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On the relationships between shape preperties of
subcompacta of S" and homotopy preperties of
their complements

by

Slawomir Nowak (Warszawa)

Abstract. Taking for the set of morphisms from Xto ¥ the direct limit of the sets of all homotopy
classes or all weak homotopy classes or all shapping between the n-fold suspension of X and ¥ we
obtain (respectively) the stable homotopy category & or the stable weak homotopy category w0,
of open subsets of S” or the stable shape category & hy of subcompacta of S™

We prove that there exists an isomorphism Dy: PSP hy — Fwly such that Pu(X) = S™NX.
If we limit ourselves to movable compacta, then &P w(; can be replaced by a suitable full subcategory
of &. These facts generalize the classical Spanicr-Whitehead duality.

Applications to the ordinary shape theory are also given. In particular, if 1 < k< » and X C S™is
an approximatively 1-connected continuum, then Sh(X) = Sh(S%) iff S™\X and S™S¥ are iso-
morphic in .

The relationships between shape properties of closed subsets of S" and pro-
perties of their complements have been studied by many mathematicians ([Sh}).
If X, ¥ = 8" are compacta with sufficiently large codimension and X, Y satisfy some
conditions concerning the way in which they are embedded in S”, then
Sh(X) = Sh(Y) iff S™\X and S"™\Y are homeomorphic ([Sh]). In the case when
1#k<nz5and ¥ =S¥ (see [R]), or more generally, ¥ is an S*like continuum
(see [V]), the assumption concerning the codimension of X and Y may be eliminated.

We begin with examples. They will illustrate and motivate some of the problems
which will be discussed here.

The Alexander duality theorem states that the Cech cohomology groups (which
belong to the most important invariants of the shape theory) of a closed subset X
of S" are uniquely determinated by the topological (homotopical) type of S"™\X.
Since the second suspension X*(X) of a compactum X '@ is an approximatively
1-connected continuum, Fd(Z*(X)) = Fd(Z*(Y)) if X and ¥ are subcontinua of "
with homotopically -equivalent complements ([N], p. 35).

Similarly, if 2Z*(X)e FANR and S™.X is homotopically equivalent to
S"™\Y [G-L], then 2?(Y) e FANR.

On the other hand, if S®\K is a 3-cube with a knotted channel joining two
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opposite 2-dimensional faces, then Fd(K) = 2 and S3\K is homeomorphic to
S3SL

In the last section we construct also a movable continuum X < S3 and a non-
movable continuum Y < S* with homeomorphic complements.

With these facts in mind we are naturally facing the problem of finding appro-
priate apparatus for. distinguishing shape properties () such that X e (@) iff S™\X
is homeomorphic to S™\Y (or S"\X is homotopy equivalent to $"\Y) and Ye (),
where X and Y are arbitrary compacta lying in S™.

We consider the categories &%h, and $w0, of all compacta lying in S" and
their complements with morphisms which are (respectively) the direct limit of
sequences

FFh(X, ¥) = m{Sh(X, V) > Sh(Z(X), (V) > Sh(Z2(X), 3*(V)) —..}
and

Pwo,U, V) ={U,V}, = i {{U, V], -
- [E), 2], ~ [Z3U), 22 (M), = -}

under iterated suspensions, where [X, Y], denotes the set of all weak homotopy
classes from X to ¥ ([Sw] p. 162).

Replacing in the second formula the sets of weak homotopy classes by the sets
of homotopy classes, one gets the stable homotopy category.

We say that compacta X, ¥ < S" have the same stable shape and we write
SSh(X) = SSh(Y) iff they are isomorphic in the stable shape category S Fh,.
This relation is weaker than the relation of the equality of shapes. All invariants of
the shape theory are invariants of the stable shape theory.

Analogously, the relation of stable weak homotopy equivalence is weaker than
the relation of homotopy equivalence and all invariants of the weak stable homotopy
theory are invariants of the homotopy theory.

We prove that there is an isomorphism 2, ¥&h, - Fw0, such that
2,(X) = S"™\X.

We also prove that the full subcategory of &h, whose objects are movable
compacta is isomorphic to the stable homotopy category of their complements.

These results generalize the classical Spanier-Whitehead duality theorem
([S-W1) and correspond to the second Chapman theorem ([B,] p. 314, [M~S] p. 262,
[Sh] p. 164) concerning the existence of a category isomorphism of the shape category
of compact Z-sets in Q onto the category of their complements.

From the main theorems it follows that SSh(X) = SSh(Y) iff S"\X and S"\Y
are stably homotopically equivalent. Clearly, if shape property (x) is an invariant
of the stable shape theory and X, ¥ =S are compacta with homotopically equi-
valent complements, then Xe (o) iff Ye ().

For example, movability is not an invariant of the stable shape theory, but
having a movable k-fold suspension for almost all & is an invariant of this theory.
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) tlThn; pap.er [Iv;lIi.anld tl(lle last chapter of [D-P] are devoted to the generalization
of the Spanier-Whitehead duality to the shape theory, but t i
attention on the other problems. v fe authors fix theic

Using our machinery, we also prove that Sh(X) = Sh(Y) iff S™\X is stable
hom'otopy equlvalel}t to S"™\Y, where X is an arbitrary approximatively I1-connected
continvum and Y is homeomorphic to the inverse limit of the inverse sequence
of the wedges of k-spheres with & s 1. »

. 1. Ereliminaries. The Hilbert space I2 consists of all real sequences (x, , x.
with Zxj' <co and E" consists of all points (%1, X5, ...) of I? such that x“—- i),t.‘")
k> n. It follows that E” = E™ for m > n. The point (xq, x Xy, 0,..) ;f—E" i
be denoted by (xy, x;, ..., x,). BT v

The geometric n-sphere in E"** consisting of all poi 3 ‘ 1
With X745+ 452, = 1, is homeomorph%c to ttxx):l::ts G xusi) €8

S" = {(xy, Xas ey X ) € BV [l 1%+ [y | = 13

By th-e.s%lspension Z(X) of a subset X of $" we understand the union of al
segments joining points of X with the poles (0,0, ..., 0, 1) = g and ©,0 0, ~1)
=b of S"** and the set {a, b}. In particular, X (%) =’{a,b}‘ e

If X is a compactum then this definition is equivalent to the standard one
If X< S" is an absolute neighborhood retract for metric spaces and x; € X, then-
(Z(X), xo) is homotopically equivalent to the reduced suspension gf ()’( Xo)

One can also define 3*(X), 2(f) and I¥(f) for every k> 1 and every ’m;p.
St X — Y in a way analogous to the classical case.

Suppose that 4 = S" and 0 <r< 1. Then we denote by Z(A4,r) the union of
Z(4) and the set consisting of all points (x,, %y, ..., X,4,) € :S'”“\E (4) with
[%u4a2]>r. By S(4,r) we denote the closure of 3(d4, r). '

We shall need a lemma.

(1.1) LeMMA. Suppose that X< Y= S" are compacta, xo€ X and y, e S"\Y.
Then for 0<r<s<1 we have commutative diagrams ’ '

(S“\\LY’ Yo) (S"“\\LZ(Y): Yo)  (Z(X), x0) = (S(X, 8), xo)
| -
(S™N\X, py) = (SI"I.‘I\E(X)a J’o) (Z(Y), xu) g (S(Ya ", xo)

@ (SN 10.20) = EENT, 9, 3) = (555 Vo
4

(Z(S™NX), yo) = (E(S™NY, 1), po) — (S"FIN\X, yo)

where all arrows are homotopy equivalences induced by the inclusions.

' Pro?f. In order to prove Lemma. (1.1) it suffices to observe that inclusions induce
isomorphisms of homotopy groups.

‘ SUPPOSGk that X, Y« »f" are absolute neighborhood retracts for metric spaces
and f, g: (2(X), x0) = (2(¥), y), where k2, x,€ X and y, € Y.

4 — Fundamenta Mathematicae 128, 1
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Consider the map h: (Z(X), xo) — (2(Y), y,) defined by the formula

ROy, Xop s Xuprs) =
0 (2 5 eevs Dy pps 2,401 +1) for xe Z{X) with —1 <%, 541 <%
—2X X 4p = 2Xy g1 X,
af| 1 Xntktt nteXuskit 2/\”“14_1
T Xy T Xpapes

for x e (X)) with —4 <Xy, <0

X044 Xt k1

> 2xn+k+l+1>

for x e Z5X) with 0<%, 404y

<
for xe ZHX) with 1 < Nprrrt S

2X) Xyapors
og ,
T= X401

og (2xy, .

T=Xy et

E
s 23,45 2Xape 1 — 1) !

where o (Z5(¥), 3,) ~ (Z(¥), 3o) s a map such that « o idy and «(Z*({y,})
= {»o}-

One can prove that the homotopy class of / depends only on the homotopy
classes of f and g. The addition defined by [ f1+1g] = [h] makes the set
[(Z5(X), x0)(Z*(Y), yo)] an abelian group:

If X, Ye ARN() are simply connected, then the forgetful functor obtained
by suppressing base points induces an isomorphism of the set of all pointed homotopy
classes [(X, xo), (Y, yy)] onto the set [X, Y] of all free homotopy classes ([Sp]
p. 383).

Therefore we can identify [(Z*(X), x), (5(¥). po)] with [Z(X), Z*(Y)] for
k=2

The operation ¥ induces a function of [X, Y] into [Z(X), Z(Y)]. 1. It will also be
denoted by Z. If k2, then Z: [Z¥(X), Z(¥)] - [Z*F1(X), Z¥*{(Y)] is a homo-
morphism.

The suspension category & was introduced by E. H. Spanier and J. H. C. White-
head in 1953. We consider the full subcategory &, of & whose objects are X = S"
with X e ANR(M). The set of morphisms &,(X, ¥) = {X, Y} is the direct limit
of the sequence '

[x, Y] [Z(X) ):(Y)] EXX), 5% Y)] > ...

&, is a preadditive category (this means that {X, ¥} is an abelian group, the
operation {¥,Z}x{X, Y} - {X,Z} of composition is biadditive and &, has
zero objects). If f1 Z¥(X) — Z¥(Y) is a map, then {f} will denote the corresponding
element of {X, Y}. Elements of {X, Y} are called stable homotopy classes.

The following categories are also used in this paper:

H'Pol, — the category of subpolyhedra of $”" and homotopy classes,
& Pol, —the category of subpolyhedra of S" and stable homotopy classes,
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HEPol, — the category of complements of subpolyhedra of S" and homotopy
classes,

FEPol, — the category of complements of subpolyhedra of S” and stable homotopy
classes.

2. Stable categories of direct and inverse systems. If € is a category, we denote
by Inj% ([E-H] p. 8) the category (Pro®)° of direct systems over €. If X = {X,, ", A}
and Y = {¥;. ¢}, B} are objects of Inj¥, then

Inje(X.Y) = lim im% (X,, ¥p).
« 4§

Consider for every compactum X <= S” (or 1espectively, for every open subset G
of ", the inverse systems J(X) = {X,,[ix], A} € ObPro#%¥Pol, and & (X)
= {X,, {i¥}, A} € ObPro¥@Pol, (the direct systems ' 3£,(G) = {G,, [jil, 4}
€ ObInjs#Pol, and &,(G) = {G,, {jZ'}, A} € ObInj&¥Pol,), where A is the family
of all neighborhoods X, € Oba#¥Pol, = ObF%Pol, of X (4 is the family of all
compact polyhedra G, = G) ordered by inclusion and i Xy = X, (& G~ Gy
are inclusions for all o, o' with a <o)

If X, ¥ = S" are compacta then there is a canonical bijection of the set of all
shape morphisms $A(X, ¥) onto the set Pros#@Pol (# (X), #,(T)).

A. Dold and D. Puppe ([D-P] p. 100) and H. W. Henn ([He] p. 331) have
introduced the stable shape category & h. FPh is a preabelian category. If
X, Yo §" are compacta then the group

ProséPol (& (X), #(Y)) = lim IiTm,{X,,, Yp)l 2 PSR(X, Y.

Yu. T. Lisica has introduced ([L] p. 300) the coshape category €o%h and the
coshape functor from the homotopy category to the coshape category. If U and V'
are open subsets of S” then there is a canonical bijection of the set oS h(U, V)
onto the set Inj#Pol (#,(UY, #,(V)).

We can define in the same way as before the stable coshape category FCoFh,
which is a preabelian category. If U and ¥ are open subsets of S, then the abelian
group ¥%oSh(U, V) is canonically isomorphic to the group

Inj&Pol (& (U), (V) -

Using the fact that cofinal systems in Pro% and Inj# are isomorphic,
Lemma (1.1), the suspension theorem ([Sp] p. 458) and the theorem which states
that Fd(X) < n—1 for every closed subset of S”, one can prove the following pro-
positions.

(2.1) ProPOSITION. Suppose that X and Y are subcompacta of S". Then
Fh(ZHX), ZHY)) is an abelian group for k=2 and SSh(X, Y) is canonically
isomorphic to S h(Z*(X), Z*(Y)), where k »max(2, n) for nonempty X and Y and
kzmax (3, n) in the general case.

o
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(2.2) PROPOSITION. Suppose that U and V are open subsets of S". Then.
Boh(Z(U), Z5(V)) is an abelian group for k22 and FEoSh(U, V) is canonically
isomorphic to GoPh(2XU), ZX(V)) for k= max(2,n) for nonempty U and V and
k> max(3,n) in the general case.

3, Stable weak category of open subsets of S". Two maps f, g: X — Y are called
weakly homotopic (notation: f = g) iff for any finite CW complex Z and any map
w

h: Z - X we have fh = gh. The relation “=~" is an equivalence relation and we
denote the set of all weak homotopy classes from X to ¥ by [X, ¥],. The class
represented by f: X — Y is denoted by {f},.

H#w0, denotes the category whose objects are open subsets of S" and whose
morphisms are weak homotopy classes.

Using Lemma (1.1), one can prove that if U is an open subset of S" then there
exists an open subset ¥2X(U) of S"*! such that the inclusion i: ZUYy—>Vis
a homotopy equivalence. In view of the last fact, for every map f: P — S¥(U) where P
is a finite CW complex, there exist a finite polyhedron Q = Uandamap g: P — sKU)
with g(P) = Z(Q) and f = g. It follows that X induces a function of [X, Y], into
[Z(X), Z(Y)],, if X = Z¥U) and Y = Z(¥), where U is an open subset of S™
and ¥ is an open subset of S". Using the formula (1.1) one can also equip
[Z¥(x), £(Y)] with a natural structure of an abelian group for k> 2. The direct
limit {X, Y}, of the sequence

[X, Y], = [Z(X0), Z(D], = [Z(X). 2], =

is an abelian group. Elements of {X, Y}, are called stable weak homotopy classes.

If f: 3%X) — Z(Y) is a map, {f}, will denote the corresponding element of

{X, Y},,, ¥w0, denotes the category whose objects are open subsets of $" and

whose morphisms are stable weak homotopy classes. w0, is a preadditive category.
We now can establish the main result of this section.

(3.1) PrOPOSITION. There are a category isomorphism o, of the coshape category
of open subsets of S” onto the weak homotopy category of open subsets of S" and an
additive category isomorphism %, of the stable coshape category of open subsets of S*
onto the stable weak homotopy category of open subsets of S" such that ,(U)
= B(U) = U for every open subset U of S", the value of the coshape morphism
induced by a map f under of, is equal to [ f1,, and the value of the stable coshape mor-
phism induced by f under B, is equal to {f},.

We shall use the following lemma

(3.2) LemMa. Suppose that X is a compact polyhedron and ¥, < Y, = Yy < ..

0

is a sequence of compact subpolyhedra of S™ such that \) Y, = U is an open subset
k=1

of S™. Then [X, U] and {X, U} are respectively the direct limits of the sequences
{IX, V1> [X, Yol » ..} and {{X, ¥,} = {X, ¥;} = .}
We omit the proof of Lemma (3.2), which is straightforward.
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Proof of Proposition (3.1). Let us show bow &/, and #, assign morphisms.

Suppose that U and V are open subsets of S”, X,cX,c X;<.. and
Y, c Y, ¢ Y; ... are sequences of compact polyhedra in S” such that |J X, = U
and |J Y, = V. Since cofinal systems are isomorphic in Inj%¥, we may identify
CoSh(U, V) (or respectively -SCoSh(U, V)) with lim lim[X,, ¥,] (or with
ljm]-im{-Xm: Yn}) "o

m n
It follows from lemma (3.2) that every coshape morphism f from U to ¥ is
represented by a sequence f,: X, — V satisfying

o2 fil X, form=1,2,. and kzm.

Let g, = fi: X; — V. Suppose that for every m = 1,2, ..., &k we have a map
gmt X, — V such that

(33) Gu-1 = glem—-i and f;u =Ggm for m<k.

Using the homotopy extension theorem we can construct amap gyt 1: Xpsy = V
which satisfies (3.3) for m<k+1.

1t follows that every coshape morphism f from U to V is represented by a se-
quence g,,: X,, — V which satisfies (3.3) for every m =1, 2, ...

Setting

g(x) = g,(x) for xeX,,

we get a map g: U — V. The weak homotopy class of g is the value of &, on f.

Using (2.2), one can define #,(f) for every fe $%aFh(U, V).

(3.4) COROLLARY. Suppose that U and V are open subsets of S". Then {U, V},
is canonically isomorphic with [Z%(U), Z*(V)], for k= max(2,n) for nonempty U
and V and k =max (3, n) in the general case.

4. The main theorems. We have the following theorem.

(4.1) Tugorem. There is a contravariant additive category isomorphism
D, PP, > Fw0, of the stable shape category of compacta lying in S" onto the
stable weal homotopy category w0, of all open subsets of S" such that 2,(X)
= S"\X. Moreover, if X, Y=X are subcompacta of S", then D,(i) = {i}ws where
it X Y and j: S™\Y = S™\X are respectively the stable shape morphism induced
by the inclusion i: X — Y and the inclusion j: S"NY — S"™\X.

Proof. E. H. Spanier and J. H. C. Whitehead ([S~W] p. 63) have proved that
there exists an additive category isomorphism d,: &%Pol, — FEPol, which satisfies
the following conditions

4.2) d(X) = S"™\X,

@4.3) d,({(i}) = {j}. where i+ X - ¥ and j: S™\Y > S\X are inclusions.

Suppose that X and ¥ are subcompacta of S” and &,(X) = {X,, {i¥}, 4},
FAY) = {¥;, {il}, B} e ObProg¥Pol, (we use the notation of Section 2).
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Then &,(S'\X) = {U,, {j¥ ;, A}, PASNY) = {V;. {j§}, B}, where ji: U,
= S"™X, = S"\X,, = U, and ji: V= S™\Y; > §"\Y¥p = Vp are inclusions.

Since d,: {X,, ¥;} = {V}, U,} is an isomorphism, using (4.2) and (4.3) we
can extend 4, to an isomorphism 2, of the abelian group lim lim {X,, ¥;}
= Pro¥@Pol,(&(X), ¥,(¥)) onto the abelian group L

limlim {7y, Uy} = Tni&Pol,(#,\7), £(S"™X)).
# o

Settin,
¢ Du(X) = S™X,

we can also extend d, to an additive isomorphism of the stable shape category of
compact subsets of S" onto the stable coshape category of their complements. The
composition 9, = B,D,: LFh, - Fwd, is an additive functor, which satisfies
the required conditions (see Proposition (3.1)).

The proof is finished.

(4.4) Remark. If X and Y are closed subsets of §” and o1 X — Y is a stable
shape morphism, then 2,(«) is uniquely determined by the properties of &, and (L.1).

Indeed, for every k > max(2, n) and for sufficiently large m>n+k the shape
morphism f: Z*(X) — Z*(¥) which represents « is the composition gg, ... g, of
shape morphism g;: X; = X;, =8™, i=1,2,...,r, such that X, = Z"(X),
X, 4, = Z¥(¥) and g, is induced by inclusion map or g; is a shape equivalence and gt
is induced by inclusion for i = 1,2, ...,r (see [D-S] p. 54).

(4.5) COROLLARY. Supposec that X and Y are compact subsets of S™. Then the
Sollowing conditions are equivalent

(a) Fh(X) = PLh(Y);

(b) Fh(EHX) = LR(EHY)) for some k> max(2,n);

(€) Z¥(S"\X) and T¥(S™\Y) are homotopy equivalent for some k zmax(2,n);

(d) S™\X and S"\Y have the same stable homotopy type.

Proof. From the suspension theorem it follows that (¢) and (d) are equivalent.

From (4.1) it follows that (a) is satisfied iff S™\X and S"\ Y have the same stable
weak homotopy type.

The space S™.X has the same stable weak homotopy type as S\ Y iff )J"(S "\X)
and Zk(S"\_ Y) have the same weak homotopy type for every k = max(2, n).

The Whitehead theorem implies that THS"™X) & Z¥S™\Y) if and only if
they have the same weak homotopy type.
~'From (2.1) we deduce that (b) and (a) are equivalent. The proof is finished.

5, The main theorems in the movable case. Let us prove
(5.1) PROPOSITION. Suppose that U and V are open subsets of S" and
2]
X, € X, < ... is a sequence of compact polyhedra with \) X, = V. Then we have a short
exact sequence =1

0 - lim* {Z(Xy), U} = {v,u}-{v, U}, 0.
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Proof. Let us choose a, € U. For every pointed CW complex X and every
n=0,+1, £2, +3,... we define

(5-2) B(X) = lim{[X, S"U)] -
where S is the reduced suspension.

Iff: X — Yis a map which preserves the base points, then #"( f): #'(¥) - &"(X)
is a homomorphism defined by the condition

(5.3) 1"(f)(x) is represented by a map gS*(f), where g: S¥) —
represents o € h"(Y).

1t is clear that for every n = 0, +1, +2, ... we have a natural transformation
E": B"*1S — B such that E*(X): A""*(S(X)) —» A*(X) is an isomorphism.

If f: X — Yis a map which preserves the base points and j: ¥ — T} is an in-
clusion, where T} is the reduced mapping cone of £, then the sequence

(5.4) [S*(T)), S¥E(U)] ~ [SH(Y), S*H(U)] ~ [S¥(X), S*F/(U)] where
kzdimX, dimY, is exact ([W] p. 134).

Since (5.4) is isomorphic with the sequence 4"(Ty) — h"(Y) — h"(X), we infer
that the family {/#"} of functors defined by (5.2) and (5.3) and the family TE*} of
natural transformations form an extraordinary cohomology theory on the category
of finite dimensional CW complexes.

Since the injections #"(X) = [S¥(X), S™HH(UN] - [S*¥(X), SH¥H (D= (XD
represent the group /"(X) as a direct product for every finite dimensional CW com-
plex X = \/ X, with dimX<k ([Sp] p. 407 and [Sw] p. 152), our cohomology

xed
theory is additive.
For every n=0, 1, £2, ...
[Sw] p. 127)

[S(X), S™ U] = [S7(X), "X U] .}

S"+k(U)

we have a short exact sequence ([W] p. 605,

0 — Wm*A*1(Y,) = #'(Y) —» limA"(¥) - 0

k
if Yis a finite dlmensxonal CW complex and ¥, < ¥> ... are subcomplexes of ¥

such that ¥ = U Y,.
n=1

In particular, the sequence
0 — lim*A=*(X,) = A(¥) ~ limh°(X) - O
is exact.
We known that A%(V) = {V, U}, h™1(X,) = {Z(X,), U}. Using (3.2); we get

{V U}w = L.lll{Xk? U}

The proof is finished.

The next example shows that there are open subsets U and V of S3 such that
{U, v}, and {U, ¥V} are not isomorphic.

(5.5) EXAMPLE, Suppose that p = (py, P2, ...) is a sequence of natural numbers
such that p,=2 for n = 1,2, .. Then {S*\S(p), S>\S°},, = 0 and

{S3\S(m, §3\8% #0,

where S(p) is a solenoid generated by the sequence p.
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Let A, > A4,> ... be a sequence of open subsets of $° satisfying the conditions
=

(5.6) 4, = S*, B, = §3\4, is a finite subpolyhedron of $° and S(p) = N 4,;
. n=1

(3.7) for every n = 1, 2, ... we can select a generator e, of the group H;(4,;2Z)
such that (7,41)4(€ys1) = Ppey, Where i,y A,.; = 4, is an inclusion.

Then B, has the stable homotopy type of S* and X (B,) has the stable homotopy
type of S2. :

The group {Z(By),S*\S,} = {S?,5?} and the group Z are isomorphic.

The sequence {Z(B,), S°\S°} is isomorphic to the sequence (see (5.6) and (5.7))

J T
Zezeze d=4A

where f,(z) = p,z for every zeZ and n= 1,2, ...

Then (M-S] p. 173 and p. 174) lim* 4 # 0.

Since {B, S3\8,} & {§*, 52} = 0and {S*\S(p), S\$°},, = lim{B,, S3\S°}
(see (3.2)), we infer that 0 = {S3\S(p), S3\S§°} = lim' 4.

The next theorem is a consequence of Proposition (5.1). )

(5.8) TeEOREM. Suppose that X is a subcompactum of S” and X*(X) is movable
Sor some k. Then {S™\X, U} = {S™\X, U},, for every open subset U of S".

Proof. If Z*(X) is movable, then there exists a sequence X; = X, = ... of finite
subpolyhedra of S™ such that the inverse sequence of the complements of its members

is movable in & and S™\X = () X,. Applying the Spanier—Whit_téhead functor
n=1 )

([S-W] p. 63) and using the properties of the functor Hom(Hom(X) = {X, U}
for every X), we get that the sequence {Z(X;), U} is movable and

Him? {Z(X,), U} = 0.

It follows (see Proposition (5.1)) that {S"™\X, U} & {S"\X, U},,. The proof is
finished.

6. Applications. The following proposition will be very useful.

(6.1) PROPOSITION. Suppose that X, Y < S" are approximatively m-connected
continua, where m > 1 and FA(X) < 2m. Then the following conditions are equivalent

() Sh(X) = Sh(¥);

(b) S"™\X and S™\Y are stable homotopy equivalent.

The proof of Proposition (6.1) is based on the lemma:

(6.2) LeMMA. Suppose that X, Y are approximatively m-connected continua with
Fd(X), FA(Y) <2m, where m= 1. Then the following conditions are equivalent:

(c) SSh(X) = SSh(Y);

(d) Sh(X) = Sh(Y).

Proof. It is clear that (d) implies (c).

Suppose that () is satisfied. There exist inverse sequences X = {X;, pf*1} and
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Y= {Y.qt""} of m-connected polyhedra with dimension <2m ([M-S] p. 137)
such that Sh(X) = Sh(limX) and Sh(Y) = Sh(limY).
From the suspension theorem it follows that

(X, ¥l = (Y, ¥}, [Ye, Xl =2 {7, X3}, [X, Xl = {X,, X}
and

Y, Yl =2 {Y,, ¥} fork=1,2,..and/=1,2,..

Hence Sh(X) = Sh(¥).

Proof of Proposition (6.1). Tt follows from the Alexander duality theorem
that H'(X; Z) = H(Y; Z) for n > 1. Therefore ([N] p. 35) Fd(X) = Fd(Y) < 2m.
The proof is finished.

By #%(m) we denote the family of all wedges of m-dimensional spheres. We
say that a continuum X is £ (m)-like iff X is homeomorphic to the inverse limit
of members of 25 (m).

(6.3) PROPOSITION. Let 2<m<n and S">Y be a B (m)-like continuum.
If X< S" is an approximatively 1-connected continuum, then the Sfollowing conditions
are equivalent:

(a) Sh(X) = Sh(Y); i

(b) H(S™\X) = H(S"\Y) for r = 0,1,2, ..., n.

We need the lemma.

(6.4) LemMA. If X is an approximatively 1-connected continuum and H "X;6) =0
Sor every abelian group G and for every 1<r<m, then X is approximatively
m-connected.

Proof. Let xoe X and (X, x,) = ]@{(Xk,xk),p’,ﬁ“}, where X, is a simply
connected polyhedron. Using Proposition (1.5) of [N-S] we infer that for every k
there exists />k and a map g ~ p} such that ¢(X{™) = {x,}.

This completes the proof of Lemma (6.4).

Proof of Proposition (6.3). It follows from the Alexander duality theorem
that H'(X; G) = H'(Y; G) forevery r= 1, H'(X; G) = 0 = H'(Y; G) for 1 <r % m
and H,(S"\X;G) = 0 = H(S"\Y; G) for 1<r # n—m—1 in the case when (a)
or (b) is satisfied.

By Lemma (6.4) X is approximatively (m— 1)-connected if (a) or (b) is satisfied.

(a) = (b) is obvious.

(b) => (a). The spaces ZX(S™\X) = P and Q = F*(S"\Y) are simply connected
absolute neighborhood retracts for metric spaces. We know ([Sw] p. 241) that
HYP; G) = Hom(H(P; Z); G), HQ; G) = Hom(H(Q;Z);G) for k>1 and
HYP;G) = 0= HQ; G) for 1<k # n—m—+1 = I

Hence

P; ] & H(P; 7,(0)) = Hom(H(P); n(Q)) = Hom(H|(P; Z); H(Q; Z).
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Since Hy(P;Z) = H(Q; Z), we infer that there is a map f: P — @ which induces
an isomorphism fi: H(P; Z) - H(Q; Z). .
The Whitehead theorem implies that f is a homotopy equivalence.
It follows that S™\X and S™.Y are stable homotopy equivalent and (see
Proposition (6.1)) Sh(X) = Sh(Y). The proof of Proposition (6.3) is finished.

7. Some examples. Let us prove the following

(7.1) TuroreM. There are a movable continuum X < S and a nonmovable con-
tinuum Y < 83 such that S3\X and S*\Y are homeomorphic.

Proof. It suffices to construct a movable continuum X < E* and a nonmovable
continuum ¥ < E? such that E*\X and E3\Y are homeomorphic.

Let us set
1 1
wopll-g) frk=12.adn=12,..
N

gy = |

m for k=0and n=1,2,..

| 4n(n

n «5-—--—71(”“5 =y, <y < O3, < .. <lima, = a, forn=1,2, ..

We denote by B,,, where n = 1,2, ... and k =0, 1, 2, ..., the open disc lying

1 .
in £2 and bounded by the circle X, , = E* with the centre { -, 0) and the radius a,;.
n

Let D, < E? denote the set consisting of all points (x;, x,) with |x;| < x, €2

in the case where k = 0 and the set of all points (x;, x,) such that

k 1.
(Q—lgﬁ)lle\xl 2+I; if k=1,2,..

n

Setting W, = Do\l B, and W, = DU B,, we get plane continua
k=1 k=1

0
WinsWym W= .. Wy = W,.
Forn = 0,1, 2, ..., we denote by X, the boundary in E® of the set consisting

of all points (x;, X,, x3) € E* such that (x,, x,,0) e W, and |x;| <x, if n = 0 and
nlxs <+ Dx, ifn=1,2,..
By Y, we denote the set consisting of all points (x, , x5, x3) with (x;, —X,,X3)e X,

and by 4 and B we denote, respectively, the bounded components of E*\X, and
E3\Y,.

X, and Y, are homeomorphic to the locally connected nonmovable subcon-
tinuum of E3 constructed by K. Borsuk m [B,].

Then X = U X,uY¥Y,udand Y= U X, U ¥, U B are subcontinua of E?

»=0 n=0
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with homeomorphic complements. It is clear that ¥ is movable. Since
Sh(X) = Sh(Y,), we infer that X is nonmovable. This completes the proof.

(7.2) Remark. The continua X and Y constructed in the proof of Theorem (7.1)
separate S3. D. R. Mc Millan, Jr., gave in [M] an example of a locally connected
nonmovable continuum M, < S such that S3\M, is connected. By an easy modi-
fication of this example one can obtain a movable continuum M, = S° such that
S3\M, is homeomorphic to S*\M,.

Added in proof. When the present note was prepared the author did not know the
results of E. Lima obtained in 1958 and presented in the paper The Spanier-Whitehead
duality in new homotopy categories, Summa Bras. Mat. 4 (1959), 91-148. E. Lima introduced
independently the notion of procategory. His construction leads to the theories of shape and
coshape (inverse system approach).

The above mantioned paper contains also Thzorem (4.1).
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Révétements étales
par

Gabriel Picavet (Aubiére)

Abstract. An etale covering of a ring A is a finite etale morphism 4 — B. A morphism of
rings 4 — B is said to be reduced in the case that each change of base A — A" gives a reduced
ring B® 4 A’. M. Lazarus has proved the following result: Let A be a Noetherian ring and let there
be a flat morphism 4 — A"; then this morphism is reduced if and only if integral closure is preserv-
ed in the change of base 4 — 4’. We change the Noetherian hypothesis to a finiteness hypothesis
on the morphism 4 — 4’. With a mild hypothesis, we obtain that the morphism is reduced if and
only if it is an etale covering.

1. Imtroduction, M. Lazarus a montré, dans deux articles, [5] [6], les résultats
suivants:

DerFmNiTION 1. Soit f: 4 — B un morphisme d’anneaux. Le morphisme f est
dit réduit si pour tout morphisme 4 — A’, ol A’ est un anneau réduit, I'anneau
B®, A’ est réduit.

On prendra garde que cette définition n’est pas identique & celle des Eléments
de Géométrie Algébrigue de A. Grothendieck et J. Dieudonné,

ProrositioN 2 [6). Soit f: A — B un morphisme.

(a) Si le morphisme f est réduit et Pamneau A réduit, le morphisme f
est plat.

(b) Si le morphisme f conserve la fermeture intégrale dans le changement de base
qu'il définit, alors f est un morphisme réduit.

ProvosiTioN 3 [5]. Soit f: A — A’ un morphisme d’anneaux, olt A est un
anneau Nocthérien. Les propriétés suivantes sont équivalentes:

(a) Le morphisme f est plat, & fibres géométriquement véduites.

(b) Le morphisme f est plat et réduit.

(c) Le morphisme f conserve la fermeture intégrale dans le changement de base
qu'il définit. :
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