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the theorem is proven.
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On regular generators of Z>2-actions
in exhaustive partitions

by

B. KAMINSKI (Toruf)

Abstract. It is shown that for every totally ergodic Z?-action with finite entropy there
exists a regular generator in a given exhaustive partition and the set of regular generators is
dense in the set of all generators.

1. Introduction. Let (X, 4, p) be a Lebesgue probability space, .# the set
of all measurable partitions of X and % the subset of consisting of
partitions with finite entropy.

All relations between measurable partitions are to be taken mod 0.

Let ¢ be the metric on & defined by the formula

o(P, Q) =H(P|Q)+H(Q|P), P,QeZ.

We denote by ¢ the measurable partition of X into single points and by
v the measurable trivial partition whose only element is X.
Let T be an automorphism of (X, #, p). For Pe.# we define

o + o0
Pr=\/T™"P, Pr= \/ T"P.
n=1 n=-—ow
If Pr =¢ we say that P is a generator of (X, T).

A partition {e # is said to be T-perfect if

TS f=e ATTU=m(T) and K T) = (D)

where n(T) and h(T) denote the Pinsker partition and the entropy of T
respectively.

Rokhlin and Sinai showed in [9] that for every automorphism T there
exists a T-perfect partition. If T is aperiodic with h(T) < oo then for every
generator P of (X, T) the partition { = P v Pr is Tperfect. Rokhlin [7]
proved that if h(T) < % and { is T-perfect then there exists a generator P
such that { =P v Py, ie. { is a past of the process (P. T).

Now, let G be an abelian free group of rank 2 of automorphisms of
(X, #, n). We denote by b(G) the set 0}/&5{1 ordered pairs of independent
generators of G.

2 ~ Studia Mathematica LXXXV
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The quadruple (X, 4, p, G) is said to be a two-dimensionul dynamical
system (Z2-action) and is shortly denoted by (X, G).

The entropy theory for such systems has been developed by. Conze [ 1],
Katznelson and Weiss T5], and the theory of invariant partitions by the
author [3]. . ‘

Let Z2 denote the two-dimensional integers and < the lexicographical
order in Z2 )

We put IT = (i, )e Z*; (i, ) <(0, 0)}. Let (T, S)eb(G). For Pe ./ we
define ‘

T*S'P, Py;= \/ T‘S'P.
(khell (ke z?

A partition Pe .# is said to be a generator for (X, Gy il Py =c.

Now, let G be aperiodic and h(G) < . Following Conze [1] we denote
by I'; the set of all Pe# with h(P, G) = h(G) and by By the set of all
generators of (X, G) with finite entropy. It is proved in [1] that B, # O and
B; is a dense subset of I';. .

In [3] the following two-dimensional analogue of the notion of perfect
partition mentioned above is introduced. A partition {e.# is said to be
(T, S)-exhaustive if

@) T*S'¢ < for (k, hel,
(i) {; =&,
(i) AS™"{=T""L.
n=0
If { also satisfies
v A TS{==(G),
*,hez?
v h(G)=H(I) =HEISTHD, :
where n(G) and h(G) mean the Pinsker partition and the entropy of G
respectively, then it is called (T, S)-perfect.
It is clear that conditions (i) and (iv) are equivalent to the following:
i) STl T Hs<S

%

(iv) A\ T™ "¢ =n(G)

n=0

It is shown in [3] that for every (T, S)eb(G) there exists a (T, S)-perfect
partition.

For PeBg we define {» = P v Pg . In [4] we investigated the following
question: is the partition {p (T, S)-perfect for any Pe B;? As we have seen
above, the analogue of this question for single automorphisms has the
positive answer. Our question is equivalent to the following: is the equality
A\ (S7"Ps v (P97) = (Pyr

n=

P; =
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satisfied for any PeBg? It turned out [4] that jn general the answer to this
question is negative. A generator satisfying the above equality was called in
[4] (T, S)-regular. We denote the set of all (T, §)-regular generators, of (X, G)
by Brg.

It is worth noting that Weizsiicker [11] considered a more general
problem in - probability theory.

Using the relative version of the Kolmogorov zero-one law one can
show that the zero time partition in the two-dimensional Bernoulli
dynamical system is regular with respect to the pair of the shifts. A more
general example is given in [4].

In this paper, using relative versions of some results of the ergodic
theory of single automorphisms, we show that if G is totally ergodic then for
any (T, S)eb(G) and for any (T, S)-exhaustive partition { there exists Pe By g
with P < {. Moreover, the set By s is dense in Bg. It appears that by the use
of regular generators it is possible to characterize the groups with zero
entropy in a manner similar to that for single automorphisms.

I am grateful to J. P. Thouvenot for suggesting the possibility of using
relative generator theorems for a solution of the question stated above.

2. Some results of the relative ergodic theory. In the sequel we denote by
Z the set of integers and by N the set of positive integers.
Let T be an automorphism of (X, #, ) and let oe ./ be such that To
=6. For Pe Z we put
h(P, T|s) = H(P|P; v o).
We define the o-relative entropy h(T|c) of T by the formula
h(T|o) =suph(P, T|o)

where the supremum is taken over all Pe .

It is clear that h(T|o) < h(T). There is a simple formula connecting h(T)
with h(T|o).

ProposiTioN 1. h(T) = h(T|o)+ h(T,)
where T, denotes the factor automorphism of T on X/o.

Proof. Let P, Q,e%, k,leN be such that P, » ¢ and Q, /&. From
the Pinsker formula and simple properties of the conditional entropy easily
follow the inequalities:

h(P,v Q, T) 2 h{P,, T)+h(Q,, Tlo),
h(Qn TV < h(P, TV+H(Q] (Q)7 v (PJr), Kk, leN.

Applying to both the inequalities the well-known limit properties of entropy
we obtain the desired equality.

We shall use in the sequel the following result given in [8] (lemma 10.2).
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Lemma 1. For all P, Qe # such that P> Q and H(P|Q) < o there
exists Re % with P=0Q v R and H(R) < H(P|Q)+3./H(P|Q).

The main tool to obtain our main result is a relative version of the well-
known Rokhlin generator theorem (cf. [6]). Since the proof runs in a similar
way to that of Rokhlin we give only a sketch of it below.

For neN, Be# and a partition P = (P;, ie N) we define the following
partitions:

-1
\/ TP, PAB=(P,nB, X\B;icN).

k=—n+1

Py =

Let o, te.# be such that To =0, Tt =7 and o < t.

LemMma 2. If T is aperiodic with h(T|e) < oc then for all P, Qe ¥ and
0>0 there exists a partition Re% such that Rp =Py and
HR|TQr v 6) < h(T|o)~h(Q, T|o)+3.

Sketch of proof. Let 6 > 0 be arbitrary and ne N be such that

1 é
2n—1H((P v Q)|e)—h(P v Q, Tlo) <3

We choose 4 > 0 satisfying the condition

é
H(PnB) <3 for u(B) < A.
The Rokhlin tower theorem implies there exists a set Ce # such that the sets
C,TC,...,T""'C are pairwise disjoint and pu(D)<A where D
=X(CuTCu...uT" ()
There exists 0 <k < n~1 with

H(P} AT C|TQr v o) < h(T]a)—h(Q, T|o)+3s.

The partition R = P;. n T*C v P~ D satisfies the desired properties: R;
= Pr and

H(RITQ7 v 0) < H(P} " T*C|TQ7 v 6)+H(P D)

< h(T|o)—h(Q, T|o)+4.

RELATIVE GENERATOR THEOREM. If te.# is such that the Jactor
automorphism T, is aperiodic with h(T,|6) < o then there exists Pe % such
that P <t and Py v ¢ = 1. Moreover, the set of Pe, P<t,Prvo=rtis
dense in the set of PeZ, P<t and h(P, T|o) = h(T}|0).

Sketch of proof. We may suppose T =&. Let § > 0 be arbitrary and
Qe be such that

2

s
h(T|o)=h(Q, Tlo) <.
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We take a sequence (Q,) of partitions in % with Q, = Q, Q, 7 ¢ and
2

)
h(T|0)=h(Qs, TI0) < 5555

s keNU{0).

Using Lemma 2 we may choose a sequence (R,) in & with (Ry)r = (Qor
and '

52
H(Rk| (Qx-1)r v ‘7) = H((Qk—l)T VR, v Ul(Qk-OT Vv U) <2—2k‘+‘21 keN.

Now Lemma 1 implies there exists a sequence (P,) in & such that

S
(Qi-1)r VRV o =(Qs-i)r v Py v 0, H(Pk)<'2—k, keN.

This equality gives

@v \VP)voz=(Qlrve, neN.
k=1
o0
Therefore putting P=Q v \/ P, we have Py v o =g,
k=1

H(P)< H(Q)+ i H(P) <H(Q)+d <
k=1

and ¢(P, Q) <9, which completes the proof.

We denote by n(T, /o) the join of all Pe Z with P <1, h(P, Tlo) =0
and call it the o-relative Pinsker partition of T,. We shall write = (T o) instead
of n(T, e|c). The concept of o-relative Pinsker partition was introduced in
[2] in the case r =¢ and called there the Pinsker closure of o.

It is clear that n(T, t|o) > 0. If #(T, t|0) = o then we say that T, is a K-
automorphism relative to o. Let us remark that T is a K-automorphism
relative to ¢ iff for any (e # with T ={, { >0, h(T;lo) = 0 we have { = g.
Thouvenot also defined (cf. [10]) a concept of relative K-automorphism.
Using Proposition 1 and the above remark one can easily check that in the
case h(T) < co both concepts coincide.

Some properties of relative Pinsker partitions:

(@ Tr(T, t]o) = n(T, ]o).

(b) h('I:r(T,tJa)lU) =0.

(c) If S is an automorphism of (X, B, 1) commuting with T then

S (T, t|o) = n(T, St|So).

D If v, 06 M, Ty =1, To,=0;, i=1,2,0,<1,<73,0, <0, <1,
then

(T, t4]o1) < 7(T, 15]05).
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(e) T, is a K-automorphism relative to =n(T, t|o).
) If oe .4, To =0 and {e .# is such that 6 < T~

A T3 (T o)

Lt ¢ then

(@) If e .#, To =0 then for every PeZ
A(T™"P; v o) =n(T, Py v olo).
n=90
(h) If t,e M, neN, are such that Tr, =1, 0 ST, S Tpuy and T, is a K-
automorphzsm relanve to o, neN, then T, is a K-automorphism ielauve to o,

where T = \/ T,

Proof. Propertics (a}(d) are easy consequences of the definition. The
proofs of (f) and (h) are similar to the proofs of Theorems 12.1 and 134 of
[9] respectively and we omit them.

To prove (e) let us suppose PeZ, P <t and

h(P, Tl (T, t]o)) =

Let Q,e?, n>1, and Q, ~ n(T, tlo). Using the relative version of the
Pinsker formula (cf. [1]) and simple properties of the conditional entropy we
have

h(P Vv Qm TlO')
= h(P,TIO')+H(Q,,I (Qn); v PT v g')

=H(P| P v(QJ7 v o)+H(Q] Q)7 v PV P;va), neN.
Therefore the choice of P and Q, implies

h(P, Tio)=H(P| P; v(Q); va), neN.
Taking the limit as n-- = we have
h(P, Tlo) = H( P| Pr v n(T, 1]0)) = 0,

ie. P<n(T, t|o) and (e) is proved.
In order to check (g) let us observe that the inequality

0

A(T™"P; v o) =

n=0

is an easy consequence of (f). To prove the converse inequality we tuke Qe ¥
and Q< A (T™"P7 v o). Hence Q < Py v ¢ and
n=0

n(T, Py v a|o)

HQIQr vT™"P; vo6)=0, neN.

Taking the limit as n— oo we obtain H(Q|Q7 vo)=
Q <n(T, Py v c|o) which proves (g).

0. This means that
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3. Existence of regular generators. Let (X, G) be a two-dimensional
dynamical system and let (T, S)eb(G). In order to prove our result we shall
need the following.

Lemma 2. If {e.# is (T, S)-exhaustive then S is a K-automorphism
re{ativg to T"(s, nel.

Proof. Let ke N and P, Qe & satisfy the following conditions:
P TS for some leN and <n(S, THL| T~ ).
Hence
6y Q< T, h(Q,SIT™!
Let me N be arbitrary. The relative Pinsker formula implies

h(P v Q8" T {g) =h(P, S"|T™ () + H(QIQgn V Pgu v T™'{s)
=h(Q, S"|T™ () + H(P|PG v Qgn v T 1 {y).

{s)=0.

Hence by (1) we have
h(P, S™T ¢ = H(P|Pg v Qgm Vv T 1¢).
Therefore

(2 HPIQVT U2 H(PIPy v Qv T )

H(P

H(P !Pyn vT ' 2HPIS™™ Py v T 1y
_I(Pis—rpt+l+l ch)

Taking the limit in (2) as m— x and using (iii) we obtain

G3) H(P|Q v T 'z H(PIT " {y).

Since P runs through a dense subset of the set {ReZ; R< T*{s] we
conclude that (3) is valid for any Pe % with P < T*{s. Assuming P = Q we
get Q< TH 1Y and so

n(S, T T™ {9 <

> F

T s,
Therefore
(S, T T eg) S m(S, T I T L)
and thus
A8 T*I T G =T "¢, keN.
Now (ii) and (h) give 7 (S| T~ ') = T ' and so by (c) we obtain the result.
Now, let G be aperiodic with h(G) < =

CoRrOLLARY 1. A generator Pe By iff' S is a K-auromorphism relative to’
(Ps)r .
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Proof. i PeBr g then the partition { = P v P is (T, S)-exhaustive and
so, by Lemma 2, S is a K-automorphism relative to T7!{g = (Pg)y .

Now, Iet S be a K-automorphism relative to (Pg)7 . From this and (g) it
follows that

"/_\O(S“"Ps‘ v (Pg)r) = (S, T(Ps)r| (Ps)r) < =(S| (Py)r) = (Py)7,
ie. PeByg.

From Corollary 1 and (e) we obtain at once

CoroLLAry 2. If PeBg and Qe Z is such that (Qg); = n(S|(Py)7) then
QeBrgs.

In the theorem below we prove that far a wide class of groups G and for
any generator P of (X, G) such a generator Q exists. .

Dermvition. The group G is said to be totally ergodic if every
automorphism ¢eG different from the identity transformation of X is
ergodic.

- Tueorem. If G is totally ergodic with h(G) < oo, PeBg and (T, 8)eb(G)
then for every & >0 there exists QeBrg such that P < Q and o(P, Q) <e.

Proof. Let us suppose G is totally ergodic, (T, S)eb(G), PeB; and
e >0 is arbitrary.

By our assumption, the factor automorphism Sxsipg =) 18 ergodic and
since PeBg, the factor measure induced by  on X/z(S |(Ps)7) is continuous.
Therefore the above factor automorphism is aperiodic. Now property (b)
implies

h(T_lP, S“Ps)f) = h(Sn(s](Ps);)KPs);) =0.
11t1 follows from the Relative Generator Theorem that there exists Re.# such
that
R<n(S|(P))7), Rgv (Ps)y = n(S|(Ps)7) and o(T"'P,R)<e.
Putting Q =P v TR we have
P<Q, (Qsdr =n(S|(P)7) and o(P,Q)<o(T P, R) <.
By Corollary 2 we see that Q satisfies all desired properties,

Since Bg is a dense subset of I'; the theorem above implies at once

CoroLLarY 1. If G is totally ergodic with h(G) < co then for every
(T, S)eb(G) the set Bry is dense in Tg.

Now, let { be (T, S)-exhaustive.

CoroLLary 2. If G is totally ergodic with h(G) < oo then for every
(T, S)eb(G) there exists PeBy s with P < (.

Proof. Let Qe B with Q < ¢. The existence of such a generator Q may
be proved by the same method as that used by Rokhlin in [7]. Let 0 e B, be
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such that (Js)7 = 7(S|(Qs)7). As we already know, Je By s. It follows from
Lemma 2 that

T710 < (@97 =n(S|Qs)7) S 7(SIT ) = T~ ¢s.

Hence P =T 'QeBrs and P <{.

In the ergodic theory of single automorphisms the following
characterization of automorphisms with zero entropy is well known. Namely,
an automorphism T has zero entropy iff any generator P of (X, T) is strong,
ie. Pr =e.

It appears that it is possible to obtain a two-dimensional analogue of
this result by the use of regular generators. First we define the concept of
two-dimensional strong generator with respect to the lexicographical order.

DeFINITION. A partition Pe % is said to be a (T, S)-strong generator of
x,6)if \/ T*S'P=¢.

k,hell

ProrosiTioN 2. A totally ergodic group G has zero entropy iff every
generator PeBrs is (T, S)-strong, (T, S)eb(G).

Proof. The sufficiency is obvious. Let us suppose h(G) = 0, (T, S)eb(G)
and PeBr. Since H(P|Ps v (Pgr) =0 we have P < S™"P5 v (Pg)7, neN,
and so P < (Pg); by the regularity of P. Therefore P; = (Ps); and thus P is
(T, S)-strong.

Remark. The conditions h(G) =0, Pe B; do not imply that P is (T, S)-
strong, (T, S)eb(G).

Exampie. Let (Y, #, ) be a Lebesgue probability space and S, an
aperiodic automorphism of Y with h(S,) = 0. We denote by (X, #, ) the
+

product space [] (Y, #, A), where Y, =Y, F =F, =24 Let T S

i ]
be automorphisms of (X, 4, u) defined by the formulas

(Tx)(n) =x(n+1), (Sx)(n)=S8yx(n), neZ,
and let G be the automorphism group generated by T and S. It is clear that
G is totally ergodic. It is shown in [1] that h(G) = h(So) = 0. Let « = {4,, 4, }
be a generator of (Y, Sg). The partition P = {C(0, Ay), C(0, A;)} where
C0, 4) = {xeX; x(0)eA,}, i=1,2, is a generator of (X, G). We-shall
check that P is not (7, S)-strong. Let us suppose Pg v (Pg)y =e¢. Since uis a
product measure the partitions P and Pg v (Pg)7 are independent. Hence P
and also « are trivial partitions, which is impossible.

Remark. Let G be totally ergodic, (T, S)eb(G) and let { be a (T, S)-
perfect partition. It would be interesting to know whether { may be
represented as the past of a certain two-dimensional process (P, G), ie. {


GUEST


26 B. Kaminski

= P v P;, PeB(G). This question has a positive answer if #(G) = 0, because
in this case every perfect partition is the partition into points and it is
sufficient to use Corollary 2 and Proposition 2. We have been unable to
decide whether this question has a positive answer in the general case.
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On drop property
by
S. ROLEWICZ (Warszawa)

Abstract. Let (X, || ||) be a Banach space. We say that the norm || || has the drop property
if for each closed set C dosjoint with the closed unit ball B = !x: |{x|| < 1), there is a point ueC
such that conv(auB)NC = {a}. -

We say that a Banach space (X, || ||) has the drop . property if there is a norm || [}
equivalent to the given one such that || ||, has the drop property.

In the paper it is shown that each superreflexive space has the drop property and each
space X which has the drop property is reflexive.

Let (X, || |)) be a Banach space. Let B denote the unit ball in X. By a
drop induced by a point a¢ B we mean the set

(1 D(a, B) = conv(a, B).

Dane§ [3] proved the following
THeoreM 1. (Drop theorem). Ler C be a closed set such that

(2) inf {|[x||: xeC} =R >1.
Then there is a point aeC such that
(3) D(a, Byn C = {a}.

The drop theorem was used in various situations (see [1], [2], [4], [5],
[100).

Recently Penot [9] discussed the relations between the drop theorem
and Ekeland’s variational principle [7].

It is a natural question to ask when we can replace in the drop theorem
assumption (2) by the weaker assumption that C is disjoint with B.

We shall say that the norm || || has the drop property if the drop
theorem holds under this weaker assumption. If there is a norm | (I
equivalent to the norm || || and having the drop property, then we say that
the space X has the drop property.

In this paper we shall show that the uniformly convex norms have the
drop property and that the spaces X with the drop property are reflexive.

Let (X, | |) be a Banach space. We recall that the space (X, || |}) is
called uniformly convex if there is an increasing positive function d (¢) defined
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