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in revised form 26 May 1986 § 1. The Main Theorem. A Polish space is a topological space homeomorphic

to a separable complete metric space. In this paper all spaces are Polish. For any
e space X, let X denote the topological product of countably many copies of X.
Let C be the space C[0, 1] of continuous real-valued functions on the unit interval,
with the uniform metric. This paper is mainly concerned with the two spaces C
and C®. The elements of C® are sequences of functions; our notation for these
sequences is (£, {g;) -
A pointset is I if it is the projection of a Borel set (in some product space).
A I} set is the complement of a I} set and a 3%, set is the projection of a II% set
(in some product space). A set is 4} if it is both Xf and IT3. This is the logicians”
notation — the classical names for X}, I}, X3, I3, X3, ... are 4 (analytic), CA
(coanalytic), PCA, CPCA, PCPCA, ... Any two uncountable Polish spaces are Borel
isomorphic, and these classes are all preserved under Borel isomorphism, so as far
as the abstract theory of X5 sets is concerned, there is only one space. Hence descrip-
tive set theory, the study of pointclasses such as X%, is frequently presented in the
context of one fixed space, »® (Baire space), where wis the natural numbers with the
discrete topology. A good reference for descriptive set theory is Moschovakis [12],
whose notation and terminology will be used in this paper.

1.1. DeFNrrioN. Let {f;» € C°. Then A¢s, denotes the following subset
of C: :
{he C: there is a subsequence of {f;) which converges pointwise to A}.

Note that for any ¢ f;), the pointset A,y is 23, uniformly. (This is proved
by the methods of [12, 1C and 1E]) The main theorem of this paper is the con-
verse — every X5 set can be represented in this manner.
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1.2. TusoreMm. For any S<C, if S'is X3 then there exists an { f;) in C” such
that S = A¢gy-

Several representation theorems for X} sets have appeared in the literature. One
example of such a theorem is due to Poprougénko [14], who showed that every zl
set of real numbers is the range of a derivative. Others can be found in the following
references: Bagemihl-Mc Millan [1], Kaufman [5], [6], Lorentz-Zeller [10], Ni-
shiura [13]. I would like to thank Alexander Kechris for bringing these theorems to
my attention. There are also several theorems which give representations of X sets
in terms either of concepts from the abstract theory of I} sets, or concepts from
mathematical logic (see Moschovakis [12]). Theorem 1.2 is the only example T know
of which gives a representation of X3 sets in terms of concepts from analysis or
topology. I know of no examples for X! when n>3.

This paper is organized as follows. § 2 contains some corollaries to the theorem.
Tt also contains a number of miscellaneous remarks and questions. The rest of the
paper is devoted to proving Theorem 1.2. In § 3 we prove 1.2 for IT 1 sets, that s,
we show that for any II] set P < C, there is an { f;) such that P = 4. In§ 4 we
show how to transfer this result from IT 1 to X3, and thereby complete the proof.

§ 2. Corollaries, examples, remarks, questions, etc.

2.1. Let D be any dense subset of C. It is obvious that given any {g;) € C*,
there is an (A, € D” such that Ay = Achy-

Hence Theorem 1.2 can be strengthened by requiring the f;’s to be in D. For
example, the f;’s can always be taken to be polynomials, or to be piecewise-linear.

2.2, Most subsets of C (in the sense of cardinality) are not £3, but as a practical
matter, virtually every pointset that would ever occur in ordinary mathematics is.
To cite one familiar example, the set of differentiable functions is I}, hence X3.
{The set of differentiable functions is not Borel, by a theorem of Mazurkiewicz [11] —
see also Kechris -Woodin [8].) The simplest example known to me of a set which is
not X3, and hence to which the Main Theorem is not applicable, is the set of functions
satisfying the Mean Value Theorem, that is,

{fe C: for any a, b, if 0<a<b<1 then there is a ¢ such that
1) —f(a)}

a<c<b, fis differentiable at ¢, and f'(c) = o
-
“This set is clearly IZ}; that it is not £} is an unpublished theorem of Woodin. (Inei-
dentally, the set of functions satisfying’ Rolle’s Theorem is X}.)

2.3. Let A< C”xC be the set {({f;),h): hed(p}. Then 4 is a umiversal
set for T3} C, that is, 4 is X} and every Z5 subset of C is a vertical section of A4.
(It is a classical theorem that for any n and any uncountable Polish spaces X and Y,
there is 2 U< Xx Y which is a universal set for 2%} Y, and similarly for IT* [12,
1D.1]. While the abstract theory tells us that universal sets exist, it leaves open the
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question of whether there are any examples of this phenomenon which arise naturally
in analysis.) The representation theorems for X; mentioned in § I also give natural
examples of universal sets for zt.

2.4. The Main Theorem holds uniformly. This means that if U< 0 x C is the
canonical universal set for X3} C and U, = {he C: (x,H) e U}, then there is
a recursive (hence continuous) function G: @® — C such that for all xe w®, if
we let { /) denote the sequence G(x), then U, = A g . It follows that for any X3 set
Sc XxC, there is a continuous function Gs: X — C® with the above property.
For details, see [12, 3H]. The proof that the Main Theorem holds uniformly is implicit
in the proof of the Main Theorem to be given in this paper.

2.5. Define two subsets E and F of C® as follows:

E={{f,)eC”: for every he C, he A}
F = {{f;) e C®: there exists an ke C such that he Ay} .

Clearly E is IT} and Fis Z3. Tt follows from 2.4 that E is complete IT} , hence not 3
and F is complete X3, hence not II 1. Let G be the set

{{f> e C®: { fyy converges pointwise and lim f; is continuous} .

i~
G is I}, Gis not !, since if it was then F would also be X7. (Assuming I} - deter-
minacy, any set which is IT; and not X} is complete I} [12, 7D.3]]; as one would
expect, it is provable in ZFC that G is complete IT} .)
2.6. For {fi>eC®, let
A¢py = {heC: there is a recursive-in-h function a: o — @, « strictly
increasing, such that the subsequence { fuYicw CON-
verges pointwise to A} .
For any { f;), the pointset Ay, is I}, uniformly. It is implicit in the proof given
in § 3 that for any P<C, if P is I} then there exists an { f;) in C” suc]il that
P = A, = Ay Therefore if A= C®x C is defined to be {({fi),h): he A¢sp}s
then 4 is a universal set for IT} } C.
2.7. Tt is consistent with ZF+DC that the binary relation

B = {(<f1>’h) h¢A(m}cC‘”><C

cannot be uniformized, that is, there is no choice function which assigns to each
{f;> in the domain of B, an / such that ({f;), By € B. It is consistent with ZFC
that B has no uniformization ordinal-definable from a real parameter. (Throughout
Remark 2.7, a “real” is a subset of w.)

The first consistency result follows from the second by standard methods.
Toward proving the second, let R < 2% x 2% be the binary relation {(x, y): ¥ ¢ L(x)},
where L(x) is the constructible universe relativized to the real x, and consider the
following proposition:

* R has:no uniformization which is ordinal-definable from a real.
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Since Ris IT}, it follows from (¥), the fact that C is Borel isomorphic to 2°, and the
uniform version of the Main Theorem (2.4), that B has no uniformization ordinal-
definable from a real. The consistency of () with ZFC is part of the folklore of set
theory; however I have not been able to find it in print. Using some well-known facts
about forcing, it is mot hard to show that () holds in the model obtained by
adding &; Cohen reals to L. For information on forcing and consistency proofs,
see Jech [4]. The consistency results mentioned here are all variants of a theorem
of Levy [9].

Of course it is also consistent with ZFC that B does have an ordinal-definable
uniformization. This is the case if ¥V = L.

2.8. There are various types of pathological pointsets (e.g., nonmeasurable)
which can be produced using the axiom of choice. Assuming ¥ = L, these patho-
logies all exist at the second level of the projective hierarchy (see [12, 5A.8]); hence
by 1.2 these pathologies can be sets of the form 4y, . Thus it is consistent with ZFC
that there exists an { f;» € C” such that all of the following hold:

(a) A¢y,y is uncountable but has no perfect subset.

(b) A¢y,y does not have the property of Baire.

(¢) A¢ppy is mot measurable with respect to any nonatomic o-finite Borel
measure on C.

On the other hand, it is also consistent that no X} set can exhibit such patho-
logies (see [4, p. 534 and p. 548]).

2.9. Let Ec C® be as in 2.5, and let

Ey = {{f;) € C”: there is exactly one ke C such that s ¢ Ay} .
By combining the proof that E is not X} (2.5) with the method of Becker [2], we
obtain the following theorem. Assuming A3 -determinacy, E and E; are a pair of
disjoint IT5 sets which cannot be separated by any 4} set. (If ¥ = L, then every
pair of disjoint II} sets can be separated by a 43 set [12, 5A.3].)

2.10. Any I} set admits a IT;-norm. (See [12] for definitions and details.)
1t is the thesis of Kechris~-Woodin [8] that natural examples of IT] sets will have
natural I -norms; they give an example of such a norm on the set of differentiable
functions. For another example, consider the space K(X) of compact subsets of X,
with the Hausdorff metric, and the pointset in K(X) of all countable compact sets.
This is I} (and by a theorem of Hurewicz [3}, is complete II}). The Cantor-Bendixson
rank is & T} -norm on this set. An example more closely related to the topic of this
paper, a natural If}-norm on the I set of pointwise convergent sequences, was
discovered by Zalcwasser [17].

We wish to consider the same question for II3. Assuming 4} -determinacy,
every IT} set admits a IT5 -norm. (Assuming ¥ = I, thisis not so.) Consider the I} sét
E < C® 0f 2.5, and for the rest of Remark 2.10, assume A% -determinacy. Does E have
any natural l3-norm? A positive answer to this (rather vague) open question would
be of interest for two reasons. First, such a norm would constitute a hierarchical
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structure on the set E, and this structure might give useful information about E or
be used to prove theorems by transfinite induction. Second, since E is a compiete I}
set (2.5), the length of any II 3-norm on E must be the ordinal &3 [12, 4C.14]; hence
a natural norm would give a description of this ordinal in terms of real analysis
rather than of logic.

2.11. A Baire-1 function is, by definition, a pointwise limit of continuous func-
tions. The set of Baire-1 functions does not form a Polish space in any natural way.
However we can encode Baire-1 functions by elements of the space C*: { f;) encodes
the pointwise limit of { f;), if it exists. The set of codes is II1, and the induced equi-
valence relation on the codes is also ITj. Sets of Baire-1 functions correspond to
invariant subsets of C®, and we say that a set of Baire-1 functions is X3 if the
corresponding subset of C® is 3. ‘

For {f;> € C°, let Bz, dencte the following set of Baire-1 functions (cf. 1.1):

{h: there is a subsequence of () which converges pointwise to A}.
Note that for any {f:), By is 1%, uniformly. Define E as follows (cf. 2.5):

{{fiy € C: for every Baire-1 function %, e By} -

Clearly E is 3. We have four questions about Baire-1 functions.

QuEsTION 1. Is it true that for any set S of Baire-1 functions, if S is X} then
there exists an {f;) in C” such that § = By ?

QUESTICN 2. Does there exist an { f;» € C*“ such that B, is the set of discon-
tinuous Baire-1 functions?

QuEstioN 3. Is £ cemplete 1757

QUESTION 4. Is £ not X3?

An affirmative answer to Question # implies an affirmative answer to Question
n+1 (1<n<3). For n = 2 we give an explanation, the other cases being trivial.
Let {g,> be a fixed sequence such that By, is the discontinuous functions. For
any {f,) € C® Tet {f) be the sequence: fa; = fi, for+1 = gi- Then Begy is the
union of A¢y, and the set of discontinuous Baire-1 functions. So the map
FY w {J:> reduces the set E of 2.5 to E. Since E is complete, so is E.

We have been able to prove the following weak version of a positive answer
to Question 1. For {f£,) € (C[0, 2])°, let B¢y, denote the following set of Baire-1
functions on [0, 1]:

{h: there is a subsequence {f,» of {fy) such that {f,> converges

" pointwise (on all of [0,2]) and for x€ [0, 1], ili]ﬁj;”(x) = h(x)}.
Then for every X} set § of Baire-1 functions, there is an {f;) such that § = B¢yy.
This is enough to imply, as in 2.5, that

F = {{f;>eC®: Some subscquence of { 7> is pointwise convergent}
is complete X3, hence not IT3. (It follows from this, as in 2.5, that the IT i set GcocC®
of pointwise convergent sequences is not 2}, However there is a simple direct proof
that G is complete II} — see [2]).
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2.12. For any {fi)y e C” let K,y denote the following subset of C:
{he C: there is a subsequence { f,,> of {f;) such that ¢ f,,> is uniformly
bounded and {f,) converges pointwise to A} .
This notion of convergence is weak convergence with respect to the Banach space
C[0, 1. Again, for any {f>, K¢pps s X3, uniformly.
QUESTION (Kechris). Is it true that for any S< C, if S is 2} then there exists
an {fip e C” such that S = K¢/ p?

§ 3. Proof for I1} sets. In this section we prove the Main Theorem for the special
case of I} sets (Lemma 3.6, below).

We first establish some notation, following Moschovakis [12). X=“ is the set
of all finite sequences from X. Finite sequences are denoted by Greek letters o, 7, ... .
o <t means that o is an initial segment of ¢, and similarly if x is an infinite sequence,
o< x means that ¢ is an initial segment of x. A free T on X is a subset of X~ such
that if ¢ <7 and 7 € T'then.o € 7. The proof will involve trees on « x 2; we identify
a sequence in (o x 2)~ of length n with two length » sequences, one cach from <"
and 2%, and similarly for infinite sequences. Let T be a tree on wx 2. The body of
the tree T, denoted [T7, is '

{&, ) ew”x2% for all n, (xTn,ytn)e T},
i.e., the set of all infinite branches through T.

Convergence of a sequence of functions always means pointwise convergence.

Fix two families, {I7} and {J7}, of closed subintervals of [0, 1], indexed by
(0, 7) € (@=2)"* and satisfying the following properties.
3.1. (a) J7 < Interior (I7).
(b) If (0, 7) is a proper initial segment of (¢, ') then IZ <J°.
(©) If (0,7) and (¢’, 7') are incompatible then IS A IS = @.
(d) If n = length(o) (= length (7)) then the length of the interval I7 is at most

nt+1’

For any (y, z) € (0 % 2°), there is exactly one real number in

N{L: (0, )<y, 2}
let r(y, z) denote the number.

3.2. For n € o, define the set Z,=(wx2)"® as follows. (¢, 1) Z, if there exists
a ke such that:

(a) o= (iO= i}’ (AR} ik—-l) € mks

® v = (o, js> o Ji-y) €25,

(©) ipy<i; < Iy <o <dp_y,

@) -y =n,

(®) Jemy = 1.

Note that Z, is finite and that the intervals {72 (0,7) €Z,} are pairwise disjoint.
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3.3. For any function g € C, any # € w, and any tree 7 on wx 2, let f‘(g"" D be
the unique continuous function from [0, 1] into R satisfying the following three
conditions.

a) If x I  (o,7)€Z,n T} then f9"(x) = g(x).

(@) s Z,AT) then £O"N(x) = g(x)

) If xe Y U2 (0,7 €Z, n T}, then £ o™ T(x) = n. o

(c) On each interval of ) {INJ7: (6,7)€Z, n T}, £™ ") is linear.

The first lemma examines a sequence of functions of the above form, and con-
siders questions of convergence. (This lemma deals with a fixed sequence and. does
not consider convergence of its subsequences; however, it will later be applied tg
an arbitrary subsequence of a given sequence.) Let SI be the closed subspace of @
consisting of strictly increasing functions.

3.4. LemMaA. Let {g;> € C®, let w = (my, my,n,,..) €SI, and let T be a tree
on wx?2. Consider the sequence of functions:

<f(.‘7(,mi: T)>i‘m .
1, 10, s ) H g, mi, T) lim -

@) If {fe ™D converges then {g;) converges and l1_132 f ng

(b) If { ™D does not converge and {g;) does converge, then there is a y € o
and a ze2” such that:

@ (y,2)elT] )

(i) w and y have a common subsequence, i.e., there exist v, «, p & SIL such that
for all jew, v(j) = w(a()) =.y(B(j)),

(iii) {j: z(j) = 1} is infinite.

(¢) If there exists a ze2° such that

@ (v, €T, .

() {j: z(j) = 1} is infinite,
then {fO™T)Y diverges. .

Proof. Let R = {r(y, 2): ye®, ze2"}. Two facts follow directly from the
definitions (3.1 and 3.3). ‘ ' .

) If JEE [0, 1] is not in R, then for all but finitely many ic o, S D
= g4x). .

(2) If xeR, then for any i, either f Gemu T () = gi(x)Tor f @om D) = ;.

@) If wims Ty = m, for infinitely many 7, then {f em ) diverges. So (a)fol-
lows immediately from (1) and (2).

(b) Suppose that {g,) converges and { f w1y does not. Then by (1). and. 2),
there exist x e [0, 11, y € ©®, and ze€2% such that x = r(y, z) and for infinitely
many ¢, f(g;,mx,T)(x) =m; # g;(x) .

These infinitely many i’s give us the subsequence. Formally, let v € SI be a subse-
quence of w, say v(j) = w(a(j)), such that for all je o,
f(hm:mu(!)vT)(x) = m:(j) = w(gg(_])) = 0(7) # Gan®) -
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By 3.3 (a), for any j there must be a (o7, v) € Z,;, n T such that x e I%. Since
x = r(y, 2), clearly (¢, t)<(y, 2).
Let &/ = length (¢7). By definition of Z,; (3.2), we have the following:
(i) (o', e,

(i) (K —1) = v(j),

(i) e -1) =1,

(i) ¢/(0) < /(1) < ’(2) < ... <K'= 1).
Since each o’ is an initial segment of p, clearly for any j,j' € w, o and ¢’ must be
compatible. From this, (ii"), and (iv"), plus the fact that » e SI, it follows that %’ is
a strictly increasing function of j; that is, the inital segments (¢”, ¢/) of (¥, z) keep
getting longer. Hence (i') implies (i) of part (b), (ii") implies (if), and (jii") implies (iii).

(c) Assume the hypothesis of (c). Let x = r(w, z). Consider.a % € w such that
z(k—1) = 1; there are infinitely many of these k’s. Let n = w(k—1) = my_,, let
o =w}k and let © = z} k. By definition of Z, (3.2), (¢,7) € Z,. Then

f(ﬂk—l,mk—lyT)(x) = My,

by definition of the function (see 3.3 (b)). Since we SI, £™T(x) can be made
arbitrarily large by choosing a large enough i such that z(i) = 1. So the sequence
of reals { f“™D(x)} diverges, hence the sequence of functions ¢ f om 1)y i
verges. M

3.5. LemMA. Let O < o be 1. There is a tree T on w x 2 such that for ally e o®,
ye Q< there exists a z in 2° such that (y,z)e[T] and {j: z(j) = 1}
is infinite.
Proof. The usual representation for X! subsets of ¢® [12, 2B] gives a tree U
on X such that Q is the projection of [U] onto the first coordinate. Encode

elements of »® by elements of 2° in the following way: z e 2° is a code iff infinitely
many of its coordinates are 1, and it encodes 2 e »® where

2(n) = the number of 0’s between the nth and the (n+1)* 1 in 2.

Let T be the tree on w x 2 that corresponds to U under this coding; that is, (o,7)eT
iff there exists 2 y € @ and a ze2° such that (o, 7)< (1, 2) and 7 is a code and
(y,2)e[U). It is easy to see that T satisfies the lemma. #

(There is a reason for representing X sets via trees on o x 2, rather than usinfg
the customary trees on w x w. It is necessary to work with 2 rather than e in defining
the sets Z, in 3.2, since if w is used then Z, n T'may be infinite. If Z,  Tis infinite,
then in defining the function f@™™, in 3.3, there will be infinitely many intervals,
hence there will be limit points, hence £f@*7 will not be continuous.)

3.6. LeMMA. For any P < C, if P is IT} then there exists an {f.) in C® such
that P = A¢g,s. : ‘

Proof. Let py, p;, ps, ... be a fixed sequence of functions which is dense in C,
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e.g., the polynomials with rational coefficients. Define O < w® as follows:
yeQ<[yeSI&@heC) (R¢P&Tor ae. xe(0, 1], lim p,(x) = A(x)].
i»oo

The pointset Q is %}, This is proved by the methods of [12, 1C and 1E], i.e.,
quantifier-counting. That is, the complement of P is X7 and the pointclass of Z7 sets
is closed under all the operations used to define Q, so Q is Xi. We are using one
nontrivial closure property of X} (in addition to the trivial ones), namely the fact
that 2} is closed under quantification of the form “for a.e. x € [0, 1]”, where almost
every refers to Lebesgue measure on [0, 1]; this is a theorem of Tanaka [16] — sce
also Sacks [15] and Kechris [7]. (The motivation for this definition is that we would
really like to define Q to consist of those y in SI such that the subsequence { py) of
{p;> converges pointwise to an clement of C\P; the problem is that this is not Xj,
and we need a X1 set. The only reason for introducing measure at allis to get around
this problem.)

Since Q is £}, by Lemma 3.5; there is a tree 7 on o x 2 such that for all y € 0,

3.7. y € Q <>there exists a z in 2° such that (y,2)e[T] and {j: z(j) = 1}
is infinite.

Fix such a T. For all ne w, let f, = f @™ (see 3.3 for definition). We will prove
below that P = Apys.

Pc Ay Let g € P. Let {p,,) be a subsequence of {p;) which converges to g.
We show that  f,,> converges to g. Assume that this is not so. Then by Lemma 3.4 (a),
{ for> does not converge. So by 3.4 (b), there is a ye w” and a z€ 2° such that:

(i) (y,2) [T},
(ii) {n;y and y have a common subsequence,
(i) {j: z(j) = 1} is infinite.
From (i), (iii) and 3.7 we conclude that y € 0. By deﬁni‘tiog of Q,thereisanheC
such that h¢ P and for a.e. x, limpy,(x) = h(x). By (ii), the sequences {p,»
i+

and {p,q,> have a common subsequence, hence for any point x e [0,11, if {p,»
and {pyuy both converge at x, then they must both converge to t-he same value.
So for a.e. x, g(x) = h(x). But g and & are both continuous functions, so g = h.
This contradicts the fact that g e P and h¢P.

Ay = P. Let (> be a subsequence of {f;), let 2eC, and suppose that
{ fo,> converges to h. We must show that h e P. By Lemma 3.4 (a), { p,,,? f:onverges
to h. Let w = (ny, 1y, ny, ...). Now suppose that /i ¢ P. Then by deﬁm‘uqn of Q.
we Q. So by 3.7, there exists a ze2” such that (w, z) € [T] and z has infinitely
many 1’s. That is, w satisfies the hypothesis of Lemma 3.4 (c); therefore ¢ f,.>
diverges, contrary to assumption. B

§ 4. Proof for X} sets. Lemma 3.6 and its proof can be generalized from C to
a large class of spaces. In this section of the paper we give the generalization, and
from it derive the Main Theorem (I.2).
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Consider two real numbers @ and b, with a < b, and a nonempty closed set F
in C[a, b). Then F (topologized as a subspace of Cla, b]) and F*® are Polish spaces.
Call F suitable if there exist two reals ¢ and d, with < ¢ < d < b, satisfying the follow-
ing property: For any functions f and g in Cla, ], if g € F and for every x in
({a, BNlc, d), £ (x) = g(x), then fe F. For { f;) € F®, let A<,‘> denote the following
subset of F:

{heF: there is a subsequence of ¢ f,) which converges pointwise to /.
This definition is, of course, the analog of 1.1 for the space F.

4.1. LEMMA. Let a, b e R, with a<b, and let Fc Cla, b] be a suitable closed
set. For any P F, if P is I} then there exists an { fiy in F® such that P = Af,.

The proof of Lemma 4.1 is essentially the same as the proof of Lemma 3.6 given
in § 3. There is one extra detail: Make sure that the intervals J; of 3.1 all lie within
[e, d], where ¢ and d are as in the definition of suitable. (Thus the coding up of the
tree into the functions all takes place inside [c, d].) The only obstacle to generalizing §3
to arbitrary closed subsets of Cl[a, b] is that the new functions f @mnT) constructed
in 3.3 may not be in that closed set; suitability guarantecs that this problem will
not occur.

Now we fix an F. Let F be the following subset of C[0,2]:

{feCl0,2]: fF(Mel0,1] and £} [1,2] is linear} .

Note that this Fis closed and suitable, so Lemma 4.1 is applicable to it.

Next consider the spaces D = (C[0, 1]x [0, 1]) and D®. We say that a sequence
{g;, y:) € D° converges to (h,y) if {g;) converges pointwise to /7 and {y;) con-
verges to y. For any {g;,y;) € D, let B, denote the following subset of D:

{(h,y) € D: there is a subsequence of {g;, y;»> which converges to (&, »)}.

4.2. LEMMA. For any P < D, if P is I} then there exists a {g;, y,> € D such
that P = Biguyis- !

Proof. Let P< D be IT}. Let P* be the subset of F deﬁned as follows.
Pt = {feF: (f r {0, 1],]'(2))&1’} .

There is a homeomorphism from D onto F which maps P to P*, hence P* is also Il 1.
So by Lemma 4.1, there is an {f;) € F” such that P* = A?m. Let y; = f;} [0,1]
and let y; = fi(2). Then it is easy to see that B, ,» =P. B

We can now lift the representation theorem from I} sets to X} sets.

Proof of Theorem 1.2, Let S« C be a X5 set. Then there is a IT} set
Pc(Cx[0,1]) = D such that S is the projection of P, that is, for all he C:

he S < there exists a y e [0, 1] such that (h,y)eP.
(The official definition of X} given in this paper is that a subset of X is X} if it is the
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projection of a I} set in X x Y for some Y. But all uncountable Polish spaces are
Borel isomorphic, so without loss of generality, the space Y may be taken to be [0, 1].
Moschovakis [12] defines a subset of X to be X3 if it is the projection of a II} set
in Xxo"; the same remark applies to this definition.)

By Lemma 4.2, there is a sequence { f;,y;) € D° such that P = Bir vy We
show below that S = 4., and thus prove Theorem 1.2.

S Ay Let heS. Then there is a y e [0, 1] such that (&, y) e P. Since P is

B¢,y there is a subsequence {f,, ¥, of {fi,»;) which converges to (4, ).
Therefore ¢ f,,> converges to h, and hence, he A p,.

A¢piy < S. Suppose that he A,y Then by definition of Ay, there is a sub-
sequence { f,,> of {f;) which converges to 4. Consider the corresponding sequence
{¥ny of points in [0, 1]. By compactness it has a convergent subsequence — call it
{Fmy — and let y be the limit of {(y,,>. Now (h, ») is a point in Cx [0, 1] = D
and the sequence { /., ¥,,»> € D” converges to (h, ¥); so by definition of Bsiyds
(h,y)€ By Since By, vy = P and S is the projection of P,heS. B
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Solution of Kuratowski’s problem on function
having the Baire property, I

by

Ryszard Frankiewicz (Warszawa) and Kenneth Kunen (Madison, Wis.)

Abstract. In this paper it is proved: ZFC + “there is measurable cardinal” is equiconsistent
with ZFC + “there is a Baire metric space X, a metric space Y, and a function f: X— ¥ having
the Baire property such that there is no meager set ¥< X for which f{ X\F is continuous”.

In 1935 K. Kuratowski [11] posed the following problem: whether a function
f: X — Y baving the Baire property, where X is completely metrizable and Y is
metrizable, is continuous apart from a meager sct (cf. P. 6 [12]).

In this paper it will be proved:

THEOREM. The following theories are equiconsistent:

(1) ZFC + 3 measurable cardinal;

(2) ZFC + there is a complete metric space X, a metric space Y, and a function
f: X = Y having the Baire property such that there is no meager set F< X for which
FIXNF is continuous;

(3) ZFC + there is a Baire metric space X, a metric space Y, and a function
f: X > Y having the Baire property such that there is no meager set F < X for which
FIXNF is continuous.

1. Definitions and the basic facts. Let X be a topological space, and 4 = X.
The set 4 is said to have the Baire property if

A= (G\P) U Py,

where G is open and Py, P, are meager sets (for basic facts see Kuratowski [10]).
A map f; X — Y has the Baire property iff for each open set V<Y, F(V) has
the Baire property.

1.1 In [4] the equivalence of the following statements has been proved: Let X, Y
be metric

(i) for each subspace X* = G\F of X, where G is a nonempty open set and Fis
ameager set and for each partition # of X’ * into meager sets, there is afamily #' € &
such that %' does not have the Baire property.
3 — Fundamenta Mathematicae CXXVIIL 3
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