

## STUDIA MATHEMATICA, T. LXXXV. (1987)

## On basic Hahn-Banach extensions

۲

## JAMES R. HOLUB (Blacksburg, Va.)

Abstract. A criterion is derived for the existence of a basic sequence of Hahn-Banach extensions of the coefficient functionals of a basic sequence of codimension one in a Banach space. Using this criterion and renorming results which are shown to characterize the usual basis for  $c_0$ , a negative answer is given to a question of Retherford concerning the existence of such extensions.

A problem of Retherford concerning the existence of norm-preserving extensions of coefficient functionals is the following (see [7, p. 66], or [6, p. 84]).

Given a basic sequence  $\{x_n\}_{n=1}^{\infty}$  in a Banach space X having coefficient functionals  $\{x_n^*\}_{n=1}^{\infty}$  in  $[x_n]^*$ , does there exist a sequence of Hahn-Banach extensions of the functionals  $\{x_n^*\}_{n=1}^{\infty}$  which is a basic sequence in  $X^*$ ? i.e. does there exist a sequence  $\{g_n\}_{n=1}^{\infty}$  in  $X^*$  for which  $\|g_n\| = \|x_n^*\|$  for all n and for which  $\{x_n, g_n\}_{n=1}^{\infty}$  is a bi-basic system (see [2] and [6, p. 85])?

In a recent paper [7] Terenzi has given a partial answer to this question by showing that there always exists some basic sequence  $\{g_n\}_{n=1}^{\infty}$  in  $X^*$  which is biorthogonal to  $\{x_n\}_{n=1}^{\infty}$ , but it may not be that  $||g_n|| = ||x_n^*||$  for all n. In fact, the proof does not even guarantee that  $\sup ||x_n|| ||g_n|| < +\infty$ .

The purpose of this paper is to give a negative answer to the question of Retherford as an outgrowth of a general study of the problem of existence of basic Hahn-Banach extensions of coefficient functionals in the simplest possible case, where  $\operatorname{codim}[x_n]_{n=1}^{\infty}=1$ . This result is a consequence of a general existence criterion for such Hahn-Banach extensions (Theorem 1) and of related results which essentially show that the guaranteed existence of such extensions characterizes the unit vector basis  $\{e_n\}_{n=1}^{\infty}$  for  $c_0$  (Proposition 1 and Theorem 3). We begin with general discussion of Hahn-Banach extensions which will culminate in the first of these results.

Suppose  $\{x_n\}_{n=1}^{\infty}$  is a basic sequence in X for which  $M = [x_n]_{n=1}^{\infty}$  is of codimension one in X. Then  $\{x_n\}_{n=1}^{\infty}$  is a basis for M having coefficient

<sup>1980</sup> Mathematics Subject Classification: Primary 46B15, 46B20, 46A22; Secondary 46B25.

functionals  $\{x_n^*\}_{n=1}^{\infty}$  in  $M^*$ , and if  $x_0$  is any vector not in M the sequence  $\{x_n\}_{n=0}^{\infty}$  is a basis for X whose sequence of coefficient functionals  $\{f_n\}_{n=1}^{\infty}$  forms a basic sequence in  $X^*$ . Since  $\langle f_n, x_m \rangle = \delta_{nm}$  for all n and m it must be that  $M^{\perp} = [f_0]$  and  $f_{n|M} = x_n^*$  for  $n \ge 1$ , so if  $\{g_n\}_{n=1}^{\infty} \subset X^*$  is any sequence of extensions of  $\{x_n^*\}_{n=1}^{\infty}$  to X then  $g_n|_M = f_n|_M = x_n^*$ , from which it follows that  $g_n - f_n \in M^{\perp} = [f_0]$ , and hence that  $g_n = f_n - \lambda_n f_0$  for some scalars  $\{\lambda_n\}_{n=1}^{\infty}$ . Conversely, any sequence in  $X^*$  of the form  $\{f_n - \lambda_n f_0\}_{n=1}^{\infty}$  is clearly a sequence of extensions of  $\{x_n^*\}_{n=1}^{\infty}$  to X. Therefore a sequence in  $X^*$  is a sequence of Hahn-Banach extensions of  $\{x_n^*\}$  it is of the form  $\{f_n - \lambda_n f_0\}_{n=1}^{\infty}$ , where  $\|f_n - \lambda_n f_0\|_{n=1}^{\infty}$  where  $\|f_n - \lambda_n f_0\|_{n=1}^{\infty}$  it is of the form

But it is well known that if  $h \in X^*$  then

$$||h|_{M}|| = \inf_{f \in M^{\perp}} ||h - f||$$
 [4, p. 121],

so

$$||f_n - \lambda_n f_0|| = ||f_n|_M|| \iff ||f_n - \lambda_n f_0|| = \inf_{\lambda} ||f_n - \lambda f_0|| = \operatorname{dist}(f_n, [f_0]).$$

That is, there exists a basic sequence of Hahn-Banach extensions of  $\{x_n^*\}_{n=1}^\infty$   $\Rightarrow$  there is a sequence of scalars  $\{\lambda_n\}_{n=1}^\infty$  for which  $||f_n - \lambda_n f_0|| = \text{dist}(f_n, [f_0])$  and  $\{f_n - \lambda_n f_0\}_{n=1}^\infty$  is a basic sequence in  $X^*$ .

Now in a previous paper [3] we showed that a sequence of the form  $\{f_n - \lambda_n f_0\}_{n=1}^{\infty}$  is a basic sequence in  $X^* \Leftrightarrow$  it has codimension one in  $[f_n]_{n=0}^{\infty}$ . Hence  $\{f_n - \lambda_n f_0\}_{n=1}^{\infty}$  is basic in  $X^* \Leftrightarrow \exists G \neq 0$  in  $([f_n]_{n=0}^{\infty})^*$  for which  $\langle G, f_n \rangle = \lambda_n \langle G, f_0 \rangle$  for all  $n \geq 1$ , and hence  $\Leftrightarrow \exists F \in ([f_n]_{n=0}^{\infty})^*$  for which  $\langle F, f_0 \rangle = 1$  and  $\langle F, f_n \rangle = \lambda_n$  for all  $n \geq 1$ . Consequently, if  $\{f_n - \lambda_n f_0\}_{n=1}^{\infty}$  is basic in  $X^*$  then

$$\sup_{N} \left\| \sum_{n=1}^{N} \lambda_{n} x_{n} \right\| = \sup_{N} \left\| \sum_{n=1}^{N} \langle F, f_{n} \rangle x_{n} \right\|$$

(where  $F \in ([f_n]_{n=0}^{\infty})^*$  is as above), and where this last is  $\leq K ||F|| < +\infty$  for some K independent of F [5, p. 126]. Conversely, if  $\sup_{N} \left\| \sum_{n=1}^{N} \lambda_n x_n \right\| < +\infty$ 

then setting  $\lambda_0 = 1$  we have  $\sup_N \left\| \sum_{n=0}^N \lambda_n x_n \right\| < +\infty$  and there is an  $F \in ([f_n]_{n=0}^\infty)^*$  for which  $\langle F, f_n \rangle = \lambda_n$  for all  $n \ge 0$  [5, p. 126], hence for which  $\langle F, f_n \rangle = \lambda_n \langle F, f_0 \rangle$  for all  $n \ge 1$ , so  $\{f_n - \lambda_n f_0\}_{n=1}^\infty$  is of codimension one in  $[f_n]_{n=0}^\infty$  and is therefore basic in  $X^*$  by the above. That is, we have proved:

THEOREM 1. Let  $\{x_n\}_{n=1}^{\infty}$  be a basic sequence in X for which codim  $[x_n]_{n=1}^{\infty} = 1$  and having coefficient functionals  $\{x_n^*\}_{n=1}^{\infty}$  in  $[x_n]^*$ . There exists a sequence of Hahn-Banach extensions of  $\{x_n^*\}$  which is a basic sequence in  $X^* \Leftrightarrow \text{for any } x_0 \notin [x_n]_{n=1}^{\infty}$  the coefficient functionals  $\{f_n\}_{n=0}^{\infty}$  of the basis  $\{x_n\}_{n=0}^{\infty}$  for X have the property that there is a sequence of scalars  $\{\lambda_n\}_{n=1}^{\infty}$  for

which

$$||f_n - \lambda_n f_0|| = \inf_{\lambda} ||f_n - \lambda f_0||$$
 for all  $n \ge 1$ 

and for which  $\sup_{N} \left\| \sum_{n=1}^{N} \lambda_{n} x_{n} \right\| < +\infty$ .

This result (Theorem 1) is central to all we do in this paper. Using it we could now easily give an example of a basic sequence whose coefficient functionals admit no basic Hahn-Banach extensions, thereby answering negatively the question of Retherford. However, we prefer to give a more comprehensive discussion of what is intrinsically involved in all such examples, eventually obtaining a theorem which has as a consequence the existence of infinitely many nonequivalent basic sequences with this property (Theorem 3). We begin with a pair of positive results concerning basic Hahn-Banach extensions.

THEOREM 2. Let  $\{x_n\}_{n=1}^{\infty}$  be a basic sequence in X for which codim  $[x_n]_{n=1}^{\infty} = 1$  and having coefficient functionals  $\{x_n^*\}_{n=1}^{\infty}$  in  $[x_n]^*$ . Then there is an equivalent norm on X for which the sequence  $\{x_n^*\}_{n=1}^{\infty}$  has a basic sequence of Hahn-Banach extensions in  $X^*$ .

Proof. Let  $\|\cdot\|$  denote both the original norm on X and the dual norm on  $X^*$ . If  $x_0 \notin [x_n]_{n=1}^{\infty}$  then  $\{x_n\}_{n=0}^{\infty}$  is a basis for  $(X, \|\cdot\|)$  with coefficient functionals  $\{f_n\}_{n=0}^{\infty}$  in  $(X^*, \|\cdot\|)$ . Since there is an equivalent norm on X under which  $\{x_n\}_{n=0}^{\infty}$  is a normalized monotone basis [5, p. 250], we may assume  $\{x_n\}_{n=0}^{\infty}$  is a monotone basis for  $(X, \|\cdot\|)$  with  $\|x_n\| = 1$  for all  $n \ge 0$ . Consequently we will have that  $\{f_n\}_{n=0}^{\infty}$  is a monotone basic sequence in  $(X, \|\cdot\|)^* = (X^*, \|\cdot\|)^*$  [5, p. 251], and the canonical embedding of X into  $([f_n]_{n=0}^{\infty}, \|\cdot\|)^*$  is an isometry [5, p. 115]. It follows that if we define an equivalent norm on  $[f_n]_{n=0}^{\infty}$ , say  $\|\cdot\|$ , then the expression  $\|x\| = \sup\{\langle f, x \rangle\}$   $f \in [f_n]_{n=0}^{\infty}$ ,  $\|f\| = 1$  defines a norm on X equivalent to  $\|\cdot\|$ . Moreover, if the basis  $\{f_n\}_{n=0}^{\infty}$  for  $([f_n]_{n=0}^{\infty}, \|\cdot\|)$  is still monotone then for any  $f \in [f_n]_{n=0}^{\infty}$  we have  $\|f\| = \sup\{\langle f, x \rangle \| \|x\| = 1, x \in X\}$  [5, p. 115], so  $([f_n]_{n=0}^{\infty}, \|\cdot\|)$  will be embedded isometrically in  $(X, \|\cdot\|)^*$ . That is, such a renorming of  $[f_n]_{n=0}^{\infty}$  induces an equivalent renorming of X with the property that the new dual norm on  $X^*$  agrees with the newly defined norm on  $[f_n]_{n=0}^{\infty}$ .

With this in mind we define on the space  $[f_n]_{n=0}^{\infty}$  the norm

$$|||f||| = |||\sum_{n=0}^{\infty} c_n f_n||| = ||c_0 f_0|| + ||\sum_{n=1}^{\infty} c_n f_n||.$$

Obviously  $|||\cdot|||$  is equivalent to  $||\cdot||$  on  $[\int_{n}]_{n=0}^{\infty}$ , and in this new norm  $\{f_n\}_{n=0}^{\infty}$  is still monotone. Therefore, by the above, if we define a new norm on X by  $|||x||| = \sup\{\langle f, x \rangle | |||f|| \le 1, f \in [f_n]_{n=0}^{\infty}\}$  then  $|||\cdot||$  is equivalent to  $||\cdot||$  and  $([f_n]_{n=0}^{\infty}, |||\cdot||) \subset (X, |||\cdot||)^*$  (isometrically). But for any  $n \ge 1$ ,

$$\inf_{\lambda} |||f_n - \lambda f_0||| = \inf_{\lambda} [|| - \lambda f_0|| + ||f_n||] = ||f_n||,$$

and this inf is attained only when  $\lambda = \lambda_n = 0$ . Hence by Theorem 1 it follows that the coefficient functionals  $\{x_n^*\}_{n=1}^{\infty}$  of the basic sequence  $\{x_n\}_{n=1}^{\infty}$  in  $(X, |||\cdot|||)$  have Hahn-Banach extensions which are a basic sequence in  $(X, |||\cdot|||)^*$ , and the proof is complete.

Theorem 2 shows that one can (at least) equivalently renorm X to obtain a basic sequence of Hahn-Banach extensions for the coefficient functionals of a basic sequence of codimension one. Our next result shows that in the case of one particular type of basic sequence no renorming is necessary, even when  $codim[x_n] = +\infty$ .

PROPOSITION 1. Let  $\{x_n\}_{n=1}^{\infty}$  be a basic sequence in X which is equivalent to the usual basis  $\{e_n\}_{n=1}^{\infty}$  for  $c_0$ . Then there is a basic sequence in  $X^*$  of Hahn-Banach extensions of the coefficient functionals for  $\{x_n\}_{n=1}^{\infty}$ .

Proof. If  $\{x_n\}_{n=1}^{\infty}$  is equivalent to the basis  $\{e_n\}_{n=1}^{\infty}$  for  $c_0$  then, in particular,  $0 < \delta = \inf \|x_n\| \le \sup \|x_n\| \le M < +\infty$  for some  $\delta$  and M. Suppose  $\{x_n^*\}_{n=1}^{\infty} : c [x_n]^*$  is biorthogonal to  $\{x_n\}_{n=1}^{\infty}$ , and let  $\{f_n\}_{n=1}^{\infty} : c X^*$  be any sequence of Hahn-Banach extensions of  $\{x_n^*\}_{n=1}^{\infty}$ . Then  $\{f_n\}_{n=1}^{\infty}$  is biorthogonal to  $\{x_n\}_{n=1}^{\infty}$  and  $\|f_n\| = \|x_n^*\|$  for all n, so  $\sup \|f_n\| = \sup \|x_n^*\| < +\infty$ , since  $\inf \|x_n\| = \delta > 0$ . Hence for any constants  $\{c_n\}_{n=1}^{\infty}$  we have

$$|\sup_{n} ||f_{n}|| \sum_{n=1}^{N} |c_{n}| \ge \| \sum_{n=1}^{N} c_{n} f_{n} \| \ge \sup_{\|\sum_{n=1}^{\infty} a_{n} x_{n}\| = 1} |\langle \sum_{n=1}^{N} c_{n} f_{n}, \sum_{n=1}^{\infty} a_{n} x_{n} \rangle|$$

$$= \sup_{\|\sum_{n=1}^{\infty} a_{n} x_{n}\| = 1} |\sum_{n=1}^{N} a_{n} c_{n}|.$$

But since  $\{x_n\}_{n=1}^{\infty}$  is equivalent to  $\{e_n\}_{n=1}^{\infty}$  in  $c_0$  there is an  $\epsilon > 0$  (independent of  $\{c_n\}$ ) for which this last is

$$\geqslant \varepsilon \sup_{|\varepsilon_n|=1} \left| \sum_{n=1}^N \varepsilon_n c_n \right| = \varepsilon \sum_{n=1}^N |c_n|.$$

That is, the mapping  $T: l^1 \to X^*$  defined by  $T(e_n) = f_n$  is an isomorphism, implying that  $\{f_n\}_{n=1}^{\infty}$  is a basic sequence in  $X^*$  (which is, in fact, equivalent to the basis  $\{e_n\}_{n=1}^{\infty}$  for  $l^1$ ) and is therefore the desired sequence of extensions.

Now it follows from Proposition 1 that if  $\{x_n\}_{n=1}^{\infty}$  is a basic sequence in X which is equivalent to the basis  $\{e_n\}_{n=1}^{\infty}$  for  $c_0$ , then no matter how X is equivalently renormed there will still always exist a basic sequence of Hahn-Banach extensions for the coefficient functionals of  $\{x_n\}_{n=1}^{\infty}$ . We now show that, at least for basic sequences of codimension one, this property characterizes the basis  $\{e_n\}_{n=1}^{\infty}$  for  $c_0$ , thereby not only providing numerous

examples of basic sequences whose coefficient functionals do not admit basic Hahn-Banach extensions, but also completing the circle of ideas concerning the existence and stability of such basic sequences inherent in earlier parts of this paper.

THEOREM 3. Let  $\{x_n\}_{n=1}^{\infty}$  be a bounded basic sequence in a Banach space X for which  $\operatorname{codim}[x_n]_{n=1}^{\infty}=1$ , and suppose  $\{x_n\}_{n=1}^{\infty}$  is not equivalent to the basis  $\{e_n\}_{n=1}^{\infty}$  for  $c_0$ . Then there is an equivalent norm on X for which no basic sequence of Hahn-Banach extensions of the coefficient functionals for  $\{x_n\}_{n=1}^{\infty}$  exists.

Proof. As in the proof of Theorem 2 let  $\|\cdot\|$  denote the original norm on X and let  $x_0 \notin [x_n]_{n=1}^\infty$ , so that  $\{x_n\}_{n=0}^\infty$  is a basis for  $(X, \|\cdot\|)$  which is not equivalent to the basis  $\{e_n\}_{n=1}^\infty$  for  $c_0$  and which may be assumed to be normalized and monotone. If  $\{f_n\}_{n=0}^\infty \subset X^*$  is biorthogonal to  $\{x_n\}_{n=0}^\infty$  then, just as in the proof of Theorem 2, defining an equivalent norm  $\|\cdot\|$  on  $[f_n]_{n=0}^\infty$  in which  $\{f_n\}_{n=0}^\infty$  is still monotone will result in the expression  $\|x\| = \sup\{\langle f, x \rangle\} \|f\| \le 1, f \in [f_n]_{n=0}^\infty\}$  defining an equivalent norm on X whose dual norm agrees with  $\|\cdot\|$  on  $[f_n]_{n=0}^\infty$ . Consequently, to prove the theorem we need only (according to Theorem 1) define an equivalent norm  $\|\cdot\|$  on  $[f_n]_{n=0}^\infty$  in which  $\{f_n\}_{n=0}^\infty$  is still monotone and so that whenever  $\|f_n-\lambda_nf_0\| = \inf\|f_n-\lambda_nf_0\|$  for all  $n \ge 1$ , then  $\sup \|\sum_{n=0}^N \lambda_n x_n\| = +\infty$ .

To define such a norm we first note that the assumption that  $\{x_n\}_{n=0}^{\infty}$  is not equivalent to  $\{e_n\}_{n=1}^{\infty}$  in  $c_0$  implies  $\sum_{n=0}^{\infty} x_n$  is not weakly unconditionally

Cauchy [1], and hence there is  $h_0 \in X^*$  for which  $||h_0|| = 1$  and  $\sum_{n=0}^{\infty} |\langle h_0, x_n \rangle|$  =  $+\infty$  [5, p. 434].

Now define a new norm  $\|\cdot\|$  on  $[f_n]_{n=0}^{\infty}$  by the expression

$$|||f||| = |||\sum_{n=0}^{\infty} c_n f_n||| = [||c_0 f_0||^2 + ||\sum_{n=1}^{\infty} c_n f_n||^2]^{1/2} + \sup_{n \ge 1} |c_0||f_0|| + \varepsilon_n c_n ||f_n|||,$$

where

$$\varepsilon_n = \begin{cases} 1 & \text{if } \langle h_0, x_n \rangle \geqslant 0, \\ -1 & \text{if } \langle h_0, x_n \rangle < 0. \end{cases}$$

It is trivial to check that  $|||\cdot|||$  is, indeed, a norm on  $[f_n]_{n=0}^{\infty}$  which is equivalent to  $||\cdot||$ , and it is obvious that since  $\{f_n\}_{n=0}^{\infty}$  is monotone in the norm  $||\cdot||$  it will also be monotone in  $||\cdot||$ . Moreover, for any  $n \ge 1$  we have

$$\inf_{\lambda} |||f_n - \lambda f_0||| = \inf_{\lambda} ([||\lambda f_0||^2 + ||f_n||^2]^{1/2} + \sup \{||\lambda f_0||, |-\lambda||f_0|| + \varepsilon_n ||f_n|||\}),$$

and this inf will be attained only when  $\lambda$  has the sign of  $\varepsilon_n$ . Since  $||x_n|| = 1$  for all n implies  $||f_n|| \ge 1$ , it now follows easily from elementary calculus that  $\inf ||f_n - \lambda f_0||$  is attained only when  $\lambda = \lambda_n = \frac{\varepsilon_n ||f_n||}{2||f_0||}$ . However, we then have

$$\sup_{N} \left\| \sum_{n=0}^{N} \lambda_{n} x_{n} \right\| = \frac{1}{2} \sup_{N} \left\| \sum_{n=0}^{N} \varepsilon_{n} \frac{\|f_{n}\|}{\|f_{0}\|} x_{n} \right\| \ge \frac{1}{2} \sup_{N} \sum_{n=0}^{N} \varepsilon_{n} \frac{\|f_{n}\|}{\|f_{0}\|} \langle h_{0}, x_{n} \rangle$$
(since  $\|h_{0}\| = 1$ )

$$\geq \frac{1}{2||f_0||} \sup_{N} \sum_{n=0}^{N} |\langle h_0, x_n \rangle|$$

(by the definition of  $\varepsilon_n$  and the fact that  $||f_n|| \ge 1$ ). But  $\sup_{N} \sum_{n=0}^{N} |\langle h_0, x_n \rangle| = +\infty$ , so according to our previous remarks the proof is complete.

In particular, then, there is an equivalent norm  $|||\cdot|||_p$  on the space  $l^p$   $(1 \le p < +\infty)$  so that the coefficient functionals for the basic sequence  $\{e_n\}_{n=2}^{\infty}$  in  $(l^p, |||\cdot|||_p)$  admit no basic Hahn-Banach extensions. Therefore the basic sequences  $\{e_n\}_{n=2}^{\infty}$  in the spaces  $\{l^p, |||\cdot|||_p\}$  provide an infinite number of (nonequivalent) counterexamples to the question mentioned at the beginning of the paper.

Remarks. Although we did not check the details it appears to be only a technical exercise to extend Theorems 2 and 3 to the case where  $\{x_n\}_{n=1}^{\infty}$  is of arbitrary finite codimension in X. A more serious problem related to these results is:

PROBLEM 1. Are Theorems 2 and 3 valid when codim  $[x_n]_{n=1}^{\infty} = +\infty$ ?

We should also note the following problem to which we referred earlier, and which would seem to be fundamental in regard to questions of the sort treated in this paper:

PROBLEM 2. If  $\{x_n\}_{n=1}^{\infty}$  is a normalized basic sequence in X for which codim  $[x_n]_{n=1}^{\infty} = +\infty$ , does there exist a bounded basic sequence  $\{f_n\}_{n=1}^{\infty}$  in  $X^*$  which is biorthogonal to  $\{x_n\}_{n=1}^{\infty}$ ?

## References

- Cz. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- [2] W. Davis, D. Dean and B. Lin, Bibasic sequences and norming basic sequences, Trans. Amer. Math. Soc. 176 (1973), 89-102.
- [3] J. Holub, On perturbations of bases and basic sequences (submitted).
- [4] D. Luenberger, Optimization by Vector Space Methods, Wiley, New York 1969.
- [5] I. Singer, Bases in Banach Spaces I, Springer, Berlin 1970.

[6] I. M. Singer, Bases in Banach Spaces II, Springer, Berlin 1981.

[7] P. Terenzi, Convergence in the theory of bases in Banach spaces, Rev. Roumaine Math. Pures Appl. 30 (1985), 49-68.

DEPARTMENT OF MATHEMATICS VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Blacksburg, Virginia 24061, U.S.A.

Received August 30, 1985

(2089)