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The Bergman projection on harmonic functions
. by
EWA LIGOCKA (Warszawa)

Abstract. The behavior of the Bergman projection on various spaces of harmonic functions
is studied. It is proved that if D is a strictly pseudoconvex bounded domain in C" with boundary
of class C* then its Bergman projection extends continuously to a projection from L' Harm(D)
onto L' H(D) and maps continuously L* (D) onto the space of Bloch holomorphic functions, the
space of Bloch functions onto the space of Bloch holomorphic functions, and the space of
bounded harmonic functions onto the dual of H'(dD). Analogous results are proved for
orthogonal projections onto the spaces of pluriharmonic functions. )

1. Introduction and the statement of results. Let D be a bounded domain
in C". We shall assume that D = {zeC": o(z) < 0}, ge C*(C" (or 0 C*(C")
and grad g # 0 on @D. Each such ¢ will be called a defining function for D.
The Bergman projection B is the orthogonal projection from L*(D) onto the
space L2 H (D) of square-integrable holomorphic functions. We shall denote
by L?Harm(D) the space of square-integrable harmonic functions.

It was proved in [18] that if B is bounded in the sth Sobolev norm then
its restriction to L? Harm (D) is bounded in the negative Sobolev norm | ||,
where s is a positive integer. It was also shown that the norm || ||, is
equivalent on harmonic functions to the L*(D, 0%) norm, where g 15 a
defining function for D.

In [20] it was proved that if 8D is of class A44,, and B is bounded. in

the ath Holder norm, a <ag, 0 <a—[a] <1, then the restriction of B to
L2 Harm (D) is bounded in the L' (D, |o*) norm where g is a defining function
for D. The expression “B is bounded in some norm || ||” means as usual that
there exists a constant ¢ ‘such that for every ue L? Harm(D)

(IBull < cllul}-

The above results yield in particular that if D is a strictly pseudoconvex
domain with C®-smooth boundary then B extends to a .continuous
projection from L?Harm(D, ¢*) onto L?H(D, ¢*) and to a continuous
projection from I!Harm(D, [gf*) onto L' H(D, |gI¥), where L' Harm(D, |el)
denotes the closure of L?Harm(D) in L*(D, |o) and L'H(D, |o/) denotes
the closure of L2 H(D) in L*(D, lg|)- :

This means that the Bergman projection “behaves better” on the spaces
of harmonic functions than on arbitrary functions.
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The aim of the present paper is to give some further examples of such
behavior of the Bergman projection. We are going to prove the following

TueoreM 1. Let D be a strictly pseudoconvex domain with boundary of

class C*. Then the Bergman projection B extends to a continuous projection
from L'Harm(D) onto L' H(D).

Note that B cannot be extended to a continuous projection from L' (D)
onto L' H(D) even if D is the unit ball in C" (see [22]).

In the proof of Theorem 1 we shall use spaces of Bloch functions. A
differentiable function f on D is called a Bloch function iff

Il = sup (@11 (@ + e @) lgrad f @)) < 0.
We shall denote by BY(D) the space of Bloch functions on D, and by BIH (D)

the space of holomorphic Bloch functions on D.
The proof of Theorem 1 is based on the following two facts:

PropositioN 1. Let D be a strictly pseudoconvex domain with boundary of

class C*. Then B maps continuously L*(D) onto BIH (D).

ProrosiTion 2. If D is a strictly pseudoconvex domain with boundary of

class C* then BIH (D) represents the dual space (L' H(D)Y* via the pairing
Qu, vy =, Bvdo= [ullv, uel'H(D), veBIH(D).
b

We shall also prove the following

Proposition 3. If D is as above, then the Bergman projection B maps
continuously BI(D) onto BIH (D).

The statement of Proposition 2 needs some explanation. In [2] S. Bell
constructed, for a C®smooth domain D, a family of operators L¥: C* (D)
—C®(D) such that Lf vanishes on 8D up to order s—1 and f—LEf is
orthogonal to L’Harm(D). In this paper we need only the operator L! which

is defined as follows:
2
L =y (T2
f=f (2I !

where ¢ is an arbitrarily chosen C* function equal to 1 in a neighborhood
of 6D and equal to 0 in a neighborhood of the set {Po =0

It is easy to see that the construction of L'f can be done if the
boundary of D is of class C2.

The operators L' were used to study various duality relations between
spaces of holomorphic and harmonic functions (see [1], [4], [10], [187, [19],
[20] and for the earlier versions of Bell’s duality theorem, [3]). ‘

It follows from the results of [18] that L' extends to a continuous
mapping from L*Harm(D) into L2(D) and that for all u, ve L* Harm(D),
{u, v)1 = Qu, vy where ¢, 3, is the L?(D) scalar product.
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The very definition of L' implies that if ue Bl Harm(D) then L' ue L*(D)
and |1 ul < [lully-

As the image of L®(D) in the projection B is equal to B1H (D), the
question arises: what is the image of the space Harm®(D) of bounded
harmonic functions? The answer is the following:

THEOREM 2. Let D be a strictly pseudoconvex domain with boundary of
class C*. Then the Bergman projection B maps continuously Harm® (D) onto
the space (H'(2D))*, the dual to the Hardy space H'(éD).

Note that (H'(0D)y* consists of holomorphic functions which satisfy a
BMO-condition on 4D if D is the unit ball (see Krantz [12] and also [1] for
various estimates concerning Sobolev spaces of holomorphic functions and
BMO). The proof of Theorem 2 is based on the fact that the difference
between the Bergman and Szegd projections restricted to the space of
harmonic functions is a smoothing singular integral operator.

This fact can be easily checked in the case when D is the unit ball in C".
If 8D is of class C* then this fact is an easy consequence of the deep results
of Boutet de Monvel and Sjostrand [4a]. In our case we shall use the
Kerzman-Stein [9] results for the Szegd operator and analogous results for
the Bergman projection proved in [17]. As a by-product we get the following

THEoREM 3. Let D be a strictly pseudoconvex domain with C* boundary.
Then B maps continuously the Hardy space Harm? (0D) of harmonic functions
onto the Hardy space HP(CD) of holomorphic functions for 2 < p < oo.

Recall that the Hardy space Harm?(0D) is the space of harmonic
functions on D whose boundary values exist and belong to L7 (@D). In other
words, Harm?(8D), p > 1, consists of harmonic extensions by the Poisson
formula of functions from I?(6D). The norm on Harm? (D) is the L*(éD)
norm. The Hardy space H(8D) is the subspace of Harm’(@D) consisting of
holomorphic functions. The Szegd projection is the orthogonal projection
from L?(8D) onto H?(dD). H* (D) is the space of holomorphic extensions to
D of functions ¢ from L'(dD) such that [¢w =0 if @eCy,-y, (D) and dw

D

=0,

We shall apply the above-given results to the study of the behavior of
orthogonal projections onto other spaces of pluriharmonic functions (see
[197). A function f is called pluriharmonic if 00f == 0. We shall consider the
orthogonal projection Q from L?(D) onto the space L?PH(D) of square-
integrable pluriharmonic functions, the orthogonal projection S, from the
space of real functions L?(D) onto the space Re L* H(D) of the real parts of
functions from L2 H (D), and its complexification S; which is the orthogonal
projection from L*(D) onto Re L H(D)®C.

Let Bl PH(D) denote the space of Bloch pluriharmonic functions on D.
I} PH(D) denotes the space of pluriharmonic functions from L'(D) and
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PH?(0D) the Hardy space of pluriharmonic functions. We shall prove the
following :

THEOREM 4. Let D be a strictly pseudoconvex domain with boundary of
class C*. Then

(a) The projection Q maps continuously

1) BY(D) onto BIPH (D),

2) L*(D) onto BIPH(D),

3) L'Harm(D) onto I}PH (D),

4) Harm®™(D) onto the dual space (PH'(D))*,
5) Harm?{(0D) onto PHF(0D) for 2 < p < 0.

(b) The space BIPH (D) represents the dual space to L' PH (D) via the
pairing { , ).

Now, let BlHarm, (D) denote the space of real harmonic Bloch
functions, and let ReBIH (D), ReL' H(D) and ReH”(dD) denote the real
Banach spaces of the real parts of functions from the corresponding classes.
We shall also denote by L (D) the real Banach space of real functions from
'L*(D) and by Harm>(D) the space of real harmonic bounded functions. We
shall prove the following

THEOREM 5. Let D be a strictly pseudoconvex domain with boundary of
class C* Then
(a) The projection S, maps continuously
1) BL (D) onto ReBlIH(D),
2) L¥(D) onto ReBIH (D),
3) L'Harm, (D) onto Re L' H(D),
4) Harm;*(D) onto (ReH"(2D))*, the dual of ReH"(8D),
5) Harm{ (D) onto ReH?(dD) for 2 < p < 0.
(b) The projection S maps continuously
1) BI(D) onto ReBIH (D)®C,
2) L*(D) onto ReBIH (D)®C,
3) L'Harm(D) onto ReL! H(D)®C,
4) Harm™ (D) onto (ReH" (8D)®C)*,
5) Harm?(2D) onto ReH?(D)®C, 2< p< 0.
(¢) The space ReBIH (D) represents the dual of ReL* H(D) viu the pairing
{5 >1- The space ReBIH (D)RC represents the dual of Rel! H(D)®C via the
pairing <, ;.
We have also: S,(Harm;°(D)) = (ReH (aD))* = Re(H" (3D))*,
2. Proofs.

Proof of Proposition 1. In [17] an explicit projection G: LZ(D)
— I H(D) was constructed. It was proved that B = G(I—(G*~G))"". In the
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course of proof of Theorem 1 in [17] it was proved that G*—G maps
continuously L*(D) into the Hélder space Ay/2(D) and that Ker[I—(G*
—G)] ={0}. Thus I—(G*—G) is a Fredholm isomorphism of L*(D) and
therefore it suffices to prove that the operator G maps L®(D) into BIH (D).

We shall proceed as in the proof of Theorem 1 from [17]. Let us recall
briefly the definition of G. Let ¢ denote a defining function of D which is
strictly plurisubharmonic in a neighborhood of D and of class C* on C".
Denote by Lo(z) the Levi form of the function g. There exist &, and , such
that Lo(z, z—w) > clz—w|* if ¢(z) <8, and |z—w| <&,. Let

d &
Fi( 2= T @)+ 5 =) 2w
i = LIY) { B

We have

—g—(z)—;g(—w')+§lz—wlz if o(z) <8 and |z—w| <e&,.

Let (1) be a cut-off function such that y (1) = 1 if t < go/4 and v =0
if t > 80/2.
We put t =|z—w| and define
Fw=—2) =y () F (w, 2)+(1—y (1)) lw—2z?,
o '

0
it 9 =0 (£ O+T w2 J+(1 -V O)E- ).

Re F;(w, 2 —0(2) >

We have
ReF(w, 2)—0(2) 2 ¢(~0(@)—e(W)+|z—w?)
for weD,, = {seC" o(s) < d,} and ze D. The functions F (w, z) and g;(w, z)

are of class C® in w and C2 in z. Let

i1 gi(w: Z) =
N(W,Z):C;(—l) mlzgl A

N(w,z) is a Cauchy-Fantappi¢é form for zedD and thus for every
holomorphic function feC! (D)

Jw) = [ N(w,2)f(2)do, = [&, N(w, 2) f () V..
D D

= =
e AC i Al A Ggy Ads,

N(w, z) and ¢, N(w, z) are of class C® in w and C* in z. Now we define
Gw,2)=Nw, 2)= P (0, (. N(w, 2)) = &, N(w, 2)+Q(w, 2)

where P, is a Hormander operator solving the ?‘—prf)ble[n on Dy, for 6 <8,
such that ¢, ¢ N(w,z) is of class C®*xC! on D;xD. Thus G(w,z) is
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holomorphic in w and since Q(w, ) is of class C* xC! on D xD we have

0
—0@ 0
det| | 7 oG-
By T2
&, &,

Gw, 2) = ne (Fow, 2)— 0@

+ nonsingular terms.

The above construction was given by Kerzman and Stein in [9] and adapted
to the case of area integrals over D in [17].

In order to prove that G maps L™ (D) into BI1H (D) we shall proceed as
in [17] and show that

ClfMe
lo (w)]

lgrad Gf (w)l <

We have
grad Gf (w) = [ f(2) grad,, G(w, z)dV,.

D
If w is near z then the kernel on the right-hand side is dominated by
€y
_ — nt 2"
( 2(d Q(W)+c|z—w|2)

2

Now, we can simply repeat the estimates. given by S. Krantz in [11].
Proceeding in exactly the same manner as S. Krantz we can find a suitable o,
0 <0 < go/6, and a C*(C" x C") cut-off function h(w, z), h(w, 2) = 1 if —p(z)
—oW+lw~z| <a/2, h(w,2)=0if —g(z2)—0(@)+|w—2 >0

Let G, be the operator with kernel (1—h(w, 2))G(w,z) and G, the
operator with kernel h(w, z) G(w, z).

The operator G, is nonsingular and therefore C'-smoothing. We have

1

!gradw sz(w)l S ”f”wg[(-—Q(W)—*Q(Z))/Z'l'CIZ"‘W|2]"+2 dVZ

After the same change of coordinates as in Krantz’s [11] paper the integral
on the right can be estimated by C +1;4; where

leowl VR~

! Y ds
Lipy= | dt d r
S RS e e B e

]
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with 6=(n+2)/2, p=0, y=2n—2. Krantz proved by elementary
calculations that :

Iigy <clowi™+c, m=3%y—-p—26+2,

if p—2f>0,86>0 and m#0. In our case we have m=n—1—-n—-2+2=
—1 and this implies the needed estimate for grad Gf. Thus Proposition 1 is
proved, since the fact that B is onto BIH (D) follows from the fact mentioned
in the introduction that if ueBIH (D) then L'ueL®(D) and u = B(L} u).

Proof of Proposition 2. We shall need the following fact: the space
L?H(D) is dense in L' H(D). Even more is true: the space H(D) of functions
holomorphic in a neighborhood of D is dense in L' H (D). This was proved
by Kerzman in [8] (see also [13]). However, we shall briefly outline the
proof, because we shall need the same construction in the sequel.

For every ze 0D there exists a neighborhood ¥, in D such that for small
g, V, € D+en,, where 1, is the outer normal to 0D at z. Since 8D is compact,
we can find open sets U,, U,,..., U, in C" points z,eU;n 0D for i

k

=1,...,k and g, > 0 such that D= {J U;, Uy € D and U; nD € D+en,, for
i=0

0 <& <ego, i=1,..., k. Let fe L' H(D). The functions f (w—en,) tend to fin

L'(U; D) as ¢ — 0, by the Lebesgue theorem. Each such function is defined

and holomorphic on some open neighborhood of U; n D. Thus for each ¢ we
can. find functions f§ =1, f{,...,ff with

ffel*H(V), DnU€V, [ =Sl <e.

DnU;

Let ¢; be a partition of unity corresponding to the covering {U;}f-,. We
have

”f_};: P L1y < 8

where ¢ is independent of ¢ and f. We can also find 8 > 0 (depending on &)
such that

ey (p,)}"”,‘%‘nm& < 2ce,

where D; = {z: ¢(z) < 8}. Since the Henkin operators T; solving the &-
problem are continuous from L}, s, (D;) into L'(D,) (see [8]) and the norms
of Ty are uniformly bounded if 0 < 6 < §, for &, sufficiently small, we have

”73(52 @ ﬁ“)”u(n,,) <é,
where ¢, is independent of & Thus the sequence of functions

h=Yofi~THEZ o)~/ in L'D).

It follows trom the above construction that the h, are in H (D).

3 - Studia Mathematica 83.3
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Let now ¢ be a continuous functional on L! H(D). It can be extended
by the Hahn-Banach theorem to a continuous functional @ on L!(D) and its
extension is represented by a bounded function m,. Put T(p) = B(m,). It is
clear that T' does not depend on the choice of the extension of ¢ and m,.
Proposition 1 implies that T maps (L' H (D))* into BIH (D). Since L H (D) is
dense in L' H(D) it follows that T is one-to-one, and onto BIH (D). The
inverse mapping T~ ! is given by T (h)(u) = {u, k>, = u, L' h>. Since

1T~ (B < Nl sy 1L Flleo < 16l 1

T™! is continuous. By the open mapping theorem, T~! is an isomorphism
between BIH (D) and (L' H (D)}*.

Proof of Theorem 1. To prove Theorem 1 we must first prove that if
D is a bounded domain with boundary of class C* in R™ then L?Harm (D) is
dense in L! Harm(D).

We proceed in the same way as in the proof of Proposition 2 and
construct an open covering U,,..., U, of D such that for every
feL'Harm(D) and & > 0 there exist f ¢ harmomc on an open neighborhood

of U;nD such that | |f*—f] <e. Let again {¢;} be a partition of unity
DnU;

corresponding to the covering {U;}. We have || f—-—Z ot

HU(M ce, where ¢
is independent on & and f. Denote by u, the functlon Yoft

i
Let G(x, y) denote the Green function of the domain D,

G(X, .V)= = _Gl (xa y)’

Cm |x___y,m 2

whe;e]G1 is harmonic with respect to x and y and smooth on D xD\{(x, x):
xedD

w,(y) = [Au,(x) G(x, y)dV,.
D
We have 4w, = 4u, and

U= A, —f) = ;A (e (f*~1)

_ . 30, OUfE—f)
):[mp.(f f)+2§jaj = ]

Since G(x, y) = 0 on 4D xD we can integrate by parts and get the following
expression for w,:
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wi(3) = jz[mpl(fﬂ f)+zza""a(f ”J[ ! 2—Gl(x,y)]dvx

1 0x;  Ox; C | X— Y™™

={_‘Z£A(Pi f‘"_.f)c - yl"‘ de +(m— 2)2-,[6(01 (j:g_f)c Ix dV}
+{+ZIA(P1 f;e_“f)Gl(X y)dV ng(pl (f! f)aGl(x: y)dV}
=U¢()’)+he(y).

The function h,(y) is harmonic since G,(x,y) and 0G, (x, y)/0x; are
harmonic with respect to y. Thus du, = Av,. Since the singular integral
operators with kernels (x;—y)/Ix—y/™ and 1/jx—y™ % map continuously
LY(D) into L!'(D) we have {lodl,s <ecs, ¢ independent of & We have also
v, C*(D), u,e C*(D). Thus

lim(u,—v) =f in L' HD), u,—v,eC®(D)L?Harm(D).
=0
Now, let heI?Harm(D). Proposition 2 yields that

M e sy, [Bhol=c  sup, 16k o)
BLH(D)_ BIH(D)
) Hallpiam) S ||ny]H(D)< 1
=c sup l<h, gl=c sup I<h, L gl
Ilafnm(m <1 Ilai’nuv{(mS 1
e sup il I gl < €1l
!lyﬁnm(p)\

We have used here the fact that L' g—g is orthogonal to harmonic functions
and that ”ng”Lw S gllemo)-

Thus B is bounded in the L' norm on harmonic functions and since
I*Harm(D) is dense in L!Harm(D), it can be extended to a continuous
projection from L' Harm(D) onto L' H (D).

Proof of Proposition 3. Since D is bounded, BI(D) c N L*(D) and

4
for every p the L” norm is weaker than the Bloch norm. Moreover, it is easy
to prove that for every g&Bl(D), ogeA,(D) for every 0 <a <1 and gg=0
on @D. Recall that g denotes a defining function for D.

We shall now proceed as in the proof of Proposition 1. We have B
= G(I—(G*~G))™". Krantz’s estimates [11] applied in the same manner as
in [17] yield that the operator G*—G maps continuously LF(D) into
Al,2 @n+ 212 (D) p>2n+2 Thus G*—G maps continuously BI(D) into

A, (D) for every 0 <a <%

Thus I —(G*—G) is a Fredholm operator on Bl(D). It now suffices to

prove that G maps BI(D) onto Bl H (D). The operator G is a singular integral
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operator with kernel

—e(2) (Z)
nc det % #o &z + O (lz—w)
—%;(Z) 62—“32:;(2)

() Gw,2) = Fw, D-e@) 1
+nonsingular terms,
Gf(w) =£f(Z)G(W, z)dv;.
We must estimate as before
gradGf(w) = [ f(z) grad, G(w, z)dV, for feBI(D).
Krantz’s estimates yi:ld' that if suffices to estimate

o (FO, 9= 0(@) (2

)
VO e

where

—ol) 2
I(z) =det ‘ Zi
%y Fo
0z, " oz, bz

We have awiF w, z) =g—g(z)+0(|z—wl) and thus it remains to estimate
J Zj
f (Z) (Z)I(Z)
z{(F W, Z) e(2))"*?

Since fp vanishes on 4D, we can integrate by parts and get

av,.

f(Z)gz%(z)l(z) o2
= J
S, A-e@p " = :E(F(w a-ey "

Qflw(F(w 2)-0()
Ryl (F(w D=0 @)?
ef .

az
~JFm ey

dv,
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The first term in the above expression is dominated by

| I iy
bl(—eW)—e@)2+clw—2]"*2

Since we have foe 4, for every 0 <a < 1, fo =0 on 4D, lifell 4, < callflig and

(9/0z) (F (w, 2)—g(2)) = O()z—w)), it follows that the second term is domi-
nated by

v,

f (1A lso) alol” 12— wi
pl(—ew)—e(@)2+clz—w/*]"*3

av,

1/ llem) €a
< j‘[(—Q(W)'—Q(Z))/2+c,z_w'2]n+ 2+1/2-a dy,

If we take « > § then this is dominated by

J. A Ilbipy
pl(—ew)—e@)2+Iw—z7T"*?

For the same reason the third term is dominated by the same expression.
Thus, the last part of the proof of Proposition 1 implies that
lgrad,, Gf (W) < c/lo(w)| and thus Gf belongs to BIH (D). The closed graph
theorem implies that G is continuous from BI(D) onto BIH (D). This ends the
proof of Proposition 3.

av,.

Proof of Theorems 2 and 3. We begin with the following
observation: the space (H' (dD))* is equal to the image of L®(D) under the
Szegd projection S. This follows from the fact that H2(dD) is dense in
H' (D). (Romanov [21] and Henkin [6] proved that H(D), the space of
functions holomorphic in a neighborhood of D, is dense in H?(dD) for every
1< p<oo) Every functional ¢ from (H*(éD)}* extends to a continuous
functional on L'(8D) and therefore can be represented by a bounded
function m on 0D. Thus the mapping ¢ — S(m) is a well-defined one-to-one
correspondence between (H'(dD))* and S(L™(8D)). If we equip the space
S(L=(éD)) with the norm

IA* = sup 1€9, /> gl

Hﬂlﬂl(m .
we get a Banach space isomorphic to (H'(@D))*. Thus we can say that §
maps continuously L*(dD) onto (H'(dD))*.

The Poisson formula gives an isomorphism between L°°(6D) and
Harm®(D), the space of bounded harmonic functions. Denote this
isomorphism by P. We are now going to prove that S—BP is a compact
operator which maps L*(8D) continuously into A, (D).

Since for every bounded harmonic function u there exists veL®(0D)
such that u = Py (by the Fatou theorem), it follows that B(Harm=(D))
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= §(L= (D))
B=G(I~-(G*-G))"!
By the Kerzman—Stein result [9]
S=H(I-(H*-H)"' = H+HH*-
Recall that

= (H*(6D)}*. We have as before
= G+G(G*—G)(I-(G*—G))~!

H) (I~ (H* — H)™*

Ho(w) = [ N(w, 2}v(2)do.+ | R(w, 2)v(z)do,

aD &

where R is a nonsingular correction term added to make H(w,z)
holomorphic in w (compare the proof of Proposition 1). It follows from the
estimates of [7] and [11] that H*— H and G* -G map continuously L® (dD)
and L*(D) into A,;;(D) and both H and G map continuously 4, (D) into
Ay2(D) for all 0 <« < 1. (If the boundary of D is of class C¥, k > 5, then H
and G map A,(D) into A,(D) for 0 <a < 1) Let, as before,

0
~0(2) —a§;
I(z) = det ,.._63 0
0Z, j 0z, 7] 62;
We have
(1@ +0(z—wh)v(2) .
H = do,+nonsingular operator,
v =< eI F o A—eF gular op
Gu (w) = nc | (o) +0G—wh)u() dV,+nonsingular operator.

b (Fw, )=o)

Below, the symbol Fp will denote grade extended from 6D to a
nonvanishing function on D.

In order to prove that S—BP is a compact operator on L®(dD) it
suffices to show that

H,v-G,u is a compact operator if v = Pu.

H, denotes here the integral operator acting on 0D with kernel
l(z)do, ~ .
and G, denotes the operator with kernel
Ve @I(F (v, 2)— 0 GIF ‘ P
nl(z)dV,

(Flw,2)—e(@)"*" ,

Let as before ve L*(0D) and u = Pv be the harmonic extension of v.
Since
1

L AdZ, A dz
a|VQ|2

=Y (=1 tdE, A... A dE A
i=1
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we have
163206
Hoow= ) o F o, 9= e P

dz, A...Azz'\i/\ . AdZ, Adz

e 0
l(z)Tg_—(F(w 2)—e@)ulz)

X Treer e, a—ear %

0o Ou
102
0z; 82
W e TR T

1Q)(Ge/dz)\  u()
+jZazl( Pe@P JFw 9—e@y "~

Since (8/0z)(F (w, z)— g(2)) = — 8g/6%; + O (w—z]), the first term on the right
is equal to G, u+K, where K, maps L*(D) into A,;,(D). The last term on
the right is also a compact operator which maps L®(D) into A, (D) for every
0 <o < 1. Thus it suffices to estimate the second term. We have

l(z)—(z) e
rerEe, z) e,

av,
y
du

e lo g o (F (v, 9—2(2)
(5o (e S e 2
325 \we )T 9—cor "t R el o 0P

o,
= —I“ ""——Qu— .é. ! \ az,
_.IJ;%A (IVQIZ)(F(W,Z)'—Q(Z))d + 2;:5 <|VQ| /F(w,z) a(z))n
o (1 \9“5%(1’(%2)—9(2))
_n£;E<W/ (F(W’Z)“Q(Z))"“ v,

av,

T—

3 [1@/0z) (F w, 2)=e(@) | ”
wnzja;?z‘;[ |Pol? J(F(w1 Z)—Q(z))""“ldv;
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Iu—g—g——;_w(F (w, z)””Q(Z))
—n[Y 2 OZi dv,
Ly e e e
b5}
lue*a%(F(W, =0 @)z (F(w, 2)—-e(2)
D [X Fon, =G "

We have twice integrated by parts and used the fact that Y 8%u/dz, 0z, = 0
since u is harmonic. Since (9/0z)(F (w, z)—¢(z) = 0(|z—w|)land

| e@ | 1

KF (w, 2)—e(2))"] (—e@—ow)2+clz—w2" 1’
for all kernels Gj(w, z) which arise in the last sum we have

1
|(“Q(Z)—Q(W))/2+c|z__w|2'n+1+1/z-

lgrad,, Gi(w, )| <

Thus the integral operators corresponding to these kernels map continuously
L*(D) into A,;,(D). This ends the proof of Theorem 2,

To prove Theorem 3 we must observe that the above-given description
of S—BP implies that §—BP maps continuously L*(dD) into Ayjam ot 1720
for p> 2n+2 (see the proof of Proposition 3 and observe that the L7 (oD)
norm is stronger that the LP(D) norm of the harmonic extension of a
function from L?(@D)). It was proved by Kerzman and Stein [9] that the
Szegd projection maps continuously. L?(6D) onto H?(éD) (they stated this
fact for C®-smooth domains but their proof remains valid in our case). This
implies that B maps continuously Harm?(dD) onto H?(dD) for p>2n+2
On the other hand, the L* (D) norm on Harm? (8D) is equivalent to the Sobolev
norm || |ly/2. From the estimates due to Greene and Krantz [5] it follows
that if D is a bounded strictly pseudoconvex domain with boundary of class
C**? then B maps continuously the Sobolev space W* into itself (this follows
as usual from the estimates for the @-Neumann problem, see [51, §3,
Propositions 3.2.23 and 3.2.25). Thus in our case B maps continuously L2(D)
into itself and W' (D) into itself. Interpolation shows that it must also map
WI/Z(D) into itself and therefore Harm? (D) onto H?(éD). Hence, again by
interpolation B maps Harm?(6D) onto H?(8D) for every 2< p < c0.

Proof of Theorems 4 and 5. It follows from Theorem 0, Theorem 2
and Remark 3 of [19] that L?>PH(D)=Rel*H (D)®CDE where
E1Re[* HD)®C, dim¢E < dimgH* (D, R) < o0 (H*(D, B) is the first de
Rham cohomology group of D) and E consists of functions belonging to
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Ay (D). Thus Q@ =S+R where R is the finite-dimensional orthogonal
projection from L?>(D) onto E. This implies that Theorem 4 is a direct
consequence of Theorem 5. To prove Theorem 5 we shall proceed in exactly
the same way as in the proofs of Theorem 2 and Remark 3 in [19]. For
every real ue L?(D) we have

S, (u) = 2ReBu—ReB (S? (u) L! (1))
where S°(u) is the function from L?H (D) such that S,z = ReS°(u) and
[ImS? (W) = 0. -
b

In order to prove that S, maps L*(D) onto Re BIH(D) and BI (D) onto
Re BIH (D) we shall repeat the procedure from [19], Remark 3. There it was
proved that L'(1)u maps L? Harm(D) into Wp1 (D). By the Sobolev imbedding
theorem W} (D) is continuously imbedded in L#(D) for q = 2np/(2n—p) if p
<2n and in A,(D) for o =1—2n/p if p>2n Moreover, the Bergman
projection B maps continuously L?(D).into L?(D), and A,(D) into A,, (D) for
0<a<1 (see [17] and [19], Remark 3).

Now, let ue L?(D) or ueBl (D). Then BueBIH (D) and

2n

SSWEWMeW (D) =D, g=-7.

Thus S, (u)e L*(D) since B maps L#(D) into L7(D). Hence

—_— 2n

SOuLr()eW} (D)= L (D), q =
and as before S.ue L™ (D) and

— 2

STuLi (el (D) = L20), g =75

After n—1 such steps we get S%u L' (1)e Wi, (D) = L2(D) for every 1 < g < c0..
Thus S,ue L?(D) for every g and hence SCu L' (1) belongs to A,(D) for each
0 <o < 1. This implies that B(SCu (1)) maps continuously LZ(D) (and
B, (D)) into A, H(D) for 0 <« <4. Thus S, maps continuously L?(D) and
B, (D) onto ReBIH (D) since ReBu maps, by Propositions 1 and 3, L*(D)
onto ReBI(D) and BI(D) onto ReBIH (D).

We have proved parts (al) and (a2) of Theorem 5. Part (c) follows from
(a2) in the same manmer as Proposition 2 from Proposition 1, and (a3)
follows from (c) and (a2) in the same way as Theorem 1 from Propositions 1
and 2. .
To prove (a4) we shall proceed in the following way. Let S denote as
before the Szegs projection and let R denote the orthogonal projection from
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L*(3D) onto ReH?(8D). If u is real, then
2ReSu = Ru+ReS(R%u),
where R%u is the holomorphic function from H?(8D) such that Ru = ReR°y
and {ImR%uy =0.
D

We are now going to prove that R(L®(8D)) = S,(Harm®(D)). We have
Ru = 2ReSu—Re(B(R%u)—K (R%u))

where K = S— BP is the compact operator described in detail in the proof of
Theorem 2 (P denotes here, as before, the harmonic extension of functions
from éD to D).

Since S,u = 2ReBu~ReB(§WU (1)), for every ue L*(dD) we have
(= S,(Puy—Ru

+ =2Re(BPu~Su)~ReB(S? Pu L (1))-Re(B(R%)— K (Ru)).
In the proof of Theorem 3 it was observed. that the operator BPu— Su maps
continuously L®(0D) into Ayjs—(w+ yy2p (D), p > 2n+2. The operator B(f)
= B(fL'(1)) maps LPH(D) into LH(D), q = 2np/(2n—p), for p < 2n, and
LPH(D) into Ay_,,,H(D) for p>2n.

The operator S(f) maps H?(dD) into H*(2D) for every ¢ < (2n+2) p/(2n
+2—p), p <2n+2, and H?(8D) into Ayjz—geyp if p>2n+2. This can be
proved in the following way. The operator H— H* maps L?(8D) into L2(dD)
for p <2n+2 and L*(6D) into A3y 1y for p > 2n+2. This follows from
the estimates in [7], [21], and [12]. It then suffices to prove that H maps
H”(0D) into L*(0D) and H”(8D) into A, for suitable p, g, « (see the proof of
Theorems 2 and 3). We have

o (1@+0(z=w) T @)

B0 = L 2ol (F v, 2)- e =

_ 10+0(z-w)T@ d ~

= aj,;]VQ(z)IZ(F(w, z)—g(z))"},:gz:,?dz Adzy Ao AdZ AL A dz,

-y _‘3_(591(2)+0(|2"W|)) 7@
T b0 \&Z  |Po(z)? (F(w, 2)—0(2))

AV,

L0
80 1(2)+ 0 (1z—w)) f(z)—é;(F(W, 2)—0(2)

+nz I'E oz, |Vo(z)? (F(Wl, Z)_Q(z))n+1 dv,

since f(z)/0z; = 0. Note that by the definition of F (w, 2)

0
gZ;(F(Wa 2)=0(2) = O(lw—z))
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and thus Hf maps L?"*2(0D) into H?(&D) for every 0 < g < oo and L*(dD)
into A,(D), « =%—(n-+1)/p. Thus Sf has the desired property for p > 2n+2.
We now have the duality relation

<h, Sf>Lz(,~D) = SE>I.2(PD)'

By this relation Sf maps H**(dD) into H@* 2120+ 3Dy for every ¢ > 0.
The Riesz-Thorin theorem yields that Sf maps H?(éD) into H?(8D) for every

q <(2n+2)p/(2n+2—p). We can now write Ru = 2ReSu—ReS(R°u) and
use the same procedure as for the operators S, and B to prove that R maps
L?(@D) into L*(0D) for every 2 € p < oo. The above estimates for K, Bf and
Sf and () imply that the operator S,u— Ru maps continuously L®(aD) into
A, (D), & =4%—(n+1)/(2p), p> 2n+2. Thus S,u—Ru = Reh, he A, (D). Since
Reh belongs to R(L®(dD))nS,(Harm®(D)) we have S,(Harm®(D))
= R(L*(éD)).

The space ReH'!(AD) is not a closed subspace of L' (#D). However, we
can treat it as a normed subspace of L!(8D) and consider the adjoint space
(ReH! (@D))*. 1t is clear that (ReH®(AD))* = (ReH (3D))*, where the closure
is taken in L'(8D). Since H(D) is dense in H'(8D), ReH (D) is dense in
ReH' (0D) and thus ReH?(8D) is dense in ReH'(dD). Each element ¢ from
(ReH' (0D))* can be extended to a continuous functional on L*(8D) and
therefore represented by some function me L®(0D). Just as in the proof of
Theorem 2, the function R(m) represents ¢ as a functional on (ReH® (dD))*
and we have a one-to-one correspondence between (ReH!(dD))* and
R(L*®(8D)). Thus we have

S.(Harm? (D)) = (ReH" (0D))* = Re (H" (éD))*.

The last equality follows from the fact that (H*(&D)}* = S(L*(éD)) and
Ru—2ReSucRe A, H(D) if ueL®(dD) and o = 4—(n+1)/2p), p >2n+2.

Part (a5) of Theorem 5 can be proved in exactly the same way as above
using the fact that -

1AW gpopy < RSN ooy
if {Imf =0 and 1 <p<oo (see Stout [23]).
D

Part (b) of Theorem 5 follows from part (a) via complexification.

ProBLEM. 1. Lieb and M. Range in [14], [15] and [16] used integral
formulae to get Holder and C* estimates for the operator &* Nu, where o is a
(p, g)-form and N is the operator solving the d-Neumann problem ¢ = a.
Does the operator ¢* Na behave better if « is a form with harmonic
coefficients, or at least if o is such that fo = 0 and ta = 07 (z is the formal
adjoint of &) ’
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On functions whose improper Riemann integral
is absolutely convergent

by
CHRISTOPH KLEIN (Karlsruhe)

Abstract. Absolutely convergent improper Darboux integrable functions on the compact
support of a nonnegative Radon ¢ are introduced.

Introduction. S. Rolewicz deduced in [10] that a consistent definition
of the Lebesgue integral is not possible for functions f: [0, 1] — X where X is
a non-locally convex linear metric space. Hence, D. Przeworska-Rolewicz
and S. Rolewicz [8] and independently B. Gramsch [1] introduced the
Riemann integral for that situation. S. Rolewicz and the author [4] defined
the Riemann integral for functions f: K — X where K is the compact support
of a nonnegative Radon measure p and where X is a topological linear
space.

In [4], [5] of S. Rolewicz and the author, the translation of the classical
result—i.e. a bounded function f: [0, 1]— R is Riemann integrable iff f is
continuous almost everywhere—was proved for Darboux integrable
functions. These functions are characterized by Darboux lower and upper
sums resp. by distance sums in the general case. Darboux integrable
functions are Riemann integrable but the converse is false in general.

In this paper we characterize the Darboux integrability by a kind of
fractional continuity. This allows us to obtain a definition of absolutely
convergent improper Darboux integrability with respect to K and u: Indeed,
an unbounded function g is absolutely convergent improper Darboux
integrable iff the following holds: (1) g fulfils the fractional continuity
property and (i) g is absolutely Ei-Bochner integrable (or equivalently: the
improper p-Riemann integral of g is absolutely convergent).

There are also recent studies on Riemann integrable functions: R.
Henstock [2], J. Kurzweil [6] and E. J. McShane [7] deduced that
modifications of the Riemann integral on [0, 1] yield the Lebesgue and even
the Perron-Ward integral. C. S. Honig [3] found examples of Hilbert space
valued functions on [0, 1] which are Riemann integrable but not measurable
with respect to the complete Lebesgue measure. G. C. da Rocha Filho [9]
analysed Riemann integration depending on the geometry of Banach spaces.
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