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Normality of product spaces
by

Amer BeSlagi¢ (Madison, Wi.) and Keiko Chiba (Ohya)

Abstract. Assume JX is hereditarily normal and hereditarily countably paracompact, ¥ LaSnev
and G an open subspace of Xx Y. Then G is normal iff G is countably paracompact.

If furthermore X is hereditarily paracompact (shrinking, collectionwise normal) then G normal
implies G paracompact (shrinking, collectionwise normal).

Assume X is a first countable, paracompact P-space and Y a closed image of a normal
M-space. Then Xx ¥ is normal iff it is countably paracompact.

1. Introduction. By a space we mean a Hausdorff topological space and by a map
we mean a continuous onto function.

Morita [20] proved the following (for the proof see [31] or [25]).

1.1. THEOREM [20]. Assume X is normal, M metric, and X x M countably para-
compact. Then Xx M is normal. @

Then Rudin and Starbird [31] proved the converse; so we have

1.2. THeoReM [20, 31). Assume X is normal and countably paracompact, and M
metric. Then Xx M is normal ifff Xx M is countably paracompact. B

Generalizing Theorem 1.1, Nagami [22] proved that X x M can be replaced by
an open set G < Xx M, and Przymusinski [24] proved the converse; thus

1.3. THEOREM [22, 24). Assume X is hereditarily normal and hereditarily countably
paracompact, M metric, and G an open subspace of X x M. Then G is normal iff G is
countably paracompact. B
T A Lasnev space is the closed image of a metric space. Hoshina [13] showed
that the metric factor in Theorem 1.2 can be replaced by a La¥nev space. So the question
whether the metric space in. Theorem 1.3 can be replaced by a LaSnev space seems
natural. Here we show that the answer to this question is yes (Corollary 3.6).

The concept of normal countably paracompact spaces can be generalized
a little.

1.4. DEFINITION. An open cover {¥,: « e %} is a shrinking of a cover {U,: u € %}
iff for every aex, ¥V, <U,.

A closed cover {V,: aex} is a closed shrinking of a cover {U,: «ex} iff for
every aex, V,< U,.
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A space X is x-shrinking iff every open cover of size < has a shrinking, and
a space is shrinking iff it is »-shrinking for every s. B

Note that a space is normal iff it is n-shrinking for all (one) finite n> 1, and
is normal and countably paracompact iff it is w-shrinking. Also, observe that if
every open cover of size <x has a closed shrinking the space is x-shrinking.

We know essentially only one example in ZFC of a normal, nonshrinking space,
Rudin [26, 28]. Paracompact spaces, perfectly normal spaces are shrinking; normal
g-refinable spaces (Yasui [33]) are shrinking. For morc on this see [29, 30].

1t is known that a normal product of a metric space and a shrinking space is
shrinking [2], and Hoshina improved this to LaSnev spaces [14]. We show in Theo-
rems 3.1 and 3.2 that the following holds.

1.5. THEOREM. Assume X is hereditarily x-shrinking, Y Lasnev, and G an open
subspace of Xx Y. Then G is normal iff G is %-shrinking. B

In Section 4 we consider hereditarily collectionwise normal spaces and here-
ditarily paracompact spaces and show that a normal, open subspace of a product
having one factor a La¥nev space and the other a hereditarily collectionwise normal
space or hereditarily paracompact space is respectively collectionwise normal or
paracompact (Theorems 4.1 and 4.3).

In Section 5 we consider M and P spaces. Recall that A* denotes the set of all
functions from g to A and that A% = {J {#": ne w}. Also if s * then s (o) is
an element of A**! defined by s ¢a)(W) = o and §{&) b p=s.

M and P spaces are introduced by Morita [19] as a generalization of metric
spaces.

A space Xis an M-spaceiff thereis a sequence (%,,: m € wy of locally finite open
covers of X satisfying the following condition: For every x e X and {K,: me o)
a decreasing sequence of nonempty closed subsets of X with K, = (Y {Ue %,,: xe U}
for me w, we have that (} K, # 0.

mea

A space X is a P-space iff for every cardinal A and open family {H(s): se 1<%}
such that H(s) c H(s {a)) for ae A there are closed sets K(s) = H(s) for se A<°
such that |J K(f } n) = X whenever |J H(f | n) = X for fel®.

new new

Morita showed [19] that X is a normal P-space iff X'x M is normal for every
metric space M.

We show that the product of a first countable, paracompact P-space with the
closed image of a normal M-space is normal iff it is countably paracompact (Corol-
lary 5.9).

Concerning the results in Section 5 it should be noted that the product of a first
countable, paracompact P-space and a normal M-space is always normal [6, Theo-
rem 5).

Some conditions on factors are necessary for each of our theorems. It is well
known that there i$ a non-normal countably paracompact product of two normal
spaces, for example oy x (@, +1). Also, > implies that there is a normal countably
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paracompact (shrinking) space X such that X? is normal but not countably para-
compact [3].

For all the facts and notions that are used without mention we refer the reader
to [11]. Many more results about normality in products can be found in [25], and for
all kinds of generalized metric spaces the reader can see [12].

2. Preliminaries. Here we fix our notation and state some facts that are used in
the next sections. ‘

Two notations for the closure operator are used, 4 and clA4. The bar notation
is used to denote the closure with respect to the largest space, so if 4 = B< X then
A = clyd. To avoid confusion sometimes we use cly 4 instead of A.

If # is a family of sets and X an arbitrary set then

St(X,F) = {FeF: Fn X+ 0}.
If fis a function from X to ¥ and 4 a subset of X then f*(4) = YN/ (X\A).

2.1. LeMMA [15]. Let f be a closed map from a normal M-space X onto a space Y.

Then there are disjoint sets Y, for ie w, such that Y= ) Y;, Y, = {ye ¥: f7(3)
iew

is countably compact}, and Y; is closed and discrete for i> 0.

In particular, if X is metric (and hence an M-space) this is due to Lasnev [17],
and in that case Yy = {ye Y: f~(y) is compact} and Y, is metrizable. B

A cover {V;: xex Anew} is a (closed) o-shrinking of a cover {U,: wex}
ifll each ¥ is open (closed) and 17: cU, (V;<=Uy.

2.2. LemMA [2]. A space is x-shrinking iff every open cover of size <x has
a o-shrinking. B

2.3. LemMA [13]. Assume X is countably paracompact, A a closed subset of X, and
{U,: new} an open family such that A< \) U, and BnU, =0 for ne w. Then

there are disjoint open U, V with Ac U a"ns(? BcV. B

24. LemmA. If {U;: aex Anew} is an open family such that for «e x,
H,c J U, and H, U-(—J,’,' = 0 for ne w, then there is an open family {U,: o€ x}
of pani::ise disjoint scj: with H,c U, for xex. &

2.5. LeMMA [23]. Every normal M-space is collectionwise normal. B

A space X is a Z-space iff there is a sequence (&% ,: mew) of locally finite
closed covers of X satisfying the following condition: For every xe X and
{K,: mew)y a decreasing sequence of nonempty closed subsets of X with
K, V{Fe#,: xeF} for mew, we have () K, # 0.

meo
2.6. LeMMA [21). Every M-space is a X-space. @
2.7. LeMMA [21]. Assume X is a 'Z—Space. Then there is a fomily {F,: me w}
of locally finite closed covers of X and a cardinal A such that
() F,, = {F(s): sei"}.
(i) Every F(s) = U {F(s"(&)): e A}

3%
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ForxeXand mew let C(x, F,)=N{FeF,: xeF} and C(x)= | C(x, F,).

meaw
And call a family F a net for C(x) iff for every open U C(x) there is an F e F with
C(x)c Fc U. Then
(iti) For every x € X there is anfe 2° such that | F(f tn): new} is a net for C(x).
(iv) C(x) is countably compact. B

"~ 2.8. LEMMa [23]. Assume X is a first countable space and [+ Z - Y is a closed
map with f~*(y) countably compact for ye Y. Then (idyx f): XxZ — Xx Y is
closed.

2.9. Lemma [7). Assume X is a first countable paracompact P-spuce and Y
a collectionwise normal X-space. Then Xx Y is collectionwise normal. W

A space is subparacompact iff every open cover has a o-discrete closed refine-
ment.

In what follows % is always an infinite cardinal.

3. Products with a LaSnev factor. We consider open subspaces of the products
having one factor a La¥nev space. Our theorems are more general and the proofs
shorter than the ones in [13] and [24].

3.1. THEOREM. Assume X is hereditarily %-shrinking, Y Lasnev, and G an open
subset of Xx Y. If G is normal then G is %-shrinking.

Proof. Let % = {U,: aex} be an open cover of G. We find a a~shrinking
of %, thus showing that G is x-shrinking,
Let Y = () Y; where Y, is metrizable and each Y;, for / > 0, is closed discrete

icw
(Lemma 2.1).
Since X is hereditarily x-shrinking, G normal, and Y;, i> 0, closed discrete,
we can find, for every « € %, an open (in G) U} with (X x Y)nGe {Ui: oE K
and clgUic U,. Let U= {J (Ul aenn i>0};so Uis an open subset of G co-
vering (Xx U ¥)n G.
i>0

It remains to cover G\U. Let Y5 = {y € Y,: yis non-isolated in ¥,}; since ¥, Y}
is a countable union of closed discrete subsets of the metrizable space ¥,, it is easy
to find a family {4,: xex A i€ w} of closed subsets of (Xx ¥,) A ¢ such that for
every uex and iew, ALc U, and ) {di:aexnicw) = (X< (Y,NT) G
Then {4\U: iewnaex} is a family of closed subsets of G covering ((AN\U) r
) (X % (Yo\Y)). By the normality of G we can easily extend these scts to open
sets whose closures lie inside the appropriate U’s.

Now we have to deal with Y3, and we again use the fact that Y, is metrizable.
Let B = ) {#,: new} be a basis for ¥, such that for every n, 4, is-a locally finite

. . 1
open cover of Y, with sets of diameter < R Fornew, let 4, = {Be#,: Bis

nondiscrete in Yo}, and let #' = J {4: ne ). By induction, for every Be #'
pick two points pz, gy € B so that no point of Y, is picked twice.
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For Be #' and o € x, let O , be the maximal open set in X with Op,xBcU,,
and define Oy = | {Oy,,: 063} and Py = X\0j,.
For Be #, and m > n define

K2 = U {[P,NU{Oc: C<BA Cel {#: n<k<ml}) n Oplx{pp}:
t
DecBADc,

m

and
Hpy=U{lP»U{Oc: CcBACeU {8 n<k< miP 0 Oplx {gp)
DcBADe#,}.

Observe that both K2 and H? are closed in X'x Y, since the families {pp:
De#,} and {g,: De B,} are locally finite.
Let ¥ = | K5 and H® = (J H}. Now we check that K* ~ G and H® A G

mzn mzn
are closed subsets of (X'x Yy) n G. Fix {x,») € (X x Y,) n G\K®; enough to find
a neighborhood Sx T of {x, y) intersecting only finitely many K2's. Fix aex, m> n,
and a neighborhood § x T of {x, ) such that for every /> mand Ce 4,,if CA T+ 0
then §x C'< U, (this can be done since the diameters of the members of %, are less

1
than 3—,). IE(SxT) N K # 0 for some /2m, there is a Ce #; with C< B and
pceT, so SxCc U, implying ScOc; hence (SxT) n (U &%) = 0.
t>1

Let K= (U{K®: Be#'})nG and H= (U {H”: Be#})n G. Then an
argument similar to the one in the preceeding paragraph shows that A and X are
closed subsets of (X'x ¥;) N G, so, since H and K are disjoint, clgH nclgK < U.
There is a T, open in G, such that clg H n clgK = T=clgT < U. Since K\T and H\T
are closed disjoint subsets of G, there are V, W, open in G, with clgV nclgW = 0,
and K\TcV, INT< W.

Let n: Xx Y — X be the projection map. For ne w and Be &,, define

Fy = (X\n{(X % By n T)Nm((Xx B) n V) A n((Xx B) n W)},
and note that Fy is a closed subset of X. We now show that
(%) Opx (BN Y5)=(Fax (B Yg)) n (G\T).

To see this let {x, y) & (Fyx (B n Y3)) n G; then {x} x B T = 0. Assume x ¢ Oy
and show x ¢ F, obtaining a contradiction. Let m 2 n be the least such that there is
a Ced, with C<B and a neighborhood § of x with Sx C< U, for some «.
Such Cexists since ye Y3; then K ({x}xC) # 0 and Hn{{x}xC) # 0, and
Kn({(x}xC)nT=0, Ha({x}xC)nT=0, hence xen((XxB)nV)n
n((XxB) n W).

Recall that X is hereditarily »-shrinking. For Be ' let {Qp ,: « € %} bea family
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of closed subsets of O n Fp such that for each o, QOp,< Op,, and Oy Fy
= U {Qp 2ex}. Also, for each n, let {Cy: Be 2,} be a closed cover of ¥, with
Cyp<B for Be #,. For cex and ne o define

D, =U{05.%Cs Bedy} n(G\U)n (Xx ¥p).

To finish the proof it is enough to verify (by Lemma 2.2)

(@) for each «,n, D,,<U,,

(i) each D, , is closed in G,

(iti) U {D,,: aex Anew} = (G\U) N (Xx ¥5).

Since (i) is trivial, we first show (ii). Fix «, # and {x,yyecleD,,. Then
{x,y)e G\U and ye Y;. Since 4, is locally finite in Y, there is a Be @4, with
{x,yyecle(Qp,,x Cp). Since Fyis closed in X and Qp , = Fp, x& Fy. But then
(e, )y e(Fyx (B Y) n(GNT) (since T<U), so xeOp by (%) hence
x€ 0z, Op,, being closed in Fgn Op, 50 {x, )€ @y, X Cy.

Ad (i), let {x,y)e(G\U) n (Xx ¥g) and assume that {x, y) éclg V. Fix
an »n and S a neighborhood of x in X such that there is an o with

Sx(U{BeB, yeB)c UNCclgTucdgV).

So for each Be 4, with ye B we have that x e Fy n Oy; hence there is & Be 4,
with ye Cy and a fex with xe Op ;. So (x,y>eDy,. W

3.2. THEOREM. Assume X is hereditarily normal, Y Lasney, and G an open subset
of Xx Y. If G is countably paracompact then G is normal.

Proof. Let M be metric and f a closed map from M onto Y. By Lemma 2.1,

Y= 9 Y;suchthat ¥, = {ye ¥: f~1(») is compact} and each ¥; is closed discrete
iz0 .

for i>0. Now we need some lemmas.
3.3. LemMa. If A, B are closed disjoint subsets of G such that B Xx( U Y)
then A and B are separated by open sets.

Proof. Use Lemma 2.3 twice. For i> 0 and | e Y, fix open Uy, new, con-
taining y and {U" new} is decreasing, so that {Uy: ye ¥} is discrete and |y}
=} {clyUy: ne w}. Also let ¥, be an open subset of X with B~ (Xx{p}) = ¥y x
x {3} and [y V) x P d = 0.IF W, = | {¥, xUy: ye ¥l n G we have that
(NcgW,)n 4 =0, s0o by Lemma 2.3 there is an open V2B (Xx ¥) with

new
4 nclg¥; = 0. Lemma 2.3 applied again shows 4, B are separated by open sets, B

3.4. LeMMA. If A, B are closed disjoint subsets of G such that A u Be Xx Y( s
then A, B can be separated by open sets.

Proof. Forn e w, let %, be a family of open subsets of Y covering ¥, such that %,
is locally finite in () 4, and each %, .., refines %, Also assume that for every y e YU
and ¥ an open set in ¥ containing y there are n e w and W, open in Y, with ye W
and St(W (6’,,)<: V.let ¢ = %,.

new
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1
To see that we can get the ,’s, for y e Y let ¥, = {m eM: dm,f ()< E} .

Then since Y is hereditarily paracompact let %, be a suitable refinement of
{INFANVS): ye Yo} covering U {¥NF(XN\V,): ye Y5},

For Ce% let O; be the maximal open set in X with OcxC<G. Let
n: Xx ¥ — X be the projection map and define

Fo = [((XN00)x C) U ((n(d n (XxT) nn(B n (XxC))xC] " G.

For new, let F, = |J {F;: Ce®,)}.
We now show that (N clgF) n(XxY,) =0 To see this let {x,yp)

new
€ (X'x Y,) n Gand let V"'x W< G be an open neighborhood of {x, y) not intersecting
one of A, B, say 4. Fix new and W, an open neighborhood of y, such that
U {C: Ce%,AC n W, 5 0} W (here we use the fact that ¥ is regular and that
there are new and W, containing y with St(W,, %, < W). This shows
(Vx W) n F, =050 {x,y)¢clgF,
Using Lemma 3.3 fix an open set ¥ in G such that () clgF,=¥ and

new
(clg¥) n (4 v B) = 0. Since each %, refines ¥,, we get that F,,, = F, for ne .
So, by the countable paracompactness of G, there is a sequence (U,: ne w) of open

subsets of G such that () clgU, = 0 and clgF\V < U, for new.
Uyn (¥xC)) is

new

Fix new and m>n. For Ce®, the set E. = X\rn{(Vu
closed in X, and we show that

|(n(d n (EexC) nn(Ba(XxC))xC|nG=0.
To see this observe that if {x,y) is the above intersection then

{x,yyeFccF,cU,uVso x¢ Ec.

Let Z = X\[n(4 n (Ecx C)) nn(B n (X% C))). Since Z is normal, let De,,
be an open set in Z (hcnce in X) such that Z n n(A-H (Ecx C)) = D¢, and
©z Dy n (BN (X% C)) =0. Note that Bn ((cly D¢,n)xC) =0, since if
{x,yye B (XxC) then xeZ, for otherwise

e pye[(rd n (EexT) nn(Bn (XxCY)xCT|n G

contradicting the fact that this intersection is empty. So xeZ and x ¢ cl; D¢ a3
hence x ¢ cly D¢, .

Define D} = (J {D¢,axC: Ce®,} nG, and note that (clgDy)n B =10
since %,, is locally finite in (J €,,> ¥,. Then, to finish the proof it suffices to show that
{Dy: 0K n<m} covers A.

So let ¢(x,yYed and fix new and W,x W, = G, a neighborhood of (x, )
such that (Wyx W) nclg(V'u U, U B) = 0. There are m=>n and Ce %, with
yeCc=Cc Wy, so for this C, xeZ, hence (x,y) € Dc,xC.
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3.5. LEMMA. If A, B are disjoint closed subsets of G with A = Xx ¥, then A, B can
be separated by open sels.

Proof. By Lemma 3.3, for >0 find an open U;2Bn (X% Y;) such that
A nclgU; = 0. Then, by Lemma 3.4 find an open U, :B\iyo U, withA m clg Uy = 0,

This shows 4, B are separated since G is countably paracompact. H

Now we finish the proof. Let 4, B be two disjoint closed subsets of G. By
Lemma 3.3, for i>0 fix an open U;24 n (X x V) with B ¢l U = 0. Then by
Lemma 3.5 fix an open U, 2 A\ | U; with B n cl; Uy = 0. This shows that 4 and B
are separated. H >0

3.6. COROLLARY. Assume X is hereditarily normal and hereditarily countably
paracompact, Y Lasnev, and G an open subset of X x Y. Then G is countably paracom-
pact iff G is normal. W

4. Paracompactness. In this section we consider hereditarily collectionwise
normal spaces X and show that every normal open subspace G of Xx ¥, where ¥
is a La¥nev space, is collectionwise normal, and paracompact if X is hercditarily
paracompact. Unlike in the case G = X'x ¥ we cannot use test spaces ([1], [18])
to get a short proof.

4.1. THEOREM. Assume X is hereditarily collectionwise normal, Y Lasnev, and G
an open subset of Xx Y. If G is normal then G is collectionwise normal,

Proof. The argument we give is a combination of the proofs of Theorems 3.1
and 3.2. Let Y= {J ¥, where ¥, = {ye Y: f~1(y) is compact} and ¥; is closed
i>0

discrete for i>0. Also let Y5 = {ye ¥,: y is nonisolated in Yp}.

4.2. Lemma. Assume {H,: o e x} is a discrete fumily of closed subsets of G such
that \J {H,: wex} < Xx Yg. Then there is a discrete open family {U,: o e s} with
H, < U, for aex.

Proof. Since G is normal, it is enough to find a disjoint open family {U,: wext
with H,< U,. We work towards an application of Lemma 2.4.

Let {%,: ne w) be as in the proof of Lemma 3.4. Let #,={Cn Y, Ce%,},
new, and we may assume that if C # C'e%, then Cn Y, ¢ €' A Y, Hence
for Be 4, there is exactly one Ce %, with B = Cn Y, and denote this C' by C}.

For new let #, = {Bed,: B is nondiscrete in Yy} and #' = | #,. For

Be &' pick points py, gz B so that no point is picked twice. new
Let m: X'x Y — X be the projection map. For Be {J 4, let Oy be the maximal
neo

open set in X such that OyxCr= G and {n(H, N (05x CTp)): wex} is discrete
].11 Op. Let Py = X\Oy, and define sets H, X as in Theorem 3. 1. Since {#,: ne w}
is a strong development for ¥,, one shows exactly as in Theorem 3.1 that H, K are

disjoint, closed subsets of (X% Y;) A G. Let U = G\NUH,, and let T, ¥V, W be as
in Theorem 3.1. aex
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For Be 4, let
Fy = (X\n(T o (Xx CQ)Nr(V 0 (XxTp)) n (W o (X% Cp))) -
We show that
(%) Opx (B Yi)o(Fyx(Bn Y§)) n (GNT).

To sec this let (¥, p> € (Fpx(Bn ¥3) n G; then ({x}x Cp) A T = 0. Assume
X ¢ Oy and let m>n be the least such that there is a De ), with Dc B and
a neighborhood $ of x with SxCp= G so that SxC), intersect at most one of
the H,’s. Such D exists; then K n ({x}x D) # 0 and Hn ({x] x D) # 0. But then
(K\T) " ({x} x D) # 0 and (H\T)n ({x} x D) # 0, so

yer(Va(XxCy))nn(Wn (XxCp)

contradicting the fact x e Fj.
The set Oy N Fy is collectionwise normal so fix a family {Dp ,: 2 €%} open
and discrete in Oy N Fy so that n(H, n ((Op N Fp) x Cp)) = Dy, and

(c]omFB(ﬁg Dy ) n(H, A ((Op 0 Fg)xCp) =0

for o € x.
We show that for every « € x,

((clx(B(:‘) Dy ) xCy)n H,= 0.

Assume not and let {x, y) be in the above intersection. Soye Czn Y5 = Bn Yy
and x e Fy because cly( | Dpp) = Fz. Then by (¥) x e Oyp; hence
BFa

xX¢clopars (U Dpyg) = Op 0 Fyncly( U Dy, p) .
B#a PFa

For new let {Ey: Be®,} be a shrinking of {Cy: Be 4,} covering | %,.
For new and o e » define

Dy = | {(intyDy )x Ey: Be#,} nG.

-1
Observe that since %, is locally finite in ) %, > Y, we have H, n CIG(,«H D}}) =0
o

so to finish the proof it suffices to show H,c (J Dj for a e x.

new

Let (x, p) € H, and assume {x, y) ¢ clg V. Let W, x W, be an open neighbor-
hood of {x, ¥} with Wox W, = G and (W x W) n (T L V u (U Hp)) = 0. There
p#a
is an ne w with St(y,%,) = W,, so for every Ce %, containing y we have that
xeinty(Op N Fg) where B= Cn Yye,. Pick an E, with yeEy; then
(x,y)e(inty Dy Y% Ey so {x,y>e D). W
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Let {H,: e x} be a discrete closed family in G. Let /> 0; since ¥; is closed
and discrete and G normal there is a discrete open family {Uj: a e} with
H,n(XxY)=U, and ©sUH A (U Hp) =0. Let U= {J{U,: aexn i>0}.

Bta

Let D be a closed discrete subset of Y. Since X, Y are hereditarily collection-
wise normal there is a disjoint open family {V,: aex} in G such that
H,n (Xx D)<V, for aex. Since G is normal and D closed in ¥, one can pick
open set F, in G so that (H,n (Xx D))\U eV, clgV, = V(U Hp), and

e

{V,: wex} is discrete in G. Since Y,\Yy is a countable union of closed discrote
subsets of ¥, we can find open sets V;, xex, i€, so that
(H,n (Xx (YNYYNU= U Vi,

ew
deVarn (U Hp) =0, for wex, and {V):aex} is discrete for iew. Let
pFEa

V=U{Viieonraex}
By Lemma 4.2 there is a discrete open family {W,: o & x} with H (U U V) I,
and clg W, n (U Hy) =0 for zex.
p#a

Then by Lemma 2.4, {H,: o ex} can be separated. B

4.3. THEOREM. Assume X is hereditarily paracompact, Y Lanev, and G « normal
open subspace of Xx Y. Then G is paracompact.

Proof. Observe that a collectionwise normal space Z is paracompact if every
open cover has a o-locally finite closed refinement. To see this, first note that Z is
countably paracompact and then use [10, 16, also 11, 5.5.18a)] to extend this refine-
ment to a o-locally finite open refinement.

Since G is colleqtionwise normal by Theorem 4.2 we find a o-locally finite
closed shrinking of the cover {U,: ¢ & %}. This is done almost exactly as in Theo-
rem 3.1, so we use the same notation. Only difference is that instead of arbitrary
shrinkings we take locally finite shrinkings, and again by [10, 16, i.e. 11, 5,5.18a)]
we can have {Ul: aexn}, i>0, locally finite and also extend {ANU: « ex} to
a locally finite open family for i € w. Finally, take {Qp,q: we ) to be a locally finite
closed family in Oy~ F,. @ C i

5. MP-spaces, In this section we consider products of P-spaces with M -spaces
and show that in some cases normality of the product is equivalent to its countable
paracompactness.

5.1: THEOREM. Assume X is a first countable, paracompact P-space, Y is the
closed image of a normal M-space, and X » Y is countably paracompact. Then Xx ¥
is normal.

' Proof. Let Z be a normal M-space, f: Z — ¥ a closed map, and {Y;: ie w}
as in Lemma 2.1. We use the same idea as in the proof of Theorem 3.2,

5.2. leMMA. If A, B are disjoint closed subsets of Xx Y such that A< Xx Y,
for some i>0 then A4, B are separated by open sets. :
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Proof. Note that ¥ is collectionwise normal since every normal M-space is
collectionwise normal.

For y € Y, fix an open H, containing y such that {H,: ye ¥;} is discrete, and
let {¥xU}: Ve¥ )} be an open cover of Xx{y} such that each U} = H,, ¥,
is locally finite in X; and the closure of each ¥"x U intersects at most one of 4 and B.
Then

W= U{F=xUJ i ye Y,aVe V', A(FxU))n A # 0}

covers A and Wn B=0. &

5.3. LiMMA. If 4, B are closed disjoint subsets of X x Y such that A< Xx | Y;
then they can be separated by open sets. >0

Proof. Using Lemma 5.2 fix open sets U;p4.n (Xx Y;) for i>0 such that
U,n B = 0. Since Xx Y is countably paracompact, 4 and B can be separated by
open scts. M

5.4. LemMA. If A, B are closed disjoint subsets of Xx Y with A U Bc Xx Y,
then A, B can be separated by open sets.

Proof. Since every normal M-space is a collectionwise normal X-space
(Lemmas 2.5 and 2.6), X' xZ is normal by Lemma 2.9. So there are disjoint open
subsets U, ¥ of XxZ such that (idyxf) "*(4) c U and (idyx f)"*(B) = V. Using
the fact that £~*() is countably compact for ye ¥, and X is first countable, it is
easy to check that 4 < int[(idy x £)*(U)] and B < int[(idy x £)* ()], and of course

int[(idy x £Y* (V)] A int [(idg x £)H(U)] = 0.

The same argument as in Theorem 3.2 finishes the proof. M

5.5. THEOREM. Assume X is a first countable, subparacompact P-space,
Y a x-shrinking X-space, and Xx Y normal. Then X x Y is u-shrinking.

Proof. By Lemma 2.2 and the fact that X x Y is normal it suffices to show the
following. . :

5.6. LEMMA. Assume X is a first countable, subparacompact P-space, and Y
a w-Shrinking X-space. Then every open cover of Xx Y of size % has a closed
o-shrinking.

Proof. Let {#,,: me w} beafamilyin Y satisfying the conditions of Lemma 2.7-
Let {G,: «ex} be an open cover of Xx Y.

For s & A% let {Uyx V},,: Bel(s) A aex}beamaximal open family in X'x ¥
such that every Uy x ¥ , = G, and F(s) = U V},, for f € I(s). (Hete I(s) is an index
set depending on s.) aex

Define H(s) = U {Up: Bel(s)} and note that H(s)< H ("¢a)) for el
So, since X is a P-space, there are closed K(s) < H(s) so that J K(ftm) = X
whenever | H(f } n) = X for fei®. new

new

CLAM. {K(5)x F(s): s& 2%} covers Xx Y.
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Proof. We first show that for every {x,¥> e Xx Y and a e x there is a neigh-
borhood Ux ¥, of {x,y) with

(%) UxV,cG, and C(»<)V,.

GER
To sce this fix a decreasing basis {U,: ne w} for x. Let ¥, , be the maximal
open set in Y with U, xV,, G, and define ¥, = U1{V, : «ex). Then
{V,; new) is an increasing open cover of the countably compact C(y)
(Lemma 2.7(iv)) so fix an n € w with ¥, C(). For this n let U = U, and V, w= V. .
For ye ¥ let f'e A° be such that {F(f | m): new) isanet for C(p). By (*)“\.;e
have that U H(f }n) = X, so if xe X there is an # with xe K(/ } n); hence

new
e e K(frmxF(fn). B
Since K(s) is subparacompact and K(s)ex U {Uy: fle 1(s) let

My Bel) Anew!

be a o-discrete closed o-shrinking of {Up: f € I(s)}. Also, Tor i & I(s) let {Npooen)
be a closed shrinking of {V} ,: «ex} covering F(s). ‘
For m,ne w and o e x let

T =U{My XNy 2 Bells)AseF,).

Since &, is locally finite and { M} ,: f e I(s)} discrete, cach T is closed. This gives
us a closed g-shrinking of {G,: aex}. M
5.7. COROLLARY. Assume X is a first countable, subparacompact P-space,
Y a Z-space, and X x Y normal. Then X x Y is countably paracompact. R
58 THEOREM. Assume X is a first countable, subparacompact P-space, Y the
closed image of a -shrinking M -space, and X x Y normal. Then X x ¥ is s~ shrinking.
‘Proof. Let Zbe a x-shrinking M -space, f: Z — ¥a closed map,and { ¥;: ie w}
as in Lf:mn1a 2.1 Let {G,: aex} be an open cover of Xx ¥. We find a closed
a-shrmku}g of {.Gu: aex} and thus show Xx Y is %-shrinking (Lemma 2.2).
for i>0, since Xx Y, is x-shrinking, there are closed subsets K, of Xx VY,
(Zwe;r};g Xx g,l s;fch theg; K, i< G, for . ex. Since Xx ¥ is normal fix open sets
@i Wit Ho <G, Let H =) {H, ;s aexni>0} and [ =
So E is closed and Ec< X x Y- (s 2 0h and B2 (I
. LTo ﬁm;h the proof it suffices to cover E. Let Poe= (idg X ) XXZ e XXV,
emma 5. isac -shrinki : : .
y 6 thereis a closed o-shrinking {F, ,: vexAne whof { (G,) wex)

. - . !
Since ¥ } Xx £~ (Y,) is closed by Lemma 2.8, we have that

WEFDNE: vexane w}
is a closed cover of E satisfying Y(F,)NEcG,. M
y 1) ar

5.9. C ; . ,
e clasgjiROU'ARY: Assume .X 'IS a first countable paracompact P-space and Y is
e image of @ %-shrinking M-space. Then the following are -equivalent:

(i) XX Y is normal,
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(iiy Xx Y is countably puracompact,
(iiiy Xx Y is »-shrinking,
C(iv) Xx Y is collectionwise normal.

Proof. Theorems 5.1 and 5.8 show that (i), (ii), and (iii) are equivalent (recall
that % is infinite). The equivalence of (i) and (iv) is shown in [8, Theorem 1]. &

5.10. THEOREM, Let X be u space which can be represented as the union of two
digjoint sets C and D such that the points in C are isolated in X and D is discrete.
Assume Y is shrinking and X x Y normal. Then Xx Y is shrinking.

Proof. Like in the proof of Theorem 5.8 first cover Dx Y, and get an open
set H> Dx Y. Since the points in C are isolated it is easy to cover (Xx Y)\H. W

Above contains Theorem 5 from [34]. Note also that any subspace of Bing’s G
and H satisfies the conditions of Theorem 5.10.

5.11. EXAMPLES. We now show that the product of a first countable para-
compact P-space with a Z-space need not be countably paracompact, and also that
it can be countably paraconipact but not normal. So the assumptions in Corollary 5.7
are necessary and the converse of the corollary does not hold.

Let X be any first countable compact space of weight 2” and let Y be Bing’s
H [4]. Then Y is a countably paracompact X'-space, s0 X x ¥'is countably pracompact.
To sec that X'x ¥ is not normal apply either [27, Theorem 2] (for a short proof see
[32, 3.1], also [25, 3.12] or [6, page 6], also [9, Corollary 6]).

Now we construct a non-normal,” non-countably paracompact product X'x Y.
Let X be the space from Example 9.1 in [5]. This X is first countable and stratifiable
so X is perfectly normal (and hence P) and paracompact (see [i2]). Let Y be
Bing’s H [4), so Y is a normal Z-space. It is shown in [6, Example 1] that X'x Yis
not normal. Since X is a paracompact ¢-space and ¥ a normal P-space, (13, Theo-
rem 3.1] shows that Xx ¥ is not countably paracompact, for otherwise it would be
normal. W
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More on distributive ideals
by

C.A. Johnson (Kecle)

Abstract. In this paper we present further results concerning ideals on uncountable cardinals
whose quotient algebra is distributive. We show that such ideals are related to completely ineffable
and weakly compact cardinals, flipping properties, P-ultrafilters, ideal theoretic partition relations
and a closure property of the generic ultrapower.

‘ In [14] we commenced our study of ideals on uncountable cardinals whose quotient algebra
is distributive, and in particular we showed that distributivity is related to some ideal theoretic
partition propertics. In this paper we present some further resulis concerning such “distributive
ideals”, and whilst for the most part not strictly necessary, a familiarity with [14] would be useful.

In § 1 we show that if % is completely ineffable then  carries a natural normal (s, s)-distributive
ideal, the completely ineffable ideal. It is a well-known question whether matural normal ideals
(especially the non-stationary ideal) can ever be saturated (or precipitous). We answer this question
for the completely incffable ideal by showing it to be non-precipitous.

§ 2 contains some brief remarks connecting distributive ideals to V-ultrafilters and flipping
properties. Using distributivity, we also give a simple proof of a theorem of Kleinberg [18] charac-
terizing completely ineffable cardinals in terms of the existence of certain P-ultrafilters.

In § 3 we make some further remarks concerning normal WC ideals. It follows easily from
results of Baumgariner [2] and of [14] that the existence of a normal WC ideal on x is equivalent
to the weak compactness of x. Indeed, the existence of such an ideal may be regarded as a (normal)
ideal theoretic analogue of the “strong inaccessibility and tree property” equivalent of weak com-
pactness. This ideal theoretic analogue is shown to have considerable power easily yielding IT3-in-
describability and a combinatorial equivalent of weak compactness due to Shelah [21].

In § 4 various forms of weak distributivity are considered, and are shown to be related to ideal
theoretic versions of partition relations akin to those defining Rowbottom cardinals. Also, using
a forcing argument similar to that of [14, Theorem 9], we give a new proof of a partition theorem for
saturated ideals originally due to Solovay.

o §5 we briefly mention o connection between distributivity and a closure property of the
generic ultrapower,

§ 0. Notation and terminology. Our set-theoretical terminology is reasonably
standard (see [11]), and background results, notation and terminology not defined
here concerning ideals may be found in [5], [12] or [14]. .

Lower case greek lotters will denote ordinals and when a set of ordinals is written
as {ly, 0y, ., ()} it is assumed that ;<{;<..<{, and if m<n then
{81, Loy s G} Im = {{1, Cas vy L} Throughout the paper % will denote a regular
uncountable cardinal, and I a proper non-principal x-complete ideal on w (see
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