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P2 Partition relations
by

Donna M. Carr* (East Lansing, Mich.)

Abstract. We study the partition relations X — (I+)", X — (uhf)", and X — (uhf, I+)" where
X CPyA, nz1, I is a proper, nonprincipal »-complete ideal on P4, and a uhf is an unbounded
homogeneous function (see 1.3, 2.1 below).

THEOREM. Jf 2<% = A, then x is A-ineffable iff X — (NS;) holds Jor some X C P,L. (4.2, 4.3).

THEOREM. If X — (SNS:Z)* holds for some X C P2, then x is almost A-ineffable. (1.7).

THEOREM. If A<* = 2 and x is almost A-ineffable, then X — (L)? holds for every X € NAIn;.
4.2).

THEOREM. If A% = A, then » is mildly J-ineffuble iff X — (uhf)* holds for every X e I} and
#3224 ‘ ‘

THEOREM. [f A<* = A and x has the A-Shelah property, then X — (uhf, NShH)® holds for every
XeNShifi. (5.4).

All of the ideal-theoretic notation is explained in 0.0 and 0.4.

0. Introduction

0.0. Notation and basic facts. Unless we specify otherwise, » denotes an uncount-
able regular cardinal and A a cardinal > %. For any such pair, P,/ denotes the set
{xgsad |x| <}

The basic combinatorial notions are defined here for P,/ as in Jech [12]. For
any x e P, A, & denotes the set {yeP,A: xSy} XS P,Ais said to be unbounded
T (Yx e P, A X n & # 0), and I, denotes the ideal of not unbounded subsets of P, A.
In the sequel, an “ideal on P, A” is always a “proper, nonprincipal, %-complete ideal
on P, A extending /,," unless we specify otherwise. Further, for any ideal I on P,4,
I* denotes the set {X < P, At X ¢ I}, and I* the filter dual to I; FSF,, denotes I;*

* AMS(MOS) subject classification (1980) primary 03ES5, secondary 03E05. )

Some of the results of this paper were presented at the 1983 Annual Meeting of the A.S.L. in
Denver, Colorado on 8 January, 1983. )
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CcP,) is said to be closed in P, A iff (YX=C) (X is a <-chain of
length <% — () Xe C), and is called a cub iff it is both closed and unbounded.
Further § = P,/ is said to be stationary in P2, iff § n C # 0 for every cub C< P, ).
Finally, NS, denotes the nonstationary ideal on P, 1, and CF,, its dual.

The diagonal union V(X,: o < 1) of a A-sequence (X,: « < 1) of subsets of PA
is defined by V(X,: u<l) = {xeP,): Fuex)(xeX, }, and for any ideal I on
Py, VI denotes the set {X <P, (3(X,: a<2) € T)(X = V(X,: a<)). It is
easy to see that VI is a (not necessarily proper) ideal on P, A extending /.

Anideal Iis said to be normal iff VI = 1, equivalently iff every function /% P,A— 1
which is regressive on a set in I'* (i.e. with the property that {xeP A f(extel)
is constant on a set in J*. Jech proved in [12] that NS,; is normal, and we proved
in [3] that it is the smallest normal ideal on P A extending 1.

In [3], we defined C = P, to be a strong cub iff (Y X OX|<x~ U XeQ).
It is easy to see that the family of strong cubs generates a %-complete filter on P, 1.
We denote this filter by SCF, (the strong cub filter on P,2) and its dual by SNS,,.
In [3] we used some results of Menas [15] to show that VI,; = SNS,, < NS,
= VVI,.

0.1. In [5], [7] we studied mild A-ineffability and the A-Shelah property as
natural P, A generalizations of weak compactness. The former notion, which is due
to DiPrisco and Zwicker [11] is ideal-theoretically weak (see 0.4 below). The latter
notion is due to us [4], [5], and is ideal-theoretically strong (see 0.4). Our definition
of this notion was inspired by Shelah’s work in [17].

In [7] we provided characterizations of these two notions in terms of suitable P, 1
generalizations of the tree property and in terms of P, A filter extension properties.
We also provided a characterization of the A-Shelah property in terms of a P,A
ol — indescribability property suggested by Baumgartner in [2]. In this paper, we
provide partition-theoretic characterizations of mild A-ineffability (Theorem 2.4)
and A-ineffability (Theorem 4.3), a partition-theoretic condition for almost
A-ineffability (Theorem 1.7), and partition-theoretic consequences of almost
A~ineffability (Theorem 4.2) and the 1-Shelah property (Theorem 4.4), For Theo-
rems 2.4, 4.2, 4.3 and 5.4, we assume that 1<% = J,

0.2. Jech [11] provided natural P, % analogues of x — (x)* and x ~ (x, statio-
nary set)®>. He defined Part(x, ) to hold iff for every fi [P,A]? — 2,

(Hiez)(aﬂelﬁ)(v-\‘,yEH)(x cyvyax —Jrf({x‘ y}) = [) .

Finally, he proved that if Part(x, 1) holds for some 4 > %, then % is weakly compact.

Magidor [14] proved that s is supercompact iff » is A-ineffable for every A 3 x,
ani that if Part*(x, 1) holds, then x is A-ineffable. Menas [16] showed that if » is
2% -Supercompact, then Part*(x, 1) holds. Thus x is supercompact iff Part*(x, 1)
bolds for every A>x But we do nor know if Part*(s, )) follows Just from
A-ineffability.

DiPrisco and Zwicker [11] proved that s is strongly compact iff % is mildly
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J-ineffable for every 2> w. Several individuals (e.g. Baumgartner [2], Carr [5],
DiPrisco [10]) have independently shown that if Part3(se, /) holds, then z is mildty
J-ineffable — or something amounting to this. Thus if Part3(x, 1) holds for every
Az %, then » is strongly compact. Does the converse of this hold; does Part’(x, 2)
Jollow from mild A-ineffability?

0.3. Repeated efforts to obtain “x is mildly A-ineffable - Part3(x, 1),
“Part?(x, ) - % is mildly A-ineffable” failed miserably. This led us to wonder if
Part(x, 2) is the “right” P, L analogue of x» — (x)*. We subsequently found that
a notion due to Baumgartner [2] appeared to be more suitable in some respects. The
relations studied in sections 2, 5 below are a slightly modified version of this notion.

In section | we define the basic partition relation, and establish a partition-
theoretic condition for almost A-ineffability. In section 3, we establish some facts
that are needed in the sequel, and which relate to Zwicker’s work in [18], [19].

We conclude this section with a brief description of the ideal-theoretic notation
used in the sequel.

0.4. For any uncountable regular cardinal » and any cardinal A >,

A-ineffable o,
X< P,A is said to be < almost A-ineffable (2);
mildly A-ineffable (3),

iff for every (4,; xe& X) such that (Vxe X)(4,<Sx),
@FAsH({xeX: 4, = Anx}eNSL),
A4 N({xeX: 4y, = Anx}el)),
@4 )(WxeP, H({yeXnt: 4,nx=Anx}ell).

Finally X <P,/ is said to have the A-Shelah property (4) iff for every (fi: x€ X)
such that (Vxe X)( f.: x - %),

Af A= D VxePN{yeXnf: flx =flx}ell).

Thus % is A-ineffable (almost A-ineffable, mildly A-ineffable, has the A-Shelah
roperty res 1 ] g 4) resp.)
property resp.) iff P,A has property (1) ((2), (3), (

Let Nin,,, NA I,‘:, NMI,,, NSh,, resp. denote the sets of all t.hose subsets of P”.A
which do met have property (1), (2), (3), (4) resp. We showed in [5], [6] that ;)c l;
A-Shelah (almost A-ineffable, A-ineffable resp.) iff NSh,f,1 (NAL;, Nin, reﬁp-1 L
a normal ideal on P,A, and that % is mildly A-incffable iff NMI,d = L F;lf; her,
we showed that NSh,, < NAL, and that % is supercompact iff % is A-Shelah for
every Az u iff % is almost A-ineffable for every Az .

1. P, partition relations,

1.1. DeriNrtions. For each x, y e P, A write x <y iff 0 # x< ypand |x| < ly ‘rim|i
and for each x e P, A, let & denotc the set {yeP,A: x< ¥} and x, the cardina
1% ).
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1.2. Remark. It.is easy to see that ¥ is a strong cub for each x € P, A (see 0.0)
and hence that {%: x e P, A} »-generates a filter on P,A. Moreover, this filter is just
FSE,,, the dual of [,;. . .

1.3. DeFNiTION. For any finite #21 and X< P,A, (X) denotes the set
{(xgs e Xym1) € X" Xp < ... <x,_y}. For any ideal  on P, 1, X ~ (I'*)* denotes
the assertion that for every partition f: (X)" — 2,

@ieDEHE X) (He I Af(HY) = (i)).

H is said to be i-homogeneous for f.

1.4. Remark. Itiseasy to see that if X — (7*)"** holds, then so does X ~» (I,

Further, routine arguments show that if P, A — (I'*)* holds, then
{XSP At X+ (IT)}
is an ideal on P,A extending I

L.5. Remark. The relations defined in 1.3 look weaker than the obvious gene-
ralizations of Jech’s Part(x, A) and Part*(x, A); in those generalizations we would
use < instead of <. However, a slight modification of the arguments used in [2],
[51, [10] to prove that if Part®(x, 4) holds, then x is mildly A-ineffable yields the same
conclusion from P, L~ (I5)® as defined in 1.3. And a slight modification of
Magidor’s proof in [14] that if Part*(x, 1) holds, then % is A-ineffable yields the
same conclusion from P, A — (NS])% In section 4 we will show that if 1<% = A
and x is A-ineffable, then P, A -» (NS.5)? (Theorem 4.2). Our main reason for
using < as defined in 1.1 instead of  is that it seems to be what we need to make
the proofs of 4.2 and 5.4 work.

The main result of this section is that if P,1 - (SNS;)* holds, then  is
almost A-ineffable; this is an immediate consequence of Theorem 1.7 below. Our
proof of 1.7 requires a preliminary (Lemma 1.6) which is proved in [3].

L.6. Lemma, Forany XS P}, Xe SNSY iff for every regressive function f: X - ),
Fe<H(f (e el}). B

" An argument inspired by Magidor’s proof in [14] that if Part*(x, A) holds,
then x is A-ineffable now yields our result:

1.7. THEOREM. For any X P,J, if X - (SNS5)? holds, then X & NAInS;
thus if X — (SNS;)? holds for some ¥ S P4, % is almost A-ineffuble.

Proof. Let (4,: xe X) be such that (Yxe X)(4, = x), and let < denote the
lexicographic ordering on P, 2. Definc I (X)? -2 by

_fo if d,<d,nx,
TG 5) = {1 otherwise .
Now let HeP(X) A SNS, be homogeneots for f

We define the requited 4 < A inductively as follows. Pick « <A and suppose
that we've defined 4 N« so that {x e H: dine=dnxna}el),
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If H is 0-homogeneous, put ae 4 iff
() @xe Hn{a)@ed, Adsna=Adnxn a).

If H is 1-homogeneous, put a¢ 4 iff

(li) (HXEH N {‘7})(“ éAx/\Ax Nae=Anxn 0().

Suppose by way of contradiction that this doesn’t work, i.e. that -

{xeX: d;=dnx}el,.
Pick z € P, such that (¥x € X 1 2)(4; # 4 n x), and notice that H n Ze SNSJ,.
For cachx € H{ n Z, let o, be the least ordinal in the symmetric difference AN AN x,
and then let a <4 be such that ¥ = {ye H nz: o, = a} e I5; such an o exists
by 1.6 above. We derive the required contradiction by showing that in each of
cases (1) and (2) below, neither a e 4 nor a ¢ 4 is possible.

Casc (1). Suppose that H is 0-homogeneous. Then

(i) (Vx,ye H)(x <y — 4,<4, N x).

First, suppose that o ¢ 4. Then (Yye Y)(we 4, A 4, n o = 4 n ). But then,
each element of Y witnesses (i) above for « thereby contradicting the assumption
o A

So now supposc that ae A and hence that (Vye Y)(x¢ 4,). Now pick
x, € H n {&)} witnessing (i) above for «, and then pick ye ¥ %CHANZ, We
will show that the least ordinal in 4,, A 4, 1 x, is o itself; this will be the required
contradiction since (iii) above requires that this ordinal be in A,.

Since ye¥, A,na=Anyna 0 d,nx,no=4Anx,ne Since X,
satisfies (i) above for o, Anx,na=4d,,na Thus 4, nx,Nna = Ax, 0o,
so o is the least ordinal in 4, A A4, N x, as claimed above.

Case (2). Suppose that H is 1-homogeneous. Then

(Vx,yeHY(x <y - 4,n x<X4,) ... (iv)

Argue as in case (1) using (i) and (iv) above in place of (i) and (iii). B

1.8. Remark. Notice that an easy modification of the proof of Theorem 1.7
yields the following stronger result: if X — (SNS,h)? holds for some X <P,A,
then for any (A x&P,A) such that (Vx e P, A) (4, < %),

(Ad<){xeP,i: A, = Anx}eSNSS) .

In 4.4 below, we shall see that the converse of this is true too if A™* = A
Recall that by our work in [5, 6], % is supercompact iff % is almost A-ineffable

for every A3 %, and that by Menas’s work in. [16], if % is 2* —supercom?act, then

P,A — (NS These facts together with Theorem 1.7 yield the following result.
1.9. COROLLARY. # is supercompact iff P, A — (SNS;)? holds for every 1 2. @

2. A partition-theoretic characterization of mild A-ineffability. In some ways,
the following relations, which are based on a notion of Bau.mgazrtncr [2] seem to be
better P,A analogues of % ~ (3)® and % — (%, stationary set)*.
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2.1. DerFINITION. for any finite n>1 and X< P4, X - (thf) denotes the
assertion that for every partition f2 (X)" — 2 there are an j e 2 and an /- Pl - Y
such that

D (YxeP, ) (x<h{x)), and

) (Y (xos oo Xy ) € (P 2"V (Al¥e) < oo <h(3pmg) AL (B (x), e (%= () = ).
Any such / is called an unbounded homogencous Junction of color i for 13 hence the
abbreviation wuhf.

Further, for any ideal 7 on P4, X — (uhf, 1*Y" denotes the assertion that for
any f1 (X)' — 2,

either there is a ulf of color 0 for f

or else there is a homogeneous H e P(X) n I* of color | for ¥

It is easy to see that for any n>2 and any X Pl 06X = (ulf Y™ ! holds,
then so does X — (uhf)", and that if X — (15)" holds, so does X — (uhf)". Further,
routine arguments show that if P,1 — (whf )" holds, then {XcP: X A+ (uhf Y}
is an ideal on P,2; likewise, if P, A — (uhf, I*)" holds, {XSP A X s (uhf Y} is an
ideal extending I. Finally, an argument similar to the one Jech used in [12] to
show that if Part(x, 1) holds for some 1 3 s then % is weakly compact yields the same
conclusion from 2,4 - (uhf)2.

It is clear that for every n>1 and X< P, if X~ (I5) holds, then so does
X — (uhf)'; likewise, if X — (I, NS)* holds, then so does X — (uhf, NSO
However, repeated efforts to obtain the converses of these have failed as have efforts
to obtain P4~ (L})* and P,4 - (I, NS;)* from the hypotheses of Theo-
rems 2.4(1) and 5.4 respectively.

A consequence of Baumgartner’s work in [2] is that if 1<% = A, then  is mildly
A-ineffable iff P, L — (ubf )" holds for every n > 1. We will sharpen that result here
by proving that if 2¥* = J, then x is mildly A-ineffable iff I}, — (uhf')" holds for
every n> 1, i.e. X — (uhf)" holds for every X eI, and every n 1 (Theorem 2.4).

The reverse implication (which does not require the assumption 4<% = 4) is
proved by essentially the argument used independently by several individuals to
prove the result stated in 0.2 above. The forward implication follows by a P,
version of a familiar proof that x — (2)" holds for every n > 1 if % is weakly compact
(e.g. see [13]). This requires two preliminaries.

2.2. LEMMA. % is mildly A-ineffable iff NML), = I,

Proof. See [6], Proposition 1.4. W

23. LeMMA. If 4™ = 1, then for any X e Ly X is mildly A-ineffable iff for

any %- complete field B of subsets of P, 3 such that 1Bl = land {X} U {%: xeP,I}<B,
there is a %-complete ultrafilter U in B such that Xt ufs: x eP A} s U

Proof. See the proof of Theorem 32in [7]. &

24. THEOREM. (1) If A% = ) and » is mildly A-ineffuble, then X — (uhf)"
holds for every X e I} and every nz1, and
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@) if X~ Whf)® holds for some X< P,A, then u is mildly A-ineffable.

Proof. (1) Suppose that A% = 1 and x is mildly A-ineffable, and pick X e I}
= NMILh, n=2 and f: (X)" - 2. Further let U be any x-complete ultrafilter
containing {X} L {¥: x &P, A} in the »-complete field B of subsets of P, A generated
by {X} U {%: xeP,A}; the assumption 1<% = A guarantees that |B| = 1.

For cach r<n, define f,_.: (X)"™" — 2 inductively as follows. Set f; = f.
Pick k<n—1 and assume that we've found f,_,,,. Then define f£,_, by
fu"-h(x()’ ey xnmk-'l) = W‘ {y exXn in-—-k-—-lz f,._k“(xo, seey x,,_k_l,y) = l} eU. In
this way we cventually obtain fi: X — 2.

Now let i< 2 such that 4; = f;"*({i}) e U. We construct a uhf h: P,A— X
of color i inductively as follows. ’

Pick ¢ < A, set O,A = {xeP,d: ot(x)<a} and suppose that we've defined
h: O 4 — A; so that

@) (Vre O, (h(x) e 4, N X) and

(if) for every m satisfying 1<m<n and every z, < ... <z,-; from 0,4,
h(zg) < o <h(zy-1) and £, (h(zg), ., H(zy=1)) = 1. ’ o -

Now pick xeP,A such that of(x) = «. Notice that since # is Inaccesmblle,
Zye = {(2gy s Zm—1)t 1 SMS<NAZH< .. <Z,.q<x} has size <x. Also, notice
that for each m satisfying 1 € m<n and each Z = (z, ..., Z,-1) € Zx,

A; = {yEAl N X f;n-(-i(h(zo): (L] h(zm—l)’ y) = i} el
since £, (A(z0), ., B(z,-1)) = i. Thus (Y {4;: ZeZ,} e U; t-hus liet hgx) be some
element of N {4;: ZeZ,}. It is easy to see that the / obtained in this manner is
a uhf of color i for f. ) ) s
(2) Suppose that X — (uhf)® holds for some X< P,i.” Then P4 ? Whi'y
holds. Let (4,: x € P,A) be such that (Vx € P, A) (4, < x) and define f: (P,.A)° — 2 by
fO if 4, nx=A4.0x,
f653,2) = 11 otherwise .
Now let h: P,A - P, be a ubf for f. We will show that /2 has color 0 and then use
this fact to define the required 4 < 4. .
Pick x & P,A. Since x is inaccessible and X € L,
+
(Aw s h@)(W = {ye it Ayy nh(x) = whe Lj).
Notice that for any y,ze W such that y <z, Ay 0 A(X) = Aue N 1(x); thus
F(h(, h(y), h(z)) = O . . -
Notice that for each & < A either (Vy € {&}) (e € Ayyy) or else (V}f e{&})(« i :1 Hy))
Set A = {u<i: (Vye{@)(aedy)} It is easy to see that this 4 works.
An immediate consequence of the proof of Theorem 2.4 is . .
2.5. COROLLARY. If A% = A, then w is mildly A-ineffable iff P, A — (uhf)
holds. )
Although it is clear that if A<* = J and « is mildly A-ineﬂablfa then P, 2 — (uif)
holds, repeated efforts to obtain the converse of this have failed.
4 — Fundamenta Mathematicae CXXVIIL 3


GUEST


188 D. M. Carr

Since # is strongly compact iff % is mildly A-ineffable for every A= x (Di Prisco
and Zwicker [11]), we obtain the following corollary, results similar to which haye
also been obtained by Baumgartner [2] and DiPrisco [10].

2.6. COROLLARY. x is strongly compact iff P, A — (uhf'y® holds for every Az w%. &

3. More about the /- Shelah property. Recall that X ¢ P, ) has the A-Shelah
property iff for every (fi: xe X)eIl { x: xe X},

@f: A= NVxePH{ye X 2: filx=flxdell).

Equivalently (see [7]), X< P, has the A-Shelah property Jff for every A-sequence
(fy: v<2) of regressive functions on P,J,

@f: 2= H¥xePD({ye X n 2 (Vwe(£0) = FO)} e 1.

In [5] we proved that if A°* = 4 then » has the 1-Shelah property iff for any A-se-
quence (f,: v<21) of regressive functions on P2,

@Ar: A-H(¥WxeP,N({yet: (Yve (A = F)} e SNSH)

iff for any A-sequence (f,: v<A) of regresive functions on P,A, @Af: 4— A)
(Vxe If,,l)({ ye %: (Vlj eX)(fi(3) = (M)} € NS5). We will establish the ideal-
theoretic version of this here (Theorem 3.2 below), and then use it to establish some
facts that are needed in the sequel.

3.1. LeMMA. Suppose that J.~* = 1, pick X < P, and let (S v <) be a A-sequ-
ence of regressive functions on P, ). Then for any ideal I on P, A, there is a A-sequence
(91 @< 1) of regressive functions on P, such that

M {frv<A S {g,: a<i},

(2) for any x e P, A and any h: x — 2 such that

Ea={yeX: (Yaex)(g.() = h(®)} eVI,

@y <2 (Ve <AN(Ey N g, {eh) e I,
and

(3) for any ideal J on P,A, if there is a g: A~ A such that

(VxeP)(Ex = {ye X: (Yoex)(s0) = g@)}eJ"),

then there is an fi X — A such that

VxeP,NEy = {yeX: Wex) () =/0))}el™).

Proof. We construct a sequence Fos..cF,c..(x<) of families of

regres§ive functions on P,J, each of cardinality <1 inductively as follows
First, set Fo = {f,: '

v<i}. Then pick ¢ <1 and suppose tha ’

/ pose that we've found
Fos..cF.c .. (E<w). If lim(w), then set F, = {Fs: & <a}. Clearly |F,| <A
Now suppose that o = f+1, and let (£7: |

) D 1 v<2) be an enumeration of F,
without repetitions. For each x €P,) and each h: x — A such that !
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Egs = 1y& X: (Yvex)(f(3) = h(»)} € FL let g,, bea regressive function on P, 1
such that (Vy < A)(Ex,,,: ngn ({¥)) e I). Now let F, be the union of Fg and the set
consisting of all these g,;’s. The assumption A** = 1 guarantees that |F,| = L.
Now set G = {F,: a <A}. It is clear that |G| = A and {f;: v<A} < G. Finally,
let g,: o<2) be an enumeration of G without repetitions; we will show that this
sequence satisfies (2) and (3).
Let xe P,A and h: x — A be such that E,, e I where

Eg = {re X: (Yeex)(g()) = ()} .

Now let i <4 be wuch that {g,: a ex} & Fy; notice that such a f exists since the
assumption 2% = 2 guarantees that ¢f (2) > . For each o € x, let v, < A be such that
go = FE. Set a' = {v,: aex} and define 4': x' — A by 4'(v,) = h(a). Then for each
yeX. ve £y iff Vae)(fL0) = K(w) iff (Voex)(gdy) = h@) iff y&Eu.
Thus EL, e '), Then since gy € Fyiy € G is I-small on El,. = Eg, it follows
that (2) holds.

Now let J be any ideal on P,. and suppose that g: i — A is such that

(VxeP,D(Ey = (yeX: (Vaex)(g.() =g@)}el*).

For each v < A, let o, < A be such that f, = g,,, and define f: 2 — Aby f(v) = g (o).
For cach xe&P,A, set x' = {o,: vex} and notice that

Eg={yeX: (Vrex)(A() =70}

= {yeX: (Vex)(9,0) = 9@)} = EyeJ¥ . W

3.2. THEOREM. If A% = A, then for any X S P,A, the following are equivalent:

(1) X has the A-Shelah property;

(2) for any A-sequence (f,: v<J) of regressive functions on P2,

Af A D(VxeP ) (Ey = {yeXn i (Vve WA =)} e SNS%Y

and
(3) for any A-sequence (fi: v<J) of regressive functions on P4,

@Af: A= N(VxeP,l)(EsE NS5 .
Proof. Tt is clear that (3) ~ (2) — (). ‘ - '
(1) = (2). Let (fy: v <) be a A-sequence of regressive functions on Py4, and

let (g,: o << %) be a sequence satisfying the conclusions of the preceding lemma.
Further, fet g: A - A be such that (VxeP, 1)

(B = {ye X2 (Vaen)(9.0) = g@)} e Lz
We will show that (Vx € P,A)(Ey, € SNSH); (2) will then follow by 3.1 (3) above.
Suppose by way of contradiction that (@x € P, 2)(Ex € SNS,; = VI,,), and let
y < be such that (Yo <) (Ex 0 g5 '({o}) € L) Set z=xV {y}. Then for any

4%
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yeXnz, yeE, iff (Voe2(9 () =9@®) if (Vaex)(9) =g(®) and
9,(3) = 9 iff y € Eyy v g, "({g (0)}) € L5 thus Ky, € I, thereby contradicting (1).

(2) = (3). This follows by an argument similar to the one used to prove (1) — (2)
using the fact that NS,; = FSNS,,. H

We now use 3.2 to establish some facts (3.4, 3.5, 3.6) that are needed in the
sequel.

Recall that for cach x € P, A, s, denotes the cardinal |x x|, and that if s is
a limit cardinal, then {xe P,A: x N x = %.} is cub in P, 4. Further, recall that if x
has the 1-Shelah property, then % is inaccessible.

3.3. LEMMA. If 2™ = 1 and x has the A~ Shelah property, then for any X e NSh},
and any f: X~ P,J such that (Yxe X)(/(x)<x), @y e P N/ ({»h) e NS}).

Proof. Since {x € P,A: x nx = »,} is cub in P, A and NS, € NSh,;, we may
assume w.l.o.g. that (Yxe X)(x n % = 3,). Define a regressive function f;: X — »
by fi(x) = | /(x)|, and then let u<x be such that X = fi'({u}) e NSB},.

For each x € X, fix an enumeration (¢¥: v < 1) of £(x), and then for each v < i,
define a regressive function g,: P,A— A by
ja;‘ if xe X,
[arbitrari]y otherwise .
Nowlet g: A — 2 be such that E= {ye X, n A: Vv <w(g,(») = g} e NS;
such a g exists by 3.2 above. Notice that VyeE)f(y) = g (). W

3.4. PROPOSITION. If A°* = A and x has the A-Shelak property, then

D) {xeP,i: x A x is an inaccessible cardinal} e NShY,, and

(2) for any bijection p: P34, {xeP, i ¢©"(P,,x) = x} € NSh¥,.

Proof. (1) Tt is easy to see that since  is inaccessible, C = {x e P, A: x A is
a strong limit cardinal} is cub in P, and hence is in NSH,. Thus it will suffice to
prove that {x e C: x, is regular} NS,

Suppose that the above set is ot in NShy; and hence that

gu(x) =

X = {xeC: x, is singular} e NSH, .

For each x e X, let y, be a cofinal subset of %y S x of cardinality <, and then
use 3.3 to find a p such that X, = {xe X: y, = ¥} € NS, This is the required
contradiction since (Yo € X;)(x, = sup(y)) but (Voo<u)({x e P d: s, = lol} & 7,5).
(2) Fix a bijection ¢: P,1 — . Arguments similar to those used in [5]. [15]
show that {xe P, 1: (Vuex)(p™ (@) <x)} is cub in P2 and lence is in NS,
So it remains to prove that {x el (Vr<x)(p(y)ex)}eNSH,.
Suppose that the above set is not in NShy, and hence that

X={xeP: @y<x)(o() ¢x)} e NShy; .
For each x e X, pick y, <x such that ®(¥,) ¢ x, and then use 3.3 to find a yepr,i

such that X; = {xe X: y, = »} € NS5, This is the required contradiction since
(Vxe X))o () ¢ x) bur (Vo< DxePi: a¢x}el,).
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We can use 3.4 (2) to improve the result given in 3.3; we can prove that NSK,
is strongly normal in the following sense:

3.5. TunoreM. If A°* = ) and % has the A-Shelah Dproperty, then for any
XeNShl, and any f: X — P,A such that VxeX)(f(x) < x),

Ay e PO "({y) e NSHY) .

Proof. Pick X'e NSk}, and /2 X - P, A such that (Vx e X)(f(x) < x). Further,
let @: P, A 24 be a bijection, set B = {xePA: " P, .x) = x}e NSk}, and
Xy = X B. ¥Vinally, define g: X; — 4 by g(x) = ¢(f(x)) ex and then let o < 1
be such that ¢ '({a}) € NShy,. Then [~ ({p~1(«)}) e NShY,. B

Since NSh,, = NAL, < Ni,;, the analogues of 3.4and 3.5 go through under the
hypotheses “4™% = 4 and s is almost A-ineffable” and “A<* = ) and xis A-ineffable”.
Thus we have

3.6. THEOREM. If A% = 1 and % is A-ineffable (almost A-ineffable), then

(1) the sets given in 3.4 are both in NInj, (NALY), and

(2) Nin,; (NALy,) is strongly normal in the sense of 3.5. B

3.7. Remark. Notice that by 3.4 (2) and 3.5 we have that if 2°* = 1 and x has
the A-Shelah property, then

(1) for any bijection ¢: P,A— 1, @4 e NSHi)(Vx,ye A(x<y = o(x) € y),
and

(2) NSh,, is strongly normal in the sense that for any XeNSA), and any
f: X = P, such that (Vx e X)(f(x) <x), @y e P () € NSh,%).

If we could also assert that under the above assumptions on »% and A,

@Be NSEL)(Vx,yeB)(xcy—x<y),

we could conclude that there is an §e NSh; (namely S = 4 n B)and a one-one
function ¢: S — A such that (Vx,ye S)(x<y — ¢(x) e y) and hence that there is
a stationary coding set as defined by Zwicker in [18].

If we could assert that there is a B e NS}, such that (Vx,ye B)(xcy — x <)),
then we could conclude that for any X e NSk, and any f: X -~ 4 n B such theixt
(Vxe X)(f(x) = x), Ayedn B Y({y}) e NSh}), and hence that NSh,, is
“set normal with witness index 4 n B” as defined by Zwicker in [19].

As yet we do not know if there is a set Be NSh}; such that

(Vx,yeB)(xcy—»>x<y).

However, we know that there is no such B in any of NSh},, NAILY, NInk,. To see
this, recall that if » is supercompact and A > « is measurable, then there i§ a .l—super-
compact ultrafilter on P, A which does not have the partition property (D.l Prisco [9]).
Thus there is a A-supercompact ultrafilter U on P,A such that there is no Be U
with the above property (Menas [16]). Since every A-supercompact ultraﬁl'ter onpP,A
extends NIn, 2 NAIn',2 NSkl it is clear that there is mo such Bin any of
these flters.
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4. Partition-theoretic consequences of almost 1-ineffability nad A-ineffability.
As we remarked in 1.5, an easy modification of Magidor’s proof in [14] that if
Part*(x, 1) holds then % is A-ineffable shows that for any X < P, 4, if X — (NSH)?
holds, then X is A-ineffable, We shall use Theorem 3.6 above to prove that the
converse of this is true too if 1°* = 1 (Theorem 4.2). An easy modification of this
argument will also yield a partition-theoretic consequence of almost A-ineffability,
Our proof of 4.2 requires the following easy preliminary.

4.1. PROPOSITION. If A% = A, then for any X S P,),

(1) if X is A-ineffable, then for any (B,: x € X) such that (Vxe X) (B, < P, x),
@BcP )({xe X: B,= Bn P, x}eNSH), and

(2) if X is almost A-incffable, then for any (By: x e X) such thar

(Vxe X)(B,SP, %), AB=P)({xeX: B, =Bn P, xlel)y.

Proof. We shall just prove (1) here; (2) is proved similarly. Pick Xe N},
and (B;: x € X) such that (Vx € X)(B, € P,, x). Further, let ¢: P, A — 1 be a bijec-
tion, and recall that by 3.6 {xe P, A: ¢"(P, x) = x} € NIn},. Thus we may assume
‘w.Lo.g that (Vx € X)(¢"'(P,,x) = x). Foreach x € X, define 4, = x by A, = ¢"(B,),
and then let 4 <A be such that H = {xeX: A, = A x} e NS} Now set
B = ¢7}(A). It is easy to see that (Vx e H)(B, = B P, x). &

4.2. TueorEM. (1) If ™" = ) and % is L-ineffable, then X - (NS:5)? holds
Sfor every X € Nin,. ‘

(2) If 27" = 4 and x is almost A-ineffable, then X — (I5)? holds Jfor every
Xe NAI,.

Proof. Again, we shall just prove (1); (2) is proved similarly. Pick X e NIn),
and f: (X)* — 2. Further, let ¢: P,A— A be a bijection. As in the proof of 4.1,
Wwe may assume w.lo.g. that (Vxe X)(¢p"(P,.x) = x). For each xe X, define
B:SP, x by B,={zeP, x: f(x,2) =1}, and then let BSP,A be such that
H={xeX: B, = Bnx}eNS}, Now, either Hn BeNS}, or clse H—B
€ NSy, It is easy to see that //(H  B)? = {I} and f""(H— B)* = {0}). m

As a consequence of Theorem 4.2 and the remark preceding 4.1, we have

4.3. COROLLARY. Jf A** =1, then x is J-ineffable iff P,i-» (NS5 &

44, Remark. It is clear that an easy modification of the proofs of 4.1, 4.2
yield the fact that if "% = J and P, has the property that for every (dy: x &P, )
such that (YxeP,M)(4,cx), @ASH({xeP i A, = An x} e SNS,S) then
‘P,,}t—+ (SNSH)2. Combining this with Remark 1.8, we obtain the fact that if
A =) then P, (SNS}? holds if for every (dy: xeP,A) such that
VxeP N(4:sx). @A )({xePh: A, = A A x} € SNS;).

) 5. A partition-theoretic consequence of the 1-Shelah property. A consequence
of Bavmgartner’s work in [2] is that if 1<% = J and » has the A-Shelah property,
then P,A — (uhf, NS})? holds. We will sharpen that result here by proving that
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under the above assumptions on % and 2, NSk, — (uhf, NSh))? holds,
i.e. X — (ulif, NShi))* for every X e NS, (Theorem 5.4 below).

The proof of Theorem 5.4 requires 3.4 and 3.5 together with the IT} -indescrib-
ability characterization of the A-Shelah property given in [7]. We recall the parti-
culars of the characterization here,

5.1. DEFINITION. For any uncountable regular cardinal » and any cardinal
Az x, the sequence (V, (¢, 2): « <) is defined inductively as follows:

Set Vyln, 4) = 2, Vaui(%, A) = PV, })) U V(x, 1), and

Vo= U Ve, A a< A} if lim(y) .
Finally, the set V,(x, ) = U {V,0¢, ): e <z).

Properties of the structure (V,(x, A), €) are studied in [7].

5.2. DerNrTioN. For any finite m, n, X < P, 2 is said to be IT},-indescribable
iff for any finite sequence Ry, ..., R, of subsets of V,(x, 2) and any IT},-sentence ¢,
if (V(%,24), €, Ry, ..., R) F ¢, then

(Axe X)[x 0% = 5, and

(Vieu0tss %), €, Ry O ¥, (35, X, ey R OV, (322, X)) F 0]

In [7, Theorem 4.7] we established the following fact.

5.3, THEOREM. If % is inaccessible and .°* = 4, then X = P,A has the A-Shelah
property iff X is II} -indescribable. W

5.4. THEOREM. If A~*=A and » has the Xi-Shelah property, ' then
X = (uhf, NSE)? holds for every X e NShy;. '

Proof. Pick X & NSh, Since {xeP,A: X x is an inaccessible cardinal}
e NSK, by 3.4 (1) above, we may assume w.L.o.g. that (Vx & X) (x n s is an inacces-
sible cardinal). ‘

Let f: (X)* - 2. For each xe X we define (if possible) a uhfh,: P, x -
- XnP,x of color 0 inductively as follows. Pick xeX and f<w,, set
Opx = {z<wx: ot(z)<f} and suppose that we've been able to define
byt Opx = X n P,x so that = o) and

D) (Vz e 0,x)(z <hy(2) Af(h(2), x) = 0), an

(53 Egz() " 2'1/)@)(()”.\")(;5 ‘< Z4 ‘(“* hx(zo) < hx(zl) /\f(/lx(:':O)n hx(zl)) = O)

Suppose that for every y € P, x of order type f there is a ze X'n P, x such
that

D U {hdw): u<y} <z and y<z,

2) (Vu<)(f hw), 2) = 0) and

3) f(z, %) = 0. S
Then for each y € P, x of order type §, leth,(y) be a set zin X' n P, x witnessing (1),

(2), (3) above for y. .
If any of (1), (2), (3) fail to hold for some y € P, x of order type B, then stop;

the construction of #, cannot be completed.
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Set X, = {x & X: the construction of A, camnot be completed}. If X, 1 € NSh,,,
then ¥ = {xe X: there is a uhfhy: P, x — X n P, x of color 0} e NSK},. By 5.3
above, Y is IIj-indescribable, so there is a uhfh: P A — X of color 0.

Now suppose that X; € NShY,. For each x e X, pick v,eP, x of minimal
order type <, such that A, (v,) cannot be defined, and then let v € P, A be such that
X, ={xe X;: v, = v} e NSh,};; such a v exists by 3.5 above. Since

(Vx & Xo) (Jo] < %, A %, is inaccessible) ,

we have that (Vx e Xp)(U {A.(): u<v}<x). Now let weP,Ll be such that
Xy ={xeX,: UhG: u<o} = w} € NSh,; such a w exists by 3.5 again. Notice
that (Vx € X3)({(u, h.(u): u<v} S P@)xP (w)). Since % is inaccessible, (Ar < P() x
xPW)H = {xe Xs: {(u, uw): u<v} = h) e NShL). We will show that H
is 1-homogeneous for f.

Pick x, y e H such that x <y. Since vy =0 =, and

{(, @): u<v} =h = {(u, BW): u<wv},

{h): u<v} = {h): u< v}<x,
and

(Vu<0)(f (), ) = £ (h@), %) = 0).

Thus if f(x, ) = 0, we could define hy(v,) to be x; thus f(x,y) = 1. W

5.5. Remark. An immediate consequence of 5.4 is that if A% =} and % has
the 1-Shelah property, then P, 1 — (uhf, NS,5)* holds. Tt would be nice if we could
establish the converse of this too.

Although we can prove that if Py A = (uhf, SNS)® holds, then » has the
A-Shelah property, repeated efforts to obtain the A-Shelah property from
Pk — (ulf, NS;;)* ot even from P, A — (I, NS5)? have failed.
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