prove the result for o = 1/2 and
then show that if the theorem holds for o then it holds for a-1/4.

Firstly though we introduce a little notation. Throughout we will be working
with elements of M so when we talk of subsets of elements of M we shall mean sub-
sets coded in M. With this convention let S < log(n)-+1. Then by Lemma 1’ and the
log- 4, PHP there is a unique function in 43 which enumerates S in increasing order,
uniformly in S. So for such small § we can unambiguously talk about ‘S|’ and
‘the jth element of S°. Let S = {iy, ..., 7.} in ascending order.

For a<n, a= -y a2 in binary let
i<log(n)

als1= ¥ a,2(<2").
ise
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Proof of the theorem for o = 1/2, Let S be as above and define

TS, n) = {t<2"| Jae 4,, alS] = ¢},

V(S,n) ={aed,]| JteT(S,n) @[S]=1tAVyecd, (y <a—y[S] # 0.

Then, uniformly in the parameter, by Lemma 1’ there is a 4% function from T(S, n)
I—1 onto V(S,n)<=4,. Furthermore if we limit ourselves to those § with
[S] < log(m)* then T(S, 1) < 2'ost¥ so by Lemma 1’ there is a function G & A¥ such
that for such § cither e

G(S, n): logny* 1> V(S, n)
or

G(S,m): B+ V(S,n) some f§<log(n)t.

If the former holds for some such S let F, = G(S, n) for the least such S. Other-
wise, let § be maximal such that the latter condition holds for some S, |S| < log(n)*.
We claim that for this S, G(S,#) maps 8 onto A4,.

To see this assume not. Let @y = G (S, n)(j) forj < f and let a, € 4,~G(S, n)“B.
Then by induction on i< f

AS,slog(m)+1, 18 < i & V)1, j2 Si(jy # foa—ra;, [S)] # a,[S]) .

This is clear for i = 0. Assuming the result for ; < § it follows that there is at most
one j <.I+1 such that #;[S}] = a;44[S,]. So adding at most one number to S; gives
Si4y with the required property.

Now fori< flet b; € A, be minimal such that b,[S,] = «;[S,]. Then the function
sending i< 8 to b, is in 4}’ and maps f+1 1—1 into V(Sp, n). But |Sy| < f+1
< log(m)*? so

G(Sp,n): & 1 V(Sz, m)

for some & < § (by choice of §) and by the log-4,PHP we have a contradiction.
Hence G(S,n) maps f§ 1—1 onto 4, and we can put F, = G(S, n).

. Proof of the theorem for a+1/4 assuming it for a. We first introduce
a little more notation. Let B be the set of maps f: S—2 where S<log(n)+1 and
1S| lslo%/(:r)’/-‘. Notice that feB can be coded by a number < (2log(m)+1y°s®"*
<290 por feB and aed, let a= Y 2" in binary and let

i€ log(n)
aedy ;o Yiedom(f), f()=a.

Applying the theorem for « to these 4, ; sets gives a function Re A¥ such that
for fe B
Ry, ;i log(m)” I A4, ¢ (written |4, ;| > log(®)®)
or

B <log(m), Ryp: % — A,y (written |4, 4 = ).
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Let Q be the set of coded subsets T of B such that T has code less than n and
if feT and f= {80, 16)s s {lps 1p)} with @ <@y <...<a, then
@) for g<p,{{ao:i0)s > lu> ipyeT;
(11) {<aOs i0>: AR} <ap——1a ip—-1>: <ap’ 1—lp>} € T; "
(iif) @, is the least b>a,—y such that |4y, gl 14a,g > log(n)* where
90 = {<a0= i0>: weey <“17—17 ip—1>: <b= O>} H
g1 = {<‘7m i9) s s <ap——1> ip—1>7 b, 1>} .

Concerning the coding of T'e Q we assume that T is coded as iZ, o, 2t s
sr
where T = {e,| i <r}. Notice this code gives a size to T, ({T)) pamely r+1 and,
since r < log(m)®® by the log-4,PHP this size is unambiguous.
Having introduced this notation we start on the proof proper. Let T'e Q and

T ={feT| “HgeT, g2/}

that is T” is the set of tips of the tree T. Since T S 9los ™ty Temma 1’ there is
a AS’ function H such that for each T e O,

H, 7 log(n)'® 1> T'

)28

or

Jp<log(m)'®,  Hyp: BT,

We now consider two cases

Case 1. For some Te @, H, r: log(m)*® 1->T".

Pick the least such T. Then since {4, ;|/e T’} form a partition of A, (proved
by induction on Te Q) and since |4, 7| = log(m)* for feT', we can casily define
a 4¥ function mapping from log(m)*? - log(n)* 1--1 into 4,. From this we can easily
construct F,: log(m)*H/* 1> 4,.

Case 2. Not case 1.

Let  be maximal such that for some T’ 0, B, r: B+ T'. Notice < log(n)” 3
Pick the least such T and let fe 7"

Cram. Let b e (log(n)+1)—dom(f) and let

f(l)"':fU‘Kb’O)}’ f1b=fu{<b)1>j‘
Then it is not the case that |4, 4, |4, szl 2 log(n).
Proofoftheclaim. By (ili) in the definition of @ thisis true if b < max(dom(}))

so assume the claim fails and b> max(dom(f)) is the least b for which |4, r3ls
|4y, 78| = log(n)". Let

T+ = O A2}

Then T+ e Q. To see this first notice that f3 e B (and similarly f{ e B) since if
|dom(£2)| > log(n)*/3, then |dom(f)| > log(n)'/®. But then if

f= {<"0g io): ey <ap: ip>}

: ©
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with dp < dy < ... <dy, then the AY map sending j < log(n)!’® to the least ge T
such that ) } )

Wtgr iods oo {jmts i)y (s 1=} S0

maps log(m)'f® 11 into T which is impossible by the log-4,PHP. So to show
T* ¢ Q it only remains to show that T' * has a code less than r. But condition (ii) in
the definition of Q ensures that |T| <2|T"| (proved by the induction on Te Q)
so |7 <2p+2<2log(m)*/*+2. Hence T™ can be suitably coded by a number,

less than
(zlan(n)ilﬁ)log ()13 <n.

Hence T+ e Q. But clearly we have a AY¥ map from f+1 1—1 onto (T*)" whilst
Hy e8I (T*) some §< B

so this is a contradiction by the log-4,PHP. This proves the claim.
Now let feT’. We shall describe a AY function K such that

Koyt An, g I log(n)***.

There are two subcases.

Subcase 2a. 3b e (log(n)+1)—dom(f) such that |4, gif, [4y, 5t] < log(n)*.
In this case the required function K, , is clear since

Ay = Ay, 304 % -

Subcase 2b. Not subcase 2a.
Then there is a map r: (log(n)+1)—2, re M, extending f such that for all
b e (log(n)+1)—dom(f)

[ Ay, s2a| = Tog(), | 4n ftereny | <loB8()" .

It is now easy to see that we can define a A?f map from = U 4n v 1—1 into
b<1
bﬁd:nl;g’))

(log(n)+1)log(n)* < log(n)***.

Hence since this set differs by at most the element r from 4, ;, We can define
the required A mapX,, , from 4,,; 1—1 into log(m)***.

Having now defined K and noticing that {4, 7| feT'} forma partition of 4,,
we can combine X with H~1 to give a A) map from 4, 1—1 into Blog(my**?
<log(n)”*** By Lemma 1’ and the log- 4o PHP we have a 4 function from 6 1—1
onto A, for some & < log(m)/*** and the required F,.is easily obtained. M

TurorEM 6 (The Collapsing Theorem). Let 1< k e N. Then there is a constdnt &
depending only on k and a function FedY such that

©Fy: Ayl ald,)| P log(m)

_ log|dy|
klog(n)

where. B
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Proof. We first explain the idea of the proof and then apply it several times
with different values for the parameters to give the required result.

To simplify the notation we shall write A for A,. Let y>1/2 and let B be the
set of primes between n1'2 and n?log(n) so by the prime number theorem (for » large),
|B] = n?. (Recall all logs are to base 2). For xe 4 let

Z. = {peB|3yed,y #x&y = xmodp}.

“Then |Z,| < |_)1I since if |Z,| |4| there would be y ed, y # x and distinct primes
p.q€B such that x = ymodp and x = ymodg. But then since p, q>n1’2,
ng<pg<|y—xl<n
giving a contradiction.
Now suppose that e N is such that |4]** < n". Then
U Zy < |4I*H <" < 1B
xeAd

and so B'— |J Z% # ©. Hence there is a sequence p;, i<t of primes from B such
xed
that for each x € A there is a (least) i <z such that for all y € A—~{x}, y # xmodp;.

Thus if K(x) = (i, xmodp;) then
K: A |~ tmaxB<n'log(n) .

The idea is to show that there exist ¢, y such that this range is small and K e 45.
Of course, K will depend on the sequence p;, i < #. However, this dependence will
be uniform so by taking the best K we can obtain the required function F,.
We now consider a number of cases.
_ logld]  (logl4])’
log(n)  K(log(m)*
1
fe 4 (k+Dlog(m)
logl4|

In this case the sequence p;, i <  can be coded by a number at most 7' < nAts
so KeAY. Also

Case 1. |4|=n!% Put y

]. Then y>% and n” >|4|***.

(log | A])? tog 4|

Mog|A)? 1
RGos 7 < alog(n)-|dl * ik ()

log 4] |
n’log(n) = (1+ [%J) 10g(n)nlo:(n) *

as required. .
Case 2. n*%190 < 4| <nl’% Put y = 53/100, ¢ = 20. Then we obtain a map
K,y e 4%,
Ko A 1> 20n°31%log(m) <n*'/20

Put Ay = Ko“ASntl?® = py, Then [do| = || =n** > n/%,

Applying Case 1 with 2k in place of k now gives a2 map in AY from 4y 1—1
log [ Ao

2klogm) and the required map K exists.

into alog|do|+]del
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Case 3. |4 <n**/*°° If |4| < log(n)’ for some sufficiently large j then obviously
the theorem follows by Theorem 5. Otherwise by Lemma 3 there is L e 43,

, Lt A1 |40
Put A; = L“A, ny = maxd,+1 so 4, ©n, and |4,| >n{**°°. Now as in Case 2

produce K, €4y, Ko: 4y imn,<|4)* and put 4, = K,“4,. Finally apply the
main construction. with n,, 4, in place of n, 4 and

=14 I:(k+1)log(n)]’
: log|A|

_ logld]  log(n)
log(n;)  klog(n)
to.obtain K: A, - tnlog(n,). Then K e 4Y since the sequence p;, i < # can be coded

by nblog(n,) and a number at most 2(njlog(n,))' (<n®) for some fixed ¢. Finally,
since ‘

4log|A|

mylog(ny) <alog(m)|4] ¥,

the result follows by replacing k& by 4k. &
Remarks (i). Suppose |4| < 2V°8% 1f e now proceed as in Case 3 but using
instead
_ logld|  log(n)
log(ny)  k(logd)*

we obtain a AY function from 4 1—1 into a|4|(log|4]>.

(i) The method of proof of Theorem 6 was inspired by the proof of a theorem
due to Sipser, see [3]. Sipser shows that if 4 = n and |4| < 2" then, treating 2'5®*+*
as an » dimensional vector space over Z, there is a linear map L: 2%8®* 10"
such that ' ‘

t = 14+[(k+Dlogldl], v

l{xedl Vyed—{x}, L(x) # LO)H = 412
By repeated use of this we can obtain a 1—1 map from 4 into 4(1+1ogl4|)}4]
and furthermore if |.4| < 2'°5®'* then this map is (uniformly) in 4§ For such small 4
this appears to be better than results obtained by using Theorem 6. Clearly, then this
area begs to be tidied up.
COROLLARY 7. Given e3> 0 there is a function G € AY such that for all n

|4, G <|4,*H . |
COROLLARY 8. Given >0 there is a function GedY such that whenever
(loglog(n)-log|4,)?* < log(n), then
|4l <G < +e)ld .
Proof. Assume that (loglog(s)-log|4,l)” <logn. Then applying Theorem 6

and simplifying there is F'e 4Y such that Fy: 4, I~ 2V2® 8™ Tet B, = F,“ 4,
and let C, = B8] where b N is large. Then again by Theorem 6 with k = b
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there is K e 4Y such that

i
K,: Cyl— oclog(ﬁ)ﬂC,,lH ‘/1?,;'({6 < 4dalog(n):|C,l .
Let E(n) = maxK,“C,, G(n) = [E () P0o8981], Then |C,| < E(1) < 4alog(n)|C,| so
A, = B = |G/ < Gn) < (4alog(n) | B8 ]y Posia ]
< (dalog(m)M P B I < (L+8) 1B, = (1+6)]4)

since b is large. B

Conclusion..In conclusion we state 4 couple of problems which are related
to this theme.

() Let Be4Y, B N. By considering the case Hi<n'’?, [in'/?, (i+1)n'/?)
N B = @ and its negation it is easy to see that there is a function I'e AY such that
for all n, F,: n!/? 1= Brn or Fy: n''? 1= (n—B). Using our results n'/* can be
improved to n'/*log(n)* is this best possible?

(ii) Let M be a nonstandard model of true arithmetic and let « € M be a non-
standard. Say that ¢ < g is 4,-definable from a in M if for some 4, formula 0(x, y)

MEO@a, Ay 0@a,y).
Now suppose that ¥ (x,y,z) is a 4, formula, ¢ <a and
ME{b<a Y(a,c,b) Aqly Y(a, y, b} is ‘large’.

Is ¢ A,-definable from a?

Of course, this depends on what we mean by ‘large’. Using the second counting
theorem the answer is yes when ‘large’ means > a—a'™* for some standard &> 0.
However, the answer is no if we take ‘large’ to mean > 4/t for some fixed nonstandard
1 € M. We conjecture that the answer is yes when by ‘large’ we mean 2 a/n for some
nen.,
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