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On the functors Ext' (E, F) for Fréchet spaces
by

DIETMAR VOGT (Wuppertal)

Abstract, Necessary as well as sufficient conditions are given for those pairs (E, F) of
Fréchet spaces for which every sequence 0 -» F ~» G - E - 0 splits or, equivalently, for which
Ext'(E, F) = 0. This is based on a systematic study of the derived functors Ext' (E;+). 1t is used
to determine for certain Fy (resp. Eq), which are important for applications, the classes of all
Fréchet spaces E (resp. F) such that Ext'(E, Fy) =0 (resp. Ext!(E,, F) = 0.

In the present article we study the derived functors Ext'(E,-) of the
functors L(E,'), E fixed, acting from the category of Fréchel spaces to the
category of linear spaces. In particular, we give necessary as well as sufficient
conditions for Ext!(E, F) = 0, which means that every exact sequence 0 — F
—+ G — E — 0 splits.

The fact that this is true in various nontrivial cases (e.g. E = F = (s),
C®[0, 1], H(C) etc. or, more generally, Ec(DN), Fe(2), one of them
nuclear) is one of the basic tools in the structure theory of nuclear Fréchet
spaces as developed for power series spaces of infinite type in [31], [+2], [43]
(cf. [32]) and for L,(x, + x)-spaces in [1]. In particular, the (DN)-, (Q)-case
or, equivalently, the case where E is a subspace of (s} and F a quotient of (s),
led also to various applications to analytical problems (cf. [4], [15], [16],
[28], [37], [38]). Other related work can be found in [12], [22], [30].

In § | we give a systematic analysis of the functor Ext!(E,) following to
some extent Palamodov [21], § 9. We use it in §2 (o prove a sufficient
condition (S,;) and a necessary condition (S,) for Ext!(E, F) = 0. They are
related to the conditions of Palamodov [20], [21] and Retakh [24] for the
vanishing of the first derived functor of the projective limit functor. If one of
the spaces E or F is either nuclear or a K&the space (of /- or A%®:lype
respectively), then conditions (S,) and (S;) which are set inclusions between
balls in spaces of linear operators can be turned into the (dual) conditions
(S¥) and (S¥) (see § 3). These are inequalities and therefore accessible for
calculations, Condition (S}) is essentially the same as the condition (S)
defined by Apiola ([1], Def. 1.1), who proved sufficiency if one of the spaces
is a Kothe space and certain assumptions concerning nuclearity and
existence of continuous norms are satisfied. If E and F are both Kéthe
spaces, then (S¥) is necessary and sufficient for Ext!(E, F) =0 (see [14]).
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Conditions (S¥) and (S¥) are used to derive complete characterizations of
certain acyclicity classes. More precisely: We determine for fixed Fy (resp. Eo)
the class of all Fréchet spaces E (resp. F) such that Ext'(E, Fo) =0 (resp.
Ext! (E,, F) = 0). In § 4 this is done for (shift-) stable power series spaces E,
and F, and in §5 for Fréchet spaces E,, F, which satisfy certain
assumptions which are chosen so as to be fulfilled for many of the Fréchet
spaces of real or complex analytic functions occurring in analysis. For

_instance, they are fulfilled for the spaces of zero solutions of elliptic partial
differential operators with constant coefficients, for the space of all
holomorphic functions on a Stein manifold and for the ideals associated to
analytic varieties (always in the role of F,, which is the interesting case).
These examples are treated in § 7 (cf. [37], [38]). In.all these cases the
acyclicity classes can be described in terms of the invariants (DN) and (Q)
from the structure theory of power series spaces and the invariant (£3), which
occurs also in [35].

In § 6 it is shown that for an exact sequence 0 » F -G % H— 0 of
Fréchet spaces, without further assumptions, condition (Q) for F implies
solvability of the equation g(g).= h with polynomial bounds, (©) for F and
(DN) for H imply solvability with linear bounds (by a linear operator if F is
locally injective or H is locally projective).

Notation. We use the common terminology on locally convex spaces (see
eg. [10], [13], [26]). For nuclear spaces and power series spaces see [23]
and [6], for concepts from homological algebra see [21] and [19].
For an infinite matrix 4 = (a;)jxeny With 0 < a;4 < @iy, SUP ;>0
k

for all j and k, we define the Kothe sequence spaces
AA) = {x = (x1, %z, ..): [IXlly =Y |}l @) < + o0 for all k)
7

A2 (A)={x = (x1, X3, ..} [Ixlls = suplxj a;, < +oo for all k}.
' j

Equipped with their respective seminorms || |y, ke N, they are Fréchet
“spaces. They coincide iff one of them is (both are) nuclear.

If 4 has the form a;, = g;’, where a is a sequence with 0 < o) < o4y —
+00 and 0 <@, <@4y—r, re{l, +oo}, then 1(4) (resp. A*(4)) is called
power series space of finite type for r = 1, of infinite type for r = +oc0 and
denoted by 4, (x) (vesp. 4,°(2)). In the nuclear case, ie. limsup(log n)/a, =0

n

for r =1, limsup(log n)fa, < +00 for r= +ow, A,(x) and A®(x) coincide.

We put (s) = A(e) with o; = log j.

.A locally convex space E is called quasinormable if for every
equicontinuous set A < E’ there exists a neighbourhood V of zero in E such
that on A the strong topology B(E', E) and the (norm-) topology of uniform
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convergence on V' coincide, or equivalently (see [10], p. 176), if for every
neighbourhood U of zero in E there exists a neighbourhood V of zero such
that for every ¢ > 0 there is a bounded set M — E such that V < M +¢U.

Every Banach space and every Schwartz space is quasinormable (see
[10]; they even generate in a certain sense the class of these spaces, cf. [17]),
hence every nuclear space and every power series space is quasinormable.
Since in A®(A4) all bounded sets are of the form M = {x: |x| < A}, where
AeA®(A), 4y = 0 for all j, it can easily be proved that 1% (4) is quasinormable
iff for any ke N there is le N such that for every & > 0 there is Ae A (A), 4
>0 for all j, such that

l—- < max (/11, e—L)
4 L Gk
for all j (see {3], Prop. 3.5 and 3.2).

A Fréchet space E is called countably normed if there is a fundamental
system || |li < |lz < ... of seminorms such that the natural maps g,;: E,
- E, are injectivé, where E, = (E/ker|| |, || ll)”. There are non-countably
normed (even nuclear) Fréchet spaces with a fundamental system (|| |Ji),
consisting of norms (see [6], VI, 3; cf. [36]).

Following [2] we call a Fréchet space E a quojection if it is isomorphic
to a projective limit of a sequence of surjective operators on Banach spaces
or equivalently (see [2], Prop. 3) if for every continuous seminorm || || on E
the space E/ker|| || is a Banach space (= E relatively complete, see [27]).
Equivalent descriptions which we shall use can be found in [5] and [27], see
also [9], 1L, § 4.

An important notational convention which we will use throughout this
paper is the following: In all relations between two Fréchet spaces as (Sy),
(S2), (S%), (S%) the spaces are called E and F and these variables are always
used in the same way, namely such that the statement “E, F satisfy (S,)" etc.
corresponds to Ext!'(E, F) =0, Moreover, the indices, ie. the Iletters
ne, m, n, i, k, K, are, in connection with these conditions and if not stated
otherwise, always used in the same way.

We use the common rules for calculations with nonnegative extended

0
real numbers, in particular 0+(+ o0) =0, 0= 0, %= +oo for « > 0, ete.

1. Let & be the category of (F)-spaces with continuous linear maps as
morphisms, £ the category of linear spaces with linear maps as morphisms.
E,F,G, H,... always denote (F)-spaces, L(E, F) the linear space of
continuous linear maps from E to F. Let E be fixed.

A space I in & is called injective iff for each space E,.in &, each closed
subspace E, < E, and each ¢eL(Eo, I) there exists an extension
®cL(E,, . Examples of injective spaces are the Banach spaces I®(M),
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where M is an index set. Products of injective spaces are obviously injective.

An injective resolution of F is an exact sequence
io i1
1) O=F—Ilg—Ii—1I— ...

where I, is injective for all k. Every F e.7 has an injective resolution. The I,
can be chosen as products of spaces /°(M), and if F is a Banach space, as
spaces 1°(M) ([21], p. 23).

We denote by Ext*(E,-) the right derived functors of the functor L(E,")
acting from .7 to & (see [21]. § 8 and p. 13).

Hence we have by definition for any injective resolution (1) of F

2) Ext*(E, F) = kerji/imj,_,, k=1,2,...

where ji: L(E, I,)— L(E, I;+,) is defined by j,(A) =i, oA for AeL(E, I,);
Ext®(E, F) = L(E, F).
The functors Ext*(E,-) have the following properties:

(I) For every short exact sequence 0—F->G-» H—0 we have linear
maps 6% Ext*(E, H)— Ext**Y(E, F), k=0, 1, ... such that

0— L(E, F) 5 L(E, G) & L(E, H) & Ext'(E, F)—
— Ext!(E, G) — Ext! (E, H) % Ext?(E, F)— ...
is exact and depends functorially on the short exact sequence.

(II)  For every injective space I in .# we have Ext*(E,I)=0 for k

=1,2,...

In (I) the arrows not given by &* are derived from 1 and ¢ by the
respective functor, in particular we have 1*4 =104, ¢*B =goB. The
functors Ext*(E, ) are (up to matural equivalence) uniquely determined by (1)
and (II). Hence one could use (I) and (II) also as a definition.

A Banach space P is called projecrive if for every Banach space E,,
quotient space E, and ¢@eL(P, E;) there exists a lifting ®eL(P, E,).
Examples of projective spaces are the Banach spaces I* (M) where M is an
index set.

Projective spaces in .# would be defined in an analogous way. But the
only ones are the finite-dimensional spaces (see [8]). Hence we do not have
projective resolutions-in .# and cannot define right derived functors of the
contravariant functor L(:, F), F fixed, Nevertheless, we have (see [21], p. 49):

(I)  For every short exact sequence 0— E,— E, % E, — 0 in # we have
an exact sequence

% e
0~ L(Ey, F) = L(E,, F) = L(Eq, F) — Ext' (E,, F) — Ext! (E,, F)—

‘ — Ext!(Eq, F) — Ext*(E,, F)— ...
which depends functorially on the short exact sequence.

icm

Functors Ext' (E, F) for Fréchet spaces 167

In particular, (II) implies that Ext*(:, F) can be considered as a
contravariant functor in the first variable. We used the notation 1, 4 = A o1,
4. B=Bog.

A projective spectrum g;,: F;— F, (I > k) of Banach spaces is called a
fundamental system of Banach spaces for the (F)-space F if

(i} F = limproj F,,

(i) Vk 31> k: ¢ F is dense in ¢, F),
where g, F — F, denotes the canonical map.

A fundamental system of Banach spaces for F is given for instance by
the Banach spaces F, obtained from a fundamental system of seminorms.
There are other important cases. If F is nuclear and 1 < p < + % then F has
a fundamental system of Banach spaces isomorphic to /%, since every nuclear
map between Banach spaces factors through P (cf. [9], II, § 1, Remarque, or
[23], 111, 7.3). For p= +x these cannot be Banach spaces obtained by
completion with respect to seminorms since F is separable whereas [ is not.
We state the case p=1, +x.

Remark. If F is nuclear then it has a fundamental system of injective
Banach spaces and a fundamental system of projective Banach spaces.

Another important case is contained in the following remark, the first
part of which is easy to prove.

Remark. (1) Every Ko&the space 1(A4) has a fundamental system of
projective Banach spaces.

(2) Every quasinormable K&the space 1®°(A) has a fundamental system
of injective Banach spaces.

The second part of the above remark is contained in the following.

Remark. 1*(A4) is quasinormable if and only if the spaces

e =[x = (xy, xp, .00 Il = suplx;l gy < + o0}
J

with their identical imbeddings are a fundamental system of Banach spaces.

Proofl. We use the characterization of quasinormability described in the
notational section at the beginning of this paper.

Let 2*(A) be quasinormable. For given k we choose / according to this
characterization. Let xeA®, ||x|, = b >0, and &> 0 be given. Again using
the characterization we choose A for &/b (instead of &). We put Jo
= {j: x| < Al Jy = M\J,. So we have |x] < b/a < max (4;, &/a; ) for all j,
hence

x| < efagy
for jeJ;. We put

i for jeJo,
VIl for jeJ;.
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Then y = (y));€4i*(A4) and

[Ix—yllk = sup |x, a;x < .
jed

If on the other hand the A are a fundamental system of Banach spaces,
then we choose for given k an I > k according to the definition. Let ¢ > 0 be
given. Since x = (x)); with x; = 1/a;, for a;, >0, x; =0 otherwise, is in A, ,
we can find lei‘”( ) such that ||x—A4||; <e. Hence

Vay, < |44l +¢/a;,

for all j with a;, > 0. The inequality is trivial otherwise.

The exact sequence defined in the following lemma we call the canonical
resolution of F with respect to the given fundamental system of Banach
spaces. The following lemma is contained in [21], Th. 5.2 (or Cor. 5.1). We
give a direct proof.

1.1. LemMA. If g,4: F,— F, is a fundamental system of Banach spaces for
the space F in &, then the sequence

0—-F5T[F.> [[Fi—0
k k

is exact, where 12 x (0, x) and q: (X F(Qx+ 1k X+ 1 — Xk -
Proof. The only part to show is the surjectivity of g. We proceed in
three steps.

Case 1: g F is dense in F, for all k. Let || ||, be the norm in F,. We can
assume that |jg;, x|y < |||; for all j > k.

For y.eF,, k=1,2,... we choose inductively a sequence v,eF;,
k=1,2,,.. Put v, = 0. If v is chosen then there exists v, € Fy. such that

(Ve + 0 — Qe 1,0 U 2l < 275,

We put = Y+ U, —0i+ 14 Uk+1; then [l < 275 So we can define

X = Up— Z Qi U
J=k

The series converges in F,. An easy calculation gives

Okt 1,k Xpbg — Xy = Qk+1kuk+1“vk+uk A
for all k.
Case 2: o F is dense in QH. 1, ka+1 Jor all k. We apply the previous case

is surjective onto []G, hence ]—[Gk cimg. For y= (ykkeHFk we have
k k k

Vi = Q1 Vb 1= (@it 1.k Vw1 = Vi)

and therefore ye H G, +img =img.
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General case. We choose inductively k(v), v =1, 2, ... such that k(1) =
and gy F is dense in Qg+ 1)k Frv+ 1)+ We apply case 2 to the fundamental
system Fyy (With Quq k) and conclude that for each (Uv)vean(v) we can

find (év)vean(vi such that 7, = Qe+ 1)k &v+ 1 —&, for all v.
If yk)kean is given we find (¢,), for

k(v 1)~1
‘ Ny =Yt 2 QoY
J= kW + 1
and pul
¢ for k= k(v),
Xy = Ky+1)=1
Oty + 19,k Gy 1 — Z oy for k(v) <k <k(v+1)
j=k

with g;; = id for all j. Straightforward calculation shows that g, . 1 X1 — Xy
=y, for all k. ’

We call a space F in & E-acyclic if Ext*(E, F)=0for k=1, 2, ...

The following theorem gives a description of the linear spaces Ext*(E, F)
which we shall use in the sequel. (1) is closely related to [20], 7.1 (cf. [21], p.
51), (2) can be considered as an analogue to the Leray lemma in sheaf
cohomology. '

1.2. THEOREM. Let F = (F,), be a fundamental system of E-acyclic Banach
spaces for F. Then we have
(1) Ext*(E,F)=0 for k=2

(2 Ext'(E, F) = [[L(E, F)/B(E, F) where
k
B(E, F) = (A e[ TL(E, Fy): there exists (By EH L(E, F})
k

such that Ay = Qg+ 1.4 ©Bi+1— By for all k}.

Proof. We apply the long cohomology sequence () to the canonical
resolution, i.e. the short exact sequence from 1.1, given by the (Fy).
By taking as injective resolution for J]F, the product of injective

k
resolutions of the F, we see from (2) at the beginning of this section that
Ext"(E, [ Fi) = [T Ext"(E, F}) =0
k k

for n=1,2,... Hence we obtain
0~ L(E, F)— [ ] L(E, F,,)i: T1L(E, Fo— Ext!(E, F)—»0—
k k

— 0— Ext*(E, F)—0— ... — 0 — Ext*(E, ) > 0— ...
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(1) follows immediately. For 4 =(4,), we have g*(4) =qoA with q as
defined in 1.1. So g*(4) = (Qk+ 1.4 ©Ar+1— Ay which proves (2).
Remark. Without any assumption on E or (F;), we can conclude from
Ext!(E, F) =0 that [JL(E, F\) = B(E, F).
k

Since injective Banach spaces are E-acyclic for every E we have

1.3. CoroLLARY. If (F}); is a fundamental system ofm}ecrwe Banach spaces
for F then the assertion of 1.2 holds.

The preceding corollary is important especially if F = 1*(A) or also if F
is nuclear. Another important situation is the following.

14. LemMa. If E has a fundamental system of projective Banach spaces
then every Banach space F is E-acyclic.
Proof. F has an injective resolution

0 F oIy 1, 50— ...

of Banach spaces. Let (E,), be a fundamental system of projective Banach
spaces for E. Then every continuous linear map ¢ from E into the Banach
space kery, factors through one of the E, and can therefore be lifted to
®eL(E, I,-,). Hence Ext*(E, F) =

We call a space locally p101ecnve (injective) if it has a fundamental
system of projective (injective) Banach spaces.

1.5. CororLary. If E is locally projective (e.g. if E is nuclear or a Kothe
space’ A(A)) then the assertion of 1.2 holds for every fundamental system (Fy);.

A consequence are the following permanence properties of acyclicity
classes.

1.6. ProrosrTioN. If E is locally projective (e.g. if E is nuclear or a Kothe
space A(A)) then the class of all spaces F with Ext'(E, F) = 0 is closed under
quotients.

Proof. Assume Ext'(E, F) = 0. Let g: F - F, be a quotient map. Then
we apply the long cohomology sequence (I) to the short exact sequence 0
—+ K =kerq— F— Fy— 0 and obtain .

.. = 0=Ext'(E, F)— Ext!(E, Fo) = Ext*(E, K) = 0 =

which implies the result.
The same proof gives:

1.6 ProrosTioN. If E is arbitrary but fixed then the class of all nuclear
spaces F with Ext'(E, F) =0 is closed under quotients.

) In a completely analogous way by use of the long cohomology sequence
(ITI) one proves:

1.7. ProrosimioN. If F is locally injective (eg. if F is nuclear or a
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quasinormable Kdithe space A%(A)) then the class of all spaces E with
Ext!(E, F) = 0 is closed under subspaces.

1.7 ProrosiTioN. If F is arbitrary but fixed rhen the class of all nuclear
spaces E with Ext'(E, F) = 0 is closed under subspaces.

We finish this section with some equivalent formulations of the relation
Ext!(E, F) =0 which show the motivation of its investigation and its
relevance for applications.

1.8. TueoreM. The following are equivalent:

(1} Ext'(E. F) =

(2) For each exuact sequence 0— F — G H— 0 and gpeL(E, H), there
exists a lifting yeL(E, G), i.e. a map  with ¢ = qoy,

(3) Each exact sequence 0— F — G — E — 0 splits.

(@) For each exact sequence 0— H - G— E—0 and oeL(H, F), there
exists an extension e L(G, F), i.e. a map & with ¢ = do1.

Proof. (1)=(2) follows from the long cohomology sequence (I).
(2)=(1). Let 0—~F — 1,81, [, ... be an injective resolution of
F. We apply the assertion of (2) to 0 — F — Iy — imu, = ker; — 0. This gives
(see (2) at the beginning of this section) Ext’ (E, F) = 0.

(2)=>(3). Put H =E, ¢ =id;.

(3)=(2). Put G = {(x, y)eG xE: qx = py}. The map 7n(x, y) =y gives
an exact sequence

0~ F—>G5E~0

which splits iff ¢ has a lifting.
(3)=(4). Put G =F xG/i(px, x): xeH]. The map jx =[(x, 0], []
equivalence class, xeF, gives an exact sequence

which splits iff ¢ has an extension.

4)=(3). Put H=F, ¢ =id,.

2. We will now establish the necessary and sufficient conditions for
Ext!(E, F) =0 following from 1.2, Let (F,), be a fundamental system of
Banach spaces for F and (E,), a fundamental system of Banach spaces for E.
B(E,, F,) denotes the unit ball in L(E,, F,).

For the sake of simplicity we omit the speclral maps g, If
AeL(E,, F\), BeL(E,, F) then A+ BeL(Eyym» Fumns) i defined in the
natural manner, Also the equation A =B has a natural meaning (in
LAE uxvy» Fuingen))- Hence the inclusion relation in the following conditions
makes sense.

We use the following conditions:

(Sy) 3ny, Yu 3k VK, m, R>0 3n, §: -

5 - Swdin Mathematica 1. 85 z. 2
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1
B(E,, Fy) = SB(E,, Fx)+EB(E,.0, Fu).

(Sy)  Vu Ing, k VK, m 3n, S:
B(Ema Fk) < S(B(Em FK)+B(E110: Fu))'

For the next proposition (2.1) we assume that the F, are E-acyclic and
we obtain

2.1. ProposITION. (S;) implies Ext!(E, F) =0,

Proof, Without restriction of generality we can assume 1o = 1, k = k()
= u+1. Otherwise we would change the fundamental systems of Banach
spaces by omitting some spaces and changing the numeration which does not
touch the assumptions. So we can assume that for all k> 2 and R >0 we
have

1
(%) ‘ L(E, F) < L(E, Fk+1)+'Rg‘B(E1aFk—1)-

We apply 1.2. We consider a sequence A e L(E, Fy), k=1, 2, ..., and
have to produce a sequence B,eL(E, F,) such that 4, = B, ,, —B,.

We determine inductively maps Uy, k =3,4,..., and V,, k=2,3,...,
with the following properties:

1) V2 =0,

(2) Uyxs1627*B(Ey, Fr-y),

(3) Ver1eL(E, Fiiy),

@) U1+ Vers = 4+ Ve
Obviously (x) guarantees the induction.

We define

o
By=—A+Viy~ 3 U fork=1,2,...
1=k+2
The convergence of the series in L(E,, F) follows from (2). Hence we have
B,eL(E, F\). We get from (4) ‘
Byy1 =By = —Apy 1+ A+ Viwa—Viay + Upiz = Ay

for k=1, 2,.... Notice that by our convention equality takes place in
L(E, F)).

Remark. (a) In the proof of 2.1 in fact we used the possibly somewhat
weaker condition

S 3Ame Yu 3k VK, R>0:

1
L(E: Fk) < L(Ea FK)+'EB(E"01 Fu)
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Under reasonable assumptions on E or F condition (S,) or even the
condition

dng Vu 3k VK: L(E, F) < L(E, F)+ L(E,;, F,)

will be equivalent to (S;). See § 3, in particular 3.9, and the proof of 2.2.

(b) Condition (5,) is obviously satisfied if E is locally projective, F a
quojection and (Fy), a fundamental system of Banach spaces such that the
0 are surjective. Hence for any locally projective space E and quojection F
we have Ext!(E, F) =0,

To establish (S,) as a'necessary condition for Ext!(E, F) = 0 we need an
equivalent reformulation of (S,).

2.2, LEMMA. (S;) is equivalent to the following condition:

(8, Yudng, k VK: L(E, F,) < L(E, Fg)+ L(E,,, F,).

Proof. One implication is obvious. For the other we apply
Grothendieck’s factorization theorem ([9], I, p. 16) to the locally convex
space L,(E, F,)," and to the Banach spaces L(E,, F;) and
L(E,, Fx) ® L(E,;, F,), n=1,2,... We can assume k, K > . By assump-
tion the canonical image of the first Banach space in L, (E, F,) is contained
in the union of the canonical images of the others. We obtain n and S such
that

B(Erm Fk) < S(B(En: FK)'I"B(EnO, F[l))'
2.3. ProposiTioN. Ext'(E, F) = 0 implies (S,).
Proof. If (§,) is not true we have the following:

3“ Vno, k 3K: L(Ev Fk) ¢ L(Es FK)+L(En07 Fu)'

We can assume p = 1. We determine inductively sequences L(k), k=0, 1,
e, K(k), k=1,2,...,in N and A e L(E, Fgy), k=1,2,... We put L(0)
=1, K(1) =1. If L(k—1), K (k) is chosen then by the assumption applied to
no = L(k—1) and K (k) instead of k we can find A4,eL(E, Fgy,) such that
there exists K (k+1) with

Ay ¢ L(E, Fgpr 1)+ L{ELg- 1), F1).

There exists L(k) such that A,eL(Eyy, Fga) We can assume L(k) <
L(k+1), K (k) < K (k+1) and by omitting some spaces and renumeration we
can assume L(k)=k, k=0,1,...,K(k) =k, k=1,2,... Hence we have
obtained a sequence of maps with

(i) AyeL(E,, F),

(i) Ay ¢L(E, Fyyy)+L(Eg-y, Fi).
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From Ext!(E, F)=0 we get a sequence ByeL(E, F,) with B, ,—B,
= A, (cf. remark after Th. 1.2). Addition gives

k-1
Ay =By — By~ Zl A
1=

hence for k so large that By e L(E;_,, F))
AveL(E, Fyy)+L(E,-q, Fy)

which yields a contradiction.

The proof of the following lemma is straightforward. We omit it.

24. LEMMA. (S;) and (S,) do not depend on the fundamental systems of
Banach spaces (E,), and (F\)..

We call a space F in # locally E-acyclic if it has a fundamental system
of E-acyclic Banach spaces. From 2.1, 2.3 and 2.4 we obtain immediately the
following theorem. (E,),, (F,), are arbitrary fundamental systems of Banach
spaces.

2.5. TueoreM. If F is locdlly E-acyclic then the following implications
hold:

(Sy) = Ext'(E, F)=0 = (S,).

No assumption is needed for rhe second implication.

The assumption of 2.5 is satisfied e.g. if E is locally projective or F is
locally injective. Hence it is satisfied in each one of the following four cases
(i) E = A(A), (ii) F = A*(A) and quasinormable, (iii) E nuclear, (iv) F nuclear.

3. Our next step will be to bring, at least in the four standard cases
mentioned at the end of the last section, conditions (S;) and (S,) into a form
which makes calculation easier. Therefore we choose fundamental systems of
seminorms || ||, <|| |l < ... in E and F. We put U, = [xeF: ||x||, <1},
Ve = {xeE: ||x||, <1} and [|y|¥ = ” s”up<1|y(x)| for yeE' or F.

x k= .

Unless stated otherwise, in this section E, and F, are assumed to be
the natural Banach spaces generated by the || |, in particular F)
={yeF": |yllf <+x)<F.

We define two conditions (S¥) and (S%)(*). Condition (S¥), or more
precisely: condition (S¥), defined in Lemma 3.3, is Apiola’s splitting
condition (S) ([1], Def. 1.1), up to a minor change discussed in the remark at
the end of this section. He used it to show splitting theorems by a direct
proof, which generalizes proofs in [31] and [41]. His results say (in our
terminology) that Ext'(E, F)=0 if E or F is a K&lhe space and certain

(') In [40], p. 359, a slightly different definition is used: see Prop, 3,10,
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additional assumptions about nuclearity and existence of continuous norms
are satisfied. Condition (S%) is shown in [14] to be necessary and sufficient
for Ext'(E, F)=0 if E and F are Ké&the spaces.
We will show that (S}) is sufficient for Ext'(E, F)=0if E = i(4) or F
= /™(B) or if one of the spaces is nuclear, and that (S}) is always necessary.
For the sake of simplicity, in the following conditions we will always -
assume that ny <m < n, and p < k < K. See also the convention at the end
of the introduction.
(SY) 3ny Vu 3k VK, m 3An, S VxekE,, yeF;:

il M1 < S (el 01 11 ¥ HI9112)-
(S¥)  Vu3ng, k VK.m 3n, S VxeE,, yeF;:

lxllm 1911 < S Xl 1911 + 1xllag l131)-

Remark. Conditions (S¥) and (S%) do not depend on the choice of the
fundamental system of seminorms.

The easier part of what we want to prove is the following. We need no
special assumptions,

3.1. ProrosiTiON. (S,) implies (S%).

Proof. This follows immediately from

llllm VIl = sup {ly(Ax)|: A€B(En, Fy)}

for all m, k, xeE,, yeF.

For the converse direction we treat the four cases separately. But first
we need some preparation.

3.2. LEMMA. (S%) (and therefore also (S¥)) implies that either E is countably
normed or F is a quojection.

Proof. If E is not countably normed, then for any n, there exists an m
and xekE,, such that ||x||,, # 0 but |{x|l,, = 0. (S%) yields for any u a k> i
such that with appropriate x

VK 3n, 8 VyeFi: [Ixln VIl < SlixllaIZ-

Hence all norms || ||%, K = k, are equivalent on Fj. This means that for a
subsequence (j(k)), the Fju, k=1, 2,..., are a strict inductive spectrum,
which implies that F is a quojection (see [5]).

3.3. LEMMA. If E, F satisfy (S¥) and E is a proper (not normable) Fréchet
space, then E, F also satisfy the following condition:

(S, 3ny Vu 3k VK, m, R>03n, S Vxek,, yeFi:

1
[l [AE < S xR + 5 1xllng V11E -
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Proof. We fix ny according to (S¥) and m > ng such that || ||, and | ||,
are inequivalent. Then (S%) yields:
Ve 3k VK 3n, S VxeE, [|x|, #0, yeFi:
Xi|n ” “n
e ° Iyl
[1llm [Es]

Provided u, k, K, n, S are chosen, let ¢ > 0 be given. There is an xe& E such
that S||xl,, <ellxlln # 0. We put M = S||x|l,/l|x||,; we have proved:

(Q  Vu3u, VK, &>0 IM YyeF,:
MIyllE+e Iyl

We have to prove that (S}) implies (S¥)o. no is chosen according to (S¥).
Let u be given, We choose y, according to (Q) and apply (S¥) to y, instead
of p. We obtain k. Let K, m, R > 0 be given. We get n, S from (S¥). We put
¢ =1/(SR) and obtain M from (Q). For xeE,, yeF; we have!

IyllE < ST==IIyll% +S

Ivli, <

lxllm VI << STIXIa AR A+ S 11Xl 11

1
S S+ M) 1l 11 5 11lag 111

This completes the proof.

Remark. Condition (Q) is equivalent to F being quasinormable (see
[17]; (Q) means existence of a property (2,), cf. [40], 59). For a Banach
space E condition (S¥) is always satisfied, while condition (S¥), is satisfied iff
F satisfies (Q), i.e. iff F is quasinormable. For a proper Fréchet space E the
lemma says that (Sf) and (S%), are equivalent.

3.4. ProPosITION. If E = A(A) admits a continuous norm, then (S
S)).

Proof In (S}), we put x = e, the jth basis vector of E = A(4). We
obtain

o implies

1
Ajom ||y“;(k < Sa}m”)’“t +"R“aj,no ||.V||,’f

and by polarization as in [41] we obtain (cf. [1], 1.2

1
() a4 Uy = Say, Uy +7€“""° U,

with the same quantifiers (but perhaps changed n and S). Put

i (1%l

Em——:r{x:—.(xl,xz,.. :lejlaj,m<+°0}
i
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and let F, be the Banach space generated by || (), Uy the unit ball in F,. A
map AeB(E,, F) can be written as

) Ax=Tx 4

with AjeaJmU for all j and for every such (A4;); (+x) defines a map in
B(E,, F). Because of density we can find Afea;, Ui, Rje(2R)" 1 q;,,U,
with A; = o, A]+R;, @: F— Fy the canonical map. According to (¥) w1th
S, n chosen for 2R we can write Af= B,+C, with BjeSa;, Uy,
Cle(2R)” a,,,,oU Then Bj QKB,, of —-Q,,CJ+R, define maps B and C
which prove the inclusion in (S;).
3.5. PrOPOSITION. If F = A% (B), E # {0} then (S%), implies (S,) and that F
is quasinormable.
Proof. In (S})o we put y =1}, the jth dual “basis” vector in F' = 1*(B)".
We obtain !

”x”m “x”n 1 “x”"O
(*) bj,k S bj K +R l)_/‘“
and by polarization as in [31] we obtain (cf. [1], 1.2)
1o 1 o, 1 1.,
P o =V
(%%) B Ve < Sb v+ ij

with the same quantifiers (but perhaps changed n and S).

We first prove the second assertion. We fix a # 0, acE. For given u we
find k according to (S¥)o. We choose m such that Jjal|,, > 0. If ¢ >0 is given
we put R = 1+2||all,,/(¢ llallw); then for every K we have n = n(K), S =S(K)

such that (%) holds. We put

. 28 (K) llalluy
A =inf e
7% lallnbyk
Y& A®(B) such that

bk <

and obtain A = (4, 4,, ...
max(4;, e/b; ,)

for all j.
To prove (S;) we now may assume (se¢ remark before 1.1) that

Fy=1{x=(x;, X3, ...} [IXlli Mt}plle by < +o0}.

Let E,, be the Banach space generated by || ||, A map Be B(Ey, F;) can
be written as
Bx = (By x, Byx, ...)

(wn)
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with B;e(1/b,) ¥, for all j and for every such (B)); (*#) defines a map in
B(E,, F)). Straightforward application of () gives the first assertion.

3.6. Prorosimion. If E is nuclear and countably normed, then (S}), implies
(S4).
Proof. Let E,, F,, be the Banach spaces belonging to the seminorms
Il llm in E, F respectively. The norms | ||, in E, can be assumed to be
generated by scalar products (, ),, ie. the E, are Hilbert spaces. The
On+1,, can be assumed to be Hilbert-Schmidt and injective.

We will show that for n>m > n,

1 ,
(%) (bell Y11 < S Uil A&+ l1lag IVIEE for all xeE,, ye F

implies

C
B(Ew, F) <5 BEys s, F)+ 0V B(E,,. 1, F,)

with 8’ =3 80(0,+1,,), C (1) =30(0ny+1.my) Where o() is the Hilbert-
Schmidt norm of an operator.

Condition (%) means, explicitly written (cf. remark at the end of this
section):

1
Hnm Xllm 1Y < S [l Il y11% + 7 1@nno Xllng Y15

for all xeE,, yeF,. As in 34 this leads to

2
(**) ”Qn,m x“m Uk <3 S”x“n UK +'E”Qn.no x“no Ull

for all xekE,.

Since ¢, 1o+t 18 Hilbert-Schmidt and injective, the spectral theorem
gives us complete orthonormal systems (e); in Enyy, (ff); in Epo+1 and a
sequence a; > 0 such that .

Qnt 1ng+1 X = Z a; <x, € nt1 fj
g

for all xeE,,,. In particular, @n+1,ng+1 € =@, f). For given AeB(E,, F,) we
put A; = Ag,+1,me;eF,. We proceed as in the proof of 3.2 and obtain
;BIE?’ S_“Qn-f-l,n ej”n UK: CJE(B/R)llQn-}-l.noeJ”no Uu such that A,} = BJ+CJ
(canonical maps for F are omitted). We set

Bx:z<x, € ont1 B, for xeE, .y,
J

1
Cx:;z;@hfj),,oﬂcj for xeE, 4.
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The series converge and B, C define continuous linear maps because of

“BxHK S 3SZ '<xa e}>n+1’ ”Qn+ l,nej”n $ 3 S G(Qn—l-l,n)llxlln-!-i,
J

31
HC—"H;« < ‘ﬁ;a;|<x:f}>no+ ll ”Qn+ lng ej“rno

3
”%:I(xaj)>no+l| ”Qno+ l,noﬁ”n()

=i

<- O‘(Qnoﬁ-l‘no)”x“no-ﬁﬂl'

x{w

The constants in the estimates prove the assertion.

3.7. ProrosiTioN. If F is nuclear then (S¥), implies (S,).

Proof. Let again E,, F, be the Banach spaces generated by the
seminorms || ||, in E, F respectively. We assume that the norms {| ||,, in F,,
come from scalar products <, >, ie. that the F, are Hilbert spaces, and
that 9,44, is nuclear for all n, ‘

We will show that for K >k > pu+2

1 '’
() lxllmlYE < SlcllylIlE+ 2+ 1xllug A2+ 2~ for all xeE, yeFj.,

implies

B(E,, ) < S BUE, F+ S B(E,,, F)

no*

with 8" = 20(Qx+1,k) V(@k+2.k+1)> C() = 20(0u 41,0 V(Gus2u+1) Where o ()
is the Hilbert-Schmidt norm and v(-) the nuclear norm of an operator.
By polarization as in 3.5 we obtain from (x)

1
(%) IVIE V2 = Syl Vi + 5 I 2 Vo

for every yeF,..,. i

Since @x.qpu+5 18 nuclear the spectral theorem gives us orthonormal
systems (e)); in Fy .y, (f})) in F 4, and a sequence a; >0 such that (f)); is
complete and

O+ 11 X = 2,4 <X k1
7
for all xeFy. . In particular, {Qgs1p+1 X Sjdue1 = a5 <Xs €541

For given ¢eB(E,, F,) we put ?) = Y)0uu+109 where y,(:oc,)
= % fjduars Vj€Fuy & Fuuy = F' Since |lo)lln < Iyl ie. @yellyili Vs
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we obtain from (x¢) Y€ S|ylltez ¥ and 1;e(1/R)|Iyilfs2 Yoy such that o,
=+, for all j. We set

‘//(x):‘Z'l’"//j(x)Qx-f-l_KL’j for er,,,

x(x) = ZXJ

for xeE

)Ou+ 1,0 no?

and we have to show that the series converge and define continuous maps
with the desired estimates.

We need some additional estimates involving the maps g,..,,. Since
they are nuclear, they are in particular Hilbert~-Schmidt. We have for every v
and every orthonormal system (g,); in F, 4

Zwa .‘/j>v+ ll ”Qv-l- l,vgj”v < U(QM‘ l,v) “x“v-kl’
1)

which means that o, ¢! X>({X, ;D41 ll@v+1,v gjllv); 18 @ continuous linear
map from F,y, into I', 6,4 00yr2,+; is nuclear. Hence there exists A e /',
A" >0, such that

Zl“" 2V(0y4 1 00vx2941) S 2|[f7v+1HV(Qv+z 1)
i

26(@v+lv)v(gv+2 v+1 C(V)

and
16, gvalllove ogilly A for all ||xf|,4, < 1.

With » = (1/A})lle,+1,4ll, We obtain

@ e Xl € Zl<x gidveilllgvs1 gl S Cl suva“’|<x gidveal
for all xeF,,, and
(ﬂ) supy} I(Qv+2‘v+lx LJ]>V+1[ ”x”v+2
For xeFy ., we have
Vi(Oks2,u41%) = <Qx+1,u+1 QK+2,K+1 Xafj)pn = Ok + 2,541 %, €K1
Hence () for v =K, g; = ¢; implies
4 V) 1
8 SUP'Y5 )”“”J’j”ku <1
i a4

=Jj, (B) says
SU'PV?) ”yj“:+2 <L
i

For v=y, g,
8"
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Returning to the maps ¢ and y we obtain as in («) and from ®B)

IIxllx <Z ““““ W’j X lek+1,x ellx < C(K)SUPV(K)*WJ(X)I

< CRISsup Lt ol < CRSI,
and from (f")
Xl

< %:lx;(x)l lows 1Sy C (u)sgm’ Mg el

N
< COB s I3 2y < C0 g el

Since obviously ¢ = /-y (in the sense of our convention) this proves the
assertion.

We are now ready to prove the main theorem of this section.
3.8. TreoreM. Under each of the following assumptions:

(i) E=A(4), (ii) F=2"(B),

we have the implications:

(i) E nuclear, (iv) F nuclear,

(SY)o == Ext'(E, F) =0 = (S%).
If E is a proper (non-Banach) Fréchet space, then (ST)o may be replaced by (S¥).

Proof. The first implication follows from 34, ..., 3.7 together with 2.5,
in cases (i) and (iti) provided E is countably normed (see 3.4 and 3.6).
However, if E is not countably normed, then (S}) implies that F is a
quojection (Lemma 3.2) and Remark (b) after 2.1 gives the result, since under
assumptions (i) and (iii), E is locally injective. In case (ii) we have used the
fact that because of 3.5, A*(B) is quasinormable, which according to Remark
(2) preceding Lemma 1.1 implies that A®(B) is locally injective. Lemma 3.3
gives the last assertion of the theorem.

The second implication is a consequence of 3.1 and the second part of
2.5, Since the assumptions are not needed there, we state the result
separately:

3.9, THEOREM. For any two spaces E and F in #, Ext'(E, F) =
(S%).

Finally, it should be remarked that we have proved only inclusions
relevant for 3.8 and 3.9. Nevertheless, (S;) = (S¥) is always true and
(S%) = (S;) holds under the four standard assumptions. We close this
section by showing that in certain cases “xeE,, yeF;” in (S¥) and (S%) can
be replaced by “xe E, ye F,”, ie. we do not need the completions and ||y||},

0 implies

J=pu, k, K, may always be assumed finite.
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3.10. ProrosiTion. If E is countably normed or F reflexive then in (S}),
(S¥)o, (S%), “xeE,, yeFi" can be replaced by “xeE, yeF,” If E is countably
normed, also by “xeE, yeF™.

* Proof. Let E be countably normed. Since ||x|; 5 0, j = ng., m.n, for
x # 0, the inequality becomes trivial for y¢F,. But for yeF, we need to
require the inequality only for xe E. For xeE, it then follows by continuity.

If E is not countably normed and E. F satisfy one of the conditions with
“xeE, yeF,”, then the analogue [40], 5.3, of our Lemma 3.2 says that F fails
property () of Bellenot and Dubinsky [2]. I F is reflexive this implies that F
is a quojection (see [2], Cor. 3). Hence even (Sh)o is satisfied.

Remark. In view of the above result Apiola’s splitting relation (S) (see
[1]) is equivalent to (S¥)o if E is countably normed or F reflexive, which is
the case in his theorems 1.6 and 1.8. For the equivalence to (S%)o notice that
he assumes that the [x: ||x|ly <1} are a basis of neighbourhoods of zero.

4. In this section we apply Th. 3.8 to the case of E or F being a power
series space. We determine the exact acyclicity classes in this case.

Il ll: <1 ll2 < ... always denotes a fundamental system of seminorms in
E or F. If E= A,(x) we assume the norms to be of the form

T) o
lIxdle = X1 ok = 3 Ixj| €™
] 7

for some fixed sequence 0 < g, / r. We always set o, = logg,. If F = A" (2)-

then we assume the norms to be of the form
Il = sup ) o = suplxj ™™
J

with g, and ¢, as above. :
For the exponent sequence (x;); we make the general assumption
x
sup~ =d < 4 x.
i %
The part of the results where we do not need this assumption is stated
in Th. 4.5. In Th. 4.2 we need something more, namely that

lim 2L = 1
io%

These assumptions are fulfilled in most of the interesting examples.

Notice that in the sufficiency parts of 4.1, 42, 4.3 we always know that
E is countably normed. In particular, this is implied by (DN). Hence we may
show (S¥) in one of the modified forms of 3.10. It would also be easy to show
directly (St)o.

For our first result we use the following property () (see [41], Def. 1.1
and Cor. 2.2), which is under the additional assumption of nuclearity
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characteristic for the quotient spaces of (s) ([41], 1.8). For the nonnuclear
case see also [39].

(@) Vp3g Vk v, C YyeF":
IV < CUVIR IS

It is equivalent to the existence of a logarithmic convex fundamental
system of dual norms (see [39]).

4.1. TueOREM. Ext' (A4, (%), F) =0 iff F has property (Q).
Proof. First we prove necessity: For given » we choose no, k according

to (S§) and then a fixed m>n,. We put the basis vector ¢; into the
inequality and obtain

VK An>m, S YjeN, yeF"

(0= [ ]
lIyllE < S@E ™ |1ylfg 4+ "™ i),

. (T~ Oyl .
For given rze °"" we choose j such that (Om=0ng) %1

< logr < (o ~0,5)o; which gives because of a; < da_,

o
e e <5 (41013 )
with
p=d- I
TG

We can increase S so that the inequality holds for all r > 0. Calculation of
the minimum of the function of r on the right side gives the result.

To prove sufficiency we use (S¥) and put n, = 1. For given u we find a k
such that for all K there exists v with

VI < ClUYIE VI
Then we have either

(4%) &yl < e
or
(k) MY & Ce™ [yl (Ve

Lo+ Wy~ ay )]a:j '
< Ce O MR

We put § = C+1 and choose n such that ¢, = G+ v(oy—0,). We obtain
from (x#) and (wxx)

. Ty
Iyl < S (" ylie+e 0 Iyl)-
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For given x = (X, Xz, ...) €4 (®) we multiply the above inequality by
|x;] and add up. This proves the inequality in (S%).

The analogous class corresponding to a finite type power series space is
described by an invariant of similar structire:

(@) Vp3q Vk,e>03C VyeF":

V3 7e < CliyliE vz

The same invariant (£) describes the class of all (F)-spaces F such that
every continuous linear map from F into a finite type power series space
AP («) is bounded ([35], Satz 4.2). Since () = (&) = (LB®) (see [35], Prop.
5.3) it describes on account of [35], Satz 5.2, also the class of all (F)-spaces F
such that every continuous linear map from F into any power series space is
bounded, i.e. maps some neighbourhood of zero into a bounded set. An
infinite-dimensional space of this type can never be a subspace of any power
series space.

For Theorem 4.2 we assume that

lim—gﬁir~1 =1,
;%

4.2. Treorem. Ext* (4, («), F) =0 iff F has property ().
Proof. We can essentially use the proof of 4.1. For the proof of

necessity the only change is that we choose m in dependence of ¢ > 0 and
that for given r > exp[(0,—0,g)®;,+1] We choose j > jo. Then we gel the

inequality (») with

where d;; = sup (¢+,/a). If m and j, are large enough then v <.
T izdo
The sufficiency part is all the same except that we have to choose v > 0
so small that o,+v(o,—0,) <0, ie. that there exists n with oy+v(on

—0Opy) < O

Now we assume F = A®(x) to be fixed. In this case we need again only

the weaker assumption on (a);.

We use the following condition (DN) on (F)-spaces E (see [31], Def. 1.1
and Satz 21). It is, under the additional assumption of nuclearity,
characteristic for the subspaces of (s) ([31], Satz 1.3). For the nonnuclear case
see also [39].

(DN) 3ng V¥m 3n, C VxeE: |jxlln < Cllxllug1ls-
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It can easily be seen that the following versions are equivalent:

dny, 6 >0 Vm 3n, C VxecE

Bno Vm, i) 37’!, C VXEE }: llxll'ln+6 < C”x“fvo”an

(DN) is further equivalent to the existence of a logarithmic convex
fundamental system of seminorms.

43. Tugorem. Ext'(E, A7) =0 iff E has property (DN).

Proof. First we prove necessity. We apply (S¥) with g = 1 and obtain k
such that we obtain by putting the dual basis vectors in F' = AP () into the
inequality:

g Vm An, St xlln < S (W x|, 4 %), ),
For given r > ¢ " we choose j such that
(ok—o)oy <log r < (o ~01) .,y <d(op~0y)ey

which gives

1
el <5 (51

; 1oy =0 \

with § = ;;“’ii“l“;“k'- We can increase S so that the inequality holds for all
k™0

r > 0. Caloulation of the minimum of the function of r on the right side gives

(DN) in the second form mentioned above,

For the proof of sufficiency we use the third (sharpest) form of (DN),
which by the above argument can be given the form

Ing Vm, 6 3n, C VxeE,r>0: |x|, < r]le["o+§||x]|,.

We prove (S}). We take ng from (DN). For given u we choose k = u+ 1.
If then K > k, m is given we set & = (o4 —0y)/(0y~0,) and obtain n, C from
(DN). We put r =exp[(o,~0,)a/] into the inequality. This gives

il < €770 1]y + ™= ],
= ¢ |1l + e R ],
We multiply the inequality by exp(—o,) and obtain with §= C+1
e " |Ixlm < S(e” K| xllu e X |Ix]lng)-

For given y = (y,, y3. ...)6 4 («)’ we multiply the above inequality by
|yl and add up. This proves the inequality in (S}).

It should be remarked in this connection that since we assume o; * + o0
we have li;nlle 0"/ = 0 for each 0 < g < r. Hence the Banach spaces attached
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to our standard norms are weighted co-spaces and their d\;ﬁals weighted (by
0% j=1,2,...) I'-spaces. More precisely: [yl = T lyjle” % ete.

i

An interesting special case we obtain by considering two power series
spaces. We assume that either lim(x;. 1fa) =1 or Sij(/)'JJr /By < oo,

J

4.4, CorovLLary. Ext'(4,(), 4,(8) =0 iff r= +cc.

In all of the preceding proofs the condition on the sequence (a)); was
only needed for the necessity part.

45. TueoreMm. In 4.1, ..., 44 the respective conditions are sufficient for
Ext! (E, F) =0 or Ext!(4,(®), 4,(8)) = O without the assumptions on (o)) or
B

Remark. The sufficiency part of Th, 4.1 is for nuclear A, () in one of
the equivalent formulations of Th. 1.8 contained in [41], Satz 1.4, cf. also
[32], Th. 2.3, which can easily be generalized to the nonnuclear case. The
sufficiency part of 4.3 is again in one of the equivalent formulations for
A, (@) =(s) contained in [31], Satz 15. This proof can also easily be
generalized to arbitrary A (x). For analogous sufficiency results for
L (x, oo)-spaces see [1].

5. In this section we want to discuss the (DN), (Q)-situation more
closely. We recall the following theorem (cf. the introduction at the beginning
of this paper): if E and F are nuclear, E has property (DN) and F has
property (€) then Ext'(E, F)= 0. This is a consequence of [31], 1.3, and
[41], 1.4, and stated e.g. in [32], 7.2. It has been generalized by Petzsche in
[22] with a proof which does not use sequence spaces.

We assume that one of our four standard assumptions is satisfied: (i) E
=A(4), (i) F=2%(B), (i) E nuclear, (iv) F nuclear. We obtain from
Theorem 3.8

5.1, Tueorem. If E has property (DN) and F has property (L) then
Ext*(E, F) =0.

Proof We use Theorem 3.8 and (DN) and (Q) in the form:

ng Ym, 8 3n, C VxeE: [xln*? < Cllxllzg lIxlln

Vu 3k VK 3v, D VyeF': |yl ™" < DIyl I

From (DN) we get n,. For given p we choose k according to (€2). If then K
and m are given we choose first v and D according to (£2) and then for m and
vy =6 numbers n and C according to (DN).

For xeE, yeF' we have either

() Il 10 < 11l Lng 111
or
(+%) Il 11 > 116llag I 2 O-
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By multiplication of the (DN)- and (Q)-inequalities, and by use of (#x)
we obtain
(el 111 > < CD Il 11 (1¥lLng 111"

CD ||/l Y11 U1l 111"

V/AS/A

which yields

() [l 0% < CDIxlla Iyl

From (%) and (x%%) we obtain the desired inequality with S = CD+1.
Notice that (DN) implies countably normedness. Therefore 3.10 can be
applied.

We will now derive necessary conditions for Ext!(E, F)=0 which
generalize the results of Section 4 to a basis free setting and turn out to be
useful in concrete situations (see [37], and Section 7).

We need the following property (DN), a weakened version of (DN)
which is under additional nuclearity assumptions characteristic for the
subspaces of power series spaces of finite type (see [33], [34]). It is for
instance under very general assumptions satisfied for spaces of (real) analytic
functions (see [33], § 5).

(DN) Ano Ym An,d >0, C: || L < CI gl Ml

For two absolutely convex subsets U < V' of a linear space H the vth
Kolmogorov diameter 6,(U, V),v =0, 1,2, ..., is defined as the infimum of
all § > 0 such that-there exists a linear subspace F < H with dimension at
most v and U < 8V-+F. A Fréchet space is a Schwartz space iff for every k
there exists a K > k such that lim8,(Uy, U,) = 0 where U, = {x: ||x|l; < 1}.

v

5.2. Tueorem. Let F be infinite-dimensional and nuclear or F = 1 (B) and
a Schwartz space, let moreover F have property (DN), and satisfy the following
condition:

. logd,. 1 (U, Uu)
imsup =3 g 5. (U, U

Then Ext'(E, F) =0 implies that E has property (DN).

Proof. We carry out the proof only for the case of F being nuclear. The
other case is similar but easier or can be considered as a direct generalization
of one part of 4.3, We can assume that all || ||, on F are norms (because of
(DN)) and are generated by scalar products ¢ , Y. ie. || [lf = <, D Hence
the canonical Banach spaces F, are Hilbert spaces.

We choose yio as in the assumption and u 3> o such that for every k
there exist K, d >0, C with

M llde 4 < Clixli =l

3#0 v[.l;[lo BKO VK?KO : < +o00.

6 — Studia Muthematics 1, 85 z, 2
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for all xeF. Given this pu we obtain by use of Theorem 3.9 from (S%)
numbers n, and k. We choose K so large that

@ lim o, (Uk, U,) =0,

log dy4 1 (Uk, Uu)
10g 5V(UK’ Uﬂ)

and that (1) holds for all xe F with appropriate d >0, C > 0.
With these choices we have for every m numbers n and S such that for

ai]l xcE and yeF
4 1o 191 << S (el V11 A+ g 11Y11E)-

The canonical map g, Fx — F, is compact by (2). Hence we obtain by
the spectral theorem

3) lim sup =D <+
v

@
QX = X 4<% ek ]
j=0
with orthonormal systems (e);, ( f);in Fg, F, respectively.and o= a2 ...
... 2 0. Since a; =8§;(Ug, U,) (see [23], 8.3.2) we have with o) = —logg;

2) lima; = +o0,
j
3) limsup 2 = D < + 0.
i %;

For xe F we put
1
¥y (x) = — < %, [iou = {ox X, ¢k
i

and obtain
lIyllE=1, lylif =1/a,.
We put x; = a; ¥+ gy e We obtain from (1)
bl < Cllal 9 G4+ laj 404+ g/ 0 =
and hence

~ 1 . 1 _
1Al ?Elyj(xj)l =54 it +d)

where ; denotes the canonical extension of y; to F,.
Applying (4) to y; we get for every j

1 1
“x“m'c'-'aj da/(1+d) < S (||x||,,+Hx||,,o Ej—)
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and by use of (3) for large j
lxll < SC (€™ x4+ €4 1, )
S SC (T IR g 4 S ).
For r > 0 large enough we choose j such that
euj/(l-w) <r gemj.,.l/(lw)

and obtain

e < M {510 )

with 0 = d/(2D). If M > SC is large enough this inequality holds for all r > 0
and xe E. Taking the minimum of the function of r on the right-hand side
we have with modified M

[l < M lxll3 il

which proves the assertion.

The following remarks are useful for the application of the preceding
theorem. We state them without proof,

53. Remarks. (a) The assumption on the Kolmogorov diameters in 5.2
is satisfied if there exists an increasing sequence (x,), with lima, = + o0 and
v

sup (a4 3/0t,) < 400 such that the following is true:
y

(P) o Yuzpo 3Ky VK 2Ko 3D >0,r>1,R>1 Vv

%R""V <6,(Ug, U)<Dr™™.

(b) Condition (P) in (a) is satisfied if F is A, («)-nuclear (see [25], [33];
we assume lim (log n)/«, = 0) and

"

u, Ko YK 2 Ky 3R > 1: infR™8,(Uy, U,) > 0.

(¢) If F has (DN) and (£2) then the argument of [42], 4.3 (cf. [33], 3.5)
and a modification for the (£2)-case (cf. [34], 7.1) says that the conditions in
(b) are satisfied if there exists n, in the sense of (DN), and r > 1 such that
sup ™ 8, (U, Uyg) < + 00 and if moreover there exists for some p a ¢ in the

sense of (?) and R > 1 such that infR™é,(U,, U,) > 0.

(d) Another useful set of conditions which implies (b) is: sup(2,,/2,) <
v
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+o0, F A,(@)-nuclear and there exists an isomorphic imbedding
A, (@) = FN. For the proof we refer to [33], 1.4.

Just as in 5.2 we can obtain necessary conditions on F for Ext' (E, F)
=0 given some information on E.

5.4. Tueorem. Let E be infinite-dimensional and nuclear or E = A(A) and
a Schwartz space. Let moreover E have property (Q) and satisfy the condition
on the Kolmogorov diameters given in 5.2. Then Ext' (E, F) = 0 implies that F
has property (£2). v

Proof. Again we carry out the proof only in the nuclear case. We can
assume that all || |, on E are norms, because otherwise F is a quojection (see
3.6) and hence trivially satisfies (£2), and are generated by scalar products
¢, % Hence the canonical Banach spaces E, are Hilbert spaces. We
proceed as in the proof of 5.2 using Theorem 3.8.

Given p we obtain from (S%) numbers k and no. We can assume ny 2 o
where 11, is as in the assumption on the Kolmogorov diameters. For p = n,
we choose g according to (©2). Then given K we apply condition (S%) to K
and m =0, and obtain n and S such that

1 (1l 11V << S (¢l 11211 4+ l1¢11ng [1¥112)

for all xeE, ye F'. Finally, putting n (instead of k) into () we obtain v and
C such that

@ linllst*> < C linll linllng

for all neE’. We can assume no <m <n and n > K, where K, is as in the
assumption on the Kolmogorov diameters, and so large that limd,(U,, Uy,)
v

=0.
Hence the canonical map g,,,: E, — E,, is compact and we obtain by

the spectral theorem
4]

Qn,nox = Z aj <x7 ej>nf)

. j=0
with oFthonormal systems (ey);, (f); in E,, E,, respectively and ag 2 a; > ...
> 0. Since again a; = 3;(U,, U,,) (see [23], 83.2) we have with o; = —log 4

lima, = + o0, limsup%ﬂmD <+,

J J i
By definition we have

”ej”n =1, ”Qn,no ej“rlo == .

To estimate the norm of g, ,e; we define for xeE

1
"j(x) = <ana ej>n = ?17 <Qno xsf:j>no
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and obtain

1
liml =1, iy = —~»
)

hence by (2)
" 1
iR+ < Cliggllk nixy = .
: d

Therefore we have

llefln = CTHIN GEEE Ny ()] = C=1H1+9 gt +9),
Putting e; into (1) we obtain for all yeF’ and j

Cm 1O gV |yl < S (1Y% +ay Iyl

or also

IyllE < €0 8@ i+ e ).
Proceeding as in the proof of 5.2 we finally obtain

vl +2 < MLyl lIviiee

for all yeF' with appropriate § >0 and M. This proves the assertion.

6. We continue the discussion of the (), (DN)-situation and assume in
this section a fixed exact sequence 0— F— G H -0 to be given.
In this section A always denotes a space of the form

A =AM, (@en) = {f K |Ifll = ZMIf(t)I a(f) < +oo for all k}

where M is a set, K = R or C the scalar field and a; < a; < ..., supa(t) >0
k
for all t, is a sequence of nonnegative functions on M. These are the
analogues to Kdthe spaces defined on a not necessarily countable index set.
6.1. Prorosrrion. The following are equivalent:
(1) There exist sequences H,, m(n), M (n) such that for every he H we can

find ge G with h = qg and

liglln < Hymax (1, ||kl

(2) For every A with (DN) and @ L(A, H) there exists e L(4, G) such
that ¢ =qoy.

Proof. Given (1) and A with (DN) we may assume that no = 1. Then
a, () > 0 for all t. We apply (1) to the vectors h, = (1/ay (t) @(e), te M, where
¢,(t) = 8,,. We obtain vectors g, and put ¥ (e} = a1 () g;- This defines a map
VeL(A4, G) such that
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SISO elle < Hu X 1S @) ay (1) max (1, [[Allni)

M
Ay (1) i
ay (HMn-1

< Co X 1S () agen (1)

<HZIf @

Here [(n) comes from the continuity estimates for ¢ and K(n) is chosen
according to (DN) for m =I(n), 6 = M(n)—1; one should notice that |||,
= a,(t). ¥ obviously satisfies (2).

To prove the other implication we put M = H, a(h) = (1|l }* and
obtain peL(A, H) by ¢(e) =h We get yeL(A, G) with ¢ =g oy by (2.
Then g = (¢,) for he H fulfills the requirements in (1).

A modification of 5.1 for E = A instead of E = A(A) together with 6.1,
(2) = (1), gives immediately

6.2. ProrositioN. If F has () then 6.1(1) is satisfied.

This proposition can also be proved directly by a modification of the
proof of [32], 2.3 (cf. [41], 1.4). One has to replace there the basis vector
e;e(s) by heH.

The preceding propositions explain a lifting property for certain maps in
L(4, H) (resp. the property () for F} by the possibility of finding solutions
for the equation ¢g = h with certain estimates. If G has property () then 6.2
can be improved to an equivalence.

6.3. TuEOREM. If G has property (Q) then the following are equivalent:

(1) F has property ().

(2) The condition in 6.1(1).

Proof. (2) follows from (1) by 6.2. From (2) we conclude by 6.1,
(1) = (2), applied to A =(s) that the map Ext!(s, F) - Ext* (s, G) induced
by F— G is injective (see §1, I). Since Ext'(s, G) =0 by 4.1 we have
Ext!(s, F) = 0 and hence again by 4.1 that F has property (Q).

One cannot expect a theorem like 6.3 without ‘assumption on G as the
canonical sequence 0 —F — F @ H — H - 0 shows. On the other hand, in
concrete situations often g is an operator defined on a well-known space G
‘with (Q) whereas one is interested in properties of H = kerq resp. in
estimates for solutions of gg = h.

It is interesting to discuss the analogue to 6.1(1) where we have linear
estimates. It helps us to get information for the (DN), (©)-situation in the
case of a nonsplitting sequence, i.e. if neither F is locally injective nor H is
locally projective.

64. Prorosimion. The following are equivalent:

(1) There exist sequences H,, m(n) such that for évery he H we can find
gEG with h = q9 and Hg”n < Hn”h”m(n)'
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(2) For every A and @eL(A, H) there exists WeL(4, G) such that ¢
=qoy.

Proof. Given (1), A4 and geL(4, H) we apply (1) to b, = ¢(e), te M.
We obtain g,&G and define YeL(4, G) by y(e) = g,.

For the other implication we use the space A with M = H and a,(h)
= ||h||, and proceed as in the proof of 6.1.

If H has (DN) the space A just constructed obviously also has (DN).
Hence by a modification of 5.1 for E = A instead of E = 1(A) we conclude
that every @eL(A, H) can be lifted to y & L(A4, G) which, as before, implies
64(1). So we have proved:

6.5. ProvosiTion, If F has (Q) and H has (DN) then 6.4(1) is satisfied.

This implies by 6.4 that every peL(A, H) for any A, in particular for
any Kéthe sequence space A(A), can be lifted to Y eL(4, G).

6.5 is a weakened form of 5.1 for the case when F is not locally injective
and H is not locally projective. Clearly 6.4 (1) follows from the existence of a
right inverse of g, hence from Ext!(H, F) = 0. Any nonsplitting sequence of
Banach spaces shows that nonsplitting sequences .exist with F having
property (£2) and H having property (DN).

7. We finish the discussion of the (DN), (Q)-case by applying the results
of §5 to determine the exact acyclicity classes for spaces of solutions of
elliptic differential operators (cf. [37]) and for spaces of holomorphic
functions (cf. [38]).

First we recall a result of [33]. Let X be a connected N-dimensional o-
compact real-analytic manifold, .« the sheaf of complex-valued real-analytic
functions on X, % < .o a subsheaf such that for every open set U < X the
space G(U) is complete in the compact-open topology. Then [33], Satz 5.1
ff., say that the (F)-space G(X) has property (DN).

A. Let P(D) be an elliptic linear partial differential operator with
constant coefficients on R¥, N = 2. In [37], 24, it is shown that for any open
Q < RY the space A"(2) = {feC®(£): P(D)f =0} has property () in the
induced topology of C*(f) which is equivalent to the compact-open
topology. From [337], 4.5, we know that .4°(Q) is A, (a)-nuclear with a,
= ntW=1 and from [44], Kap. 2, § 2, Satz 9, that .4"(R™ = A, («) with the
same o.

For the following theorem cf. [37], 2.6.

7.1. TugoreMm. Ext!(E, A'(@)) = 0 if and only if E has property (DN).

Proof, One implication follows from 5.1 since A"(£2) is nuclear agd has
property (€2). If on the other hand Ext!(E, A4()) = 0 then the same is true
for every connected component @ = Q. 4 (w) has (DN) and is 4, (a)-nuc_lear
with o as above. There exist X;, X3, ... € R¥ such that RY = {J (x,+ w). Since
A (X +w) & A (@) we have an isomorphic imbedding k

A (@) 2 N (RY) = []H (%4 + ) = N (@)
k
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Therefore the other implication follows from 5.2 and 5.3(d).

We remark that in [37], 2.1, it is shown that the canonical map
Ext! (E, 4" (Q))— Ext! (E, C*(Q)) induced by i A(Q) < C*(Q) is zero.
Therefore we have an exact sequence

0= L(E, #'(Q) L(E, C=(@) "2 L(E, C*(Q))— Ext} (E, #"(2)) - 0.

Hence Ext!(E, #'(2)) =0 is necessary and sufficient for the surjectivity of

P(D)*.

Consequences of 7.1 are lifting theorems for P(D), the existence of right
inverses for P(D) on continuously imbedded (DN)-subspaces of C*(£2) or
C () and necessary and sufficient conditions for the solvability of P(D)g,
= f, where f, and g, are parametrized families of C*-functions and the
parameter A runs through the dual of an (F)-space, e.g. germs of holomorphic
functions or a distribution space or a Gevrey class (see [37]).

The question for which F we have Ext!(4°(2), F)=0 is not so
smoothly solvable. It also seems to be less important. From 54 we deduce
that property () is a necessary condition. It is not sufficient in general. If e.g.
Q is bounded and convex we know from [34], 7.7 that .4"(22) = A4, (&), & as
above. Hence in this case Ext!(47(Q), F) =0 if and only if F has property
(Q) (see 4.2), whereas Ext! (4" (RY), F) = 0 if and only if F has property (Q),
because 4" (RY) = A, () (see [44]). -

B. Let X be a connected N-dimensional Stein manifold. Then the
nuclear (F)-space ' (X) of holomorphic functions on X has property (DN).
This follows from the remarks at the beginning of this section. We can imbed
X as a closed subvariety into C¥, M large enough. Then the restriction map
#H(CM) — #(X) is surjective. Since ' (CM) = A, (B) with B, =n'™ the
space ¥ (X) has property (Q) (cf. [38] and §7, C below). Using local
coordinates we can imbed #(X)— #(DM)N = A, (®)V, where DV is the N-
dimensional polydisc and « = nN, Hence #(X) is A, (x)-nuclear. On the
other hand, let ¢ = (¢, ..., @y) be local coordinates at some point xoe X
given by global holomorphic functions on X (see [11], p. 105). Let U = X
be open such that ™' exists on U and zy, z,, .., € C¥ such that {J(z;+U)

J

=C" then fi—(fo(z)+ ¢))j=y,z,.. imbeds Ay (@) =#(CY) into HX)N.
From 5.1, 5.2 and 5.3(d) we conclude:

7.2. TueoreM. Ext' (E, # (X)) =0 if and only if E has property (DN),
. Tpis result, in particular for E = . (X), is interesting in connection with
investigations of Grothendieck on the topological properties of the space
Ly(E, F) (cf. [9], I, § 7 and [40], § 4).

For Ext!' (s (X), F) = 0 the situation is similar to that in part A of this
section.

C. Let now X be an analytic subvariety of C¥, %y the sheaf of ideals of
X, Fx =T (C", %) the space of all functions in 2 (C") which vanish on X.
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According to the remarks at the beginning of this section #, has property
(DN). In [38] it is shown that for any coherent analytic sheaf % on C¥ the
nuclear space I'(CY, %) has property (Q). Clearly ¢y < #(CY) is Ay (o)-
nuclear with o, = n'/¥. On the other hand, we choose gye ,#y, go # 0, open
U = CY such that inlljlgo(z)l >0 and z, 2, ...eCY such that {J(z;+U)

~C* The map [ (g)ey With g;(z) = go(z)f(z—z) imbeds A, ()
= #(CY into #¥. From 5.1, 52 and 5.3(d) we obtain

7.3, TuroriM, Ext! (E, #x) =0 if and only if E has property (DN).

Most interesting is the case E = #'(X). It shows that there exists a
continuous linear extension map J# (X) w4 (CY) if and (since #(CY) has
(DN)) only if #'(X) has property (DN). A close investigation of this case can
be found in [38] (cf. [45]). In particular, the manifolds X such that #(X)
has (DN) can be completely characterized.
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