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On a singular integral
by )
P LUNG-KEE CHEN (Chicago, IIL)

Abstract. [n this paper, we establish that the following maximal singular operator:

T*f(x)= sup | [ h(y

0<e< lyng Y

f (x=y)dy|

is buunded in LP(RM for all 1 < p <0, n 22, where h(x) is any bounded radial functlon, and Q
is in L9(8""!) for g > 1.

2(x)

P ~—=—Xs>¢ is a truncated Calderén—

Zygmund kernel on R", n > 2 (this means that Q is homogeneous of degree 0
on R" and Q is in L9(S"" ") for some ¢, ¢ > 1, and j" Qdo = 0) where Xix{ >

Introduction. Suppose K, (x) =

is the characteristic function of {xeR" |x| > &} We multiply K,(x) by an
arbitrary bounded radial function, say h(x), and call the new kernel K, (x).

In this paper, we will prove the maximal singular operator f
— sup |K,*f| is bounded on IP(R" for all p such that 1 < p < co. This

0<e~ oo
resull does not hold for the case when n=1. For example, let Kg(x)
= sin|x|/x; then the Fourier transform of K, (x) is unbounded. It is already
known that the principal value singular operator (ie, f—pv.Ko+f) is
bounded on LP(R") for all l<p< o, n>2 (see R. Fefferman [4], D.-
Namazi [5]).

Here we should remark that in this work we were very much motivated
by the work of E. M. Stein (see [7]) and some ideas from R. Fefferman’s and
D. Namazi's papers (see [4], [5]). The author would like to express his
sincere appreciation to professor Robert Fefferman for his encouragement,
sustained guidance, and, in particular, for his careful review and invaluable
discussion of this paper.

We will use ~ and  to denote the Fourier and inverse Fourier
transforms, respectively. Throughout this paper, x will denote a point in R",
x| is the length of x, x' = x/|x|, and C represents a constant depending on
n, p, although different in different places.

THeoREM 1. If n 3> 2, let Q be in I#(S"™Y) for some q > 1 and suppose that
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Q is homogeneous of degree zero and satisfies the cancellation property (i.e.,
[ Qdo =0). Let h(x) be any radial bounded function. For 1 < p < o and

sn—1
FeIP(RY, ler

Tre = [ b)Y f(e—y)dy.

Iy|>e 'y'n |
Then

Il sup 1T SOl < Ap il |1 f1]p- ®

To prove this result, we introduce a family of operators [T}, such that
“the mapping a— [T7 f(x)g(x)dx is analytic in the interior of the strip
{a: |Rew| very small} for f, g in the Schwartz class. We define

(T f) () = m () ] (x),
where o is a complex number and

« il d
mg(x)=f “ Q(f)ez""lxlx'Edd(é)h(r);-l-%fx["“

z gn—1
for xeR". Let us write

WO R = f Qg @) S,

[ 2@ e***da(£).
sn—1
Therefore,
® d
me(x) = [w(r, x)—ri.

It is clear that T.°f(x) = T, f(x). We will prove the following 1wo
theorems, via a convexity argument involving complex o (see [8], p. 280).
Using Stein’s interpolation theorem, we deduce that sup |T, f'(x) is

Oepe
bounded on all spaces L7(R"), n > 2. o

Remark. In this paper, “Rex| is very small” means “Red| < (g—1)/2¢".

TreoREM 2. If |Real is very small and the hypotheses are as in Theorem 1,
then

Iloiug 1T S Gl < Akl L A1,

where A only depends on n, Rea and the norm of Q.

icm
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Tueorem 3. If Rea >0, Rex very small and the hypotheses are as in
Theorem 1, then

1,30 1T Ol < 4, Wl 111,

where A, is dominated by | (3(n—a))/T (o).

The key step in the proof of Theorem 2 is to consider a g-function. We
fix a function p(x) which is a radial smooth function in R" and plx)=11if
Ix <1, p(x) =0 if |x| > 2. Set p,(x) = &™" p(x/e). Define g, (f)(x) by

i : de V2
6 (/) (x) = (£|Tyf(x>—pz*73.f(x>|2?) .
Lemma 1 (D. Namazi). If n>2 and Qelf(S"") for some 1 < g, then

Ill(” xl)”l,f’t(l,w),dr) s Cp”Q”Lq(Sn° 1'

Jor any p>24/(qg—~1) and C, does not depend on x'eS"L

Proof. This lemma originally appeared in reference [5]. For the
purpose of self-containment, I include the proof in here. It is sufficient to
assume X’ = (1, 0, ..., 0). Let us make a change of variable: /(r, X'} becomes

I(r, x') = 1|' [ (1l —sAm 32 Q(s, /1 —5%E)do,_ 5 (E)ds

-1 ¢'E§tl- 2
where do,- ,(¢') is the unit of surface area on the sphere $"~2. Let
afs) =(L=s"" 2y () [ QG, J1-5&)do,— (&)
Fresn™2
Hence

Ir, x)= | e®™a(s)ds.
If 1/p+1/p’ =1, p= 2, then we apply the Hausdorff~Young inequality and
Hélder’s inequality twice. We have

I XMy S NN

1 : .
= f [(1 ‘”‘32)("«3)/21 .f -Q(Sa vV 1 "'Sz él) da'n-- 2 (él)l]p ds
1 pegn=2

1 ‘
SC [ (=200 [ |0, JT=5 Eado, o (&) " ds

-1 wesn—2

¥

1.
=C [ (1=} NP2 [(] . g2)nm 32
-1
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[ 196, 1= &) do,, (&))" ds

zesn—2
1
< Cf 1[ (1= s?)n=3 - Lar'al(2ta =) dsja=rva. { [ (L=g?n-r2
et !
F IQ(S, \/I——T(Er)’qdan_z(é/)ds}ﬁ/q
é’eS"‘“Z .
< C”Q”[l; n—1 (SinCC p> 24/(‘]___ 1))
L4(S! )

Lemma 1 is proved.
Lemma 2. If [Reof is very small, then

1
su —
o<sng

< CllAllo 1112

2

s
1T f (x)l de
o

~ 7 Proof. Note that

18 13 s
51T Ol <5 TUTF ()= px T3 () o [y T3 £ (0 de.
0 0. s

Therefore,
1 S
sup < 1T (3] de
0

O<S<x

is dominated by
9a(N)(x)+ M(T5 £ (x)),

where M(-) is the Hardy-Littlewood maximal operator. By the fact that the
H-L maximal operator is bounded in I*(R™ and using the Plancherel
theorem, the L?-norm of the second term is

M (T3 f N3 < (T3 ) o)l12

L -~ 2
- {[i 1 a0 et @ S| 17 o,
R sn

So, we only need show that the term in parentheses is bounded for all x in

R". By applying Lemma 1 and the cancellation of O for the second inequality
below, we have

j

" Q(f) e2mrlxlx g do (f) h (l) Bluf‘[_’:

1 ror

R

<Ihll | | Q&) et do(e) -2
0 sn—1
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! . d
<kl f| [ 0@ = 1)do (9 7
0

sh-

< Inirx’ & dr
s ] [ Q)4 do @) e

1 gn-1

< C 1l 192011 gnm1, +C 1l 120 gign-1,-
Hence, .
(M (T2 £ )|z < CHRIZ 1713

On the other hand,

~ ~ d
oI = | (1000~ T8 P dx
(

= [ [I%
o

= [ T 9= s s 072 7 P .
RO

For the purpose of proving that g, (f)(x) is bounded in L*(R"), it is sufficient
to show that

= de

1 (x) = e ) i (o2

0
is bounded for all xeR". By definition, this expression equals

I

Q&) e2™r=xS 4o () h(r) !;I;‘; dr

Oty R

sn—1

0 - 2d
—hel) | | Q@ do @) ar £
Osn—

r &

1
T d
[ Q(é)ez""""fda(zs)h(];_');.%

g1

o0
=i
0
2 de

&

® . r\ dr
—p(e) bfsnj;l Q(¢) e**4 dg (f)h(l';ci>;m

Uiode 2 de % de
o B B
0 & i & 2 ,
mIA‘f"I”'I‘Ic.

By the cancellation of £2(£) and the definition of p(x) (ie, ple) =1if e <1,
ple) =0 if &> 2), we can write

\

d
Q)<= 1)do(e) (1 )

2 de
&

1 |e

=11

0 gn

1

5 - Studin Mathemuatica LXXXV
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i‘
Rez| g

I;
This is bounded if [Req| is very small. The third term is

irx’ ¢ dr Pde
Q(&ye*™ "4 dg (&) h ('r )ri;a il

|.;Cl &

!
Llgn-1 e

1
< CII IR gr-1

©

J
j

e gn—1

, r\ dr
Hr, x')h (“) T

]

2 de

o

Ie = |
2

0

=] v

We fix any p such that o0 > p > 2g/(q—1). By applying the Hélder inequalily‘
and Lemma 1, I, is bounded by

® @ ©dr M de
(1A%, 2‘ {lfll(r, x’)l”dr}llp{.f ;z‘ﬂ'mfgf} — < CIAIL I ygn- 1,

if [Reqf very small. Finally the second term i

2 dg
IB = ‘1‘ I . I —{:
o s 1 2
SCHf] [ Qeer™"3do(g) h(l. ‘;f:r;r
0 gn-1 |x| |1 Res
‘ dr = dr 12
= ng‘.;rm;-+ j‘ .. ';?ﬁ-ﬁ‘c‘:;}
0 i
By the cancellation of Q anﬂ, once more, the application of Lemma |, we
have :

Tp < (CllAl o 12013 g1, + C" 1Al Nl g g 1,)

Lemma 2 is proved.
Proof of Theorem 2. By the definition of TEf(x) (e, (T2f) (x)

=m(x) f(x), m(x)= fw(r, x)dr/r) and the following computation;

I3

| —

s
; [mi(x)de =
0

L] )

Al
[

I

fr— Talm—

w(r, x)dr-+ [w(r, x}»;—

n

]
!
‘} « dr
f

]

ol —

fwir, x)dr +mé(x),
0

icm
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we get the equality

18 s A~
B0 =5 [T 0 de—g [w, ) 7)) .
0

4]
Hence,
. 15 © A g2 dr\1?
Off;?Ew'TSf(x)' <03?5w§§m f(x)|da+(b[}(w(r, 1) =) T)

By Lemma 2, the first term on the right-hand side of the above inequality is
bounded in I*(R"). Applying the Plancherel theorem, the IZ-norm of the

second term is equal to
() 1/2
(j|w(r, x)f(x)lzi'—) ’ :
0 r 2

Employing the same argument as that used in the proof of Lemma 2, we can
write

o 0 | —al2
[we 07 =T | o@esdo ey 2L 4
0 r 0 lgn=1
© - d
SIHE ] [ Q@™ tdo @
0 gn-1
1 . 2 dr
<M [] | 2@~ 1)do &) <o
0 gn—1 r
@ dr

HIHE [] | Q@ do @) oz
sn—

@ dr
< Cf|h||§o|l9|‘z1(sn— 1)+C,”h”§o i[ 1, x)lzm»

Applying Lemma 1 and Holder's inequality, the second term is bounded by
ClinliE N

a1yt
Theorem 2 is proved.

Remark. By the same proof as in [4] or [5], we can conclude that if
we let

hix
ZO(’\C)J)(x) (*)

RN Rea > 0,

then
1

'xlll"(l

zo*
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satisfies Hormander's condition. And by Theorem 2, the Fourier transform of
Lox1/]x]""* is bounded by HQHL,,(S,,_” if ¢ > 1. Therefore,

(Lo % 1/1x{"=%) * f1l, < CllAll oo 11l
for any | < p < oo, where C depends on n, p and the norm of Q.
LeEmMA 3. Suppose Q in L}(S"™ ') is homogeneous of degree zero. Let

CH(x) = X|,i|<1|Q(x)|_,

I eraz

Reo > 0,

&~ " H(x/e). IfféL”(R") SJor some 1 < p < oo, then
IIOEHE [Hy xS (ol < CpllQl 1 g 1, 11 1L

Proof. If £e§""Y, fel?(R"), we let

and H,(x) =

Mef() = sup 2lf(x=rd)ar

Then we have the following two observations.
(D) IMe f Mg, < Coll Fllpny for all £e8™1, where C, depends
on n,p.
o0

dr
@) & [If e—rd)l —rmer TTTRE

e
The first one is a wellknown result (see [2]). The second is easy to
show, since

< CM, f(x), where C depends on Rea.

@© 2k+1ﬂ

et J1f =18l PR = i gt _f

dr
=) ~riwer
I3 r

it 1 1 2kt 1,
<y . e
< L7, [ 1S e=rdhdr
SCMyf(x).
© Let us write

\H, % £ ()] = |” Hiai2a 209 o

’xlu+u
[ 120 [ 1f (=12 do ()
C | IQ(f)IMgf(x do (&).

s 1
By Minkowski’s integral inequality, applied to (1), we obtain

I35 1B, Sl < ClR s o1 11

icm®
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Lemma 3 is proved.
Proof of Theorem 3. If Rea > 0 then

(x) h(|x)) 1
Tuf(x) ( ’ ln+¢ |x|>g*lxln—-a>*f(x)a
(a n)/Zr
where C, = of/;) oc_?.l Let  be a positive smooth function with
compact support in {xeR": |x| <1}, and f¥ = 1. Also let
(x)h(|x| Q(x)h(e|x
Ln(x) |x|"+¢ X|x|>u Ll (x) :_(I%Fffilﬁllxlx[>h
_2(x) h(e]x)) Q(x) h(|x|)
LO(x) = len+az » Z0( ) ,xln-f-a El I |> 0.
Define
1 1
P(x) =L ¥ ——— Lg* ,
(-x) 1*lx|n—¢ ‘/’ ( 0 * I ln—a)
and dilating set
1 (x 1
(**) ¢¢(x) =E.¢ (Z) L *'xln-a l//, ( W)

We claim that if fel?(R", QeL“(S"") for 1<g< oo, then
| sup [®,*flll, < Cllhlellfll, for all 1 <p < co, where C depends on n, p,
0<g<on

and the norm of Q.
If we can show that this claim is true, then

(o li‘“) f‘,(" +(for= ))

Therefore, by our remark and the above claim, we get

+1®, + f].

*f

sup
O<s<w

‘ <Gl 11,
! P

—t
x|

for all 1< p < oo,
Now it suffices to prove the claim. If we can show ¢(x) is dominated by

“h”oo“glllll sn—1) Cx|x|€6+' - Rc¢x|x|>6
¢ I|

X X 2
+nhnm(H*I";:"Riawmq ;;"13,+H = i,':'f_m),
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where  H(x) = gj5>1 [Q(x)|/|x|"**%, then our claim follows by applying

“Lemma 3. First consider |x| < 6; we estimate the right-hand side of («x):
L 1 Q) h(lz) 1
% = . —
1 [xln—a 2> 1 Iz]n+a lx___zln P
Q
<Clll, | —I-"%dz
ol ||
12G@) 1
+ h «© nF Rex --““7: o dz
T N

< Clllo |23 51-1,+ C' Il H o 255
On the other hand,

! Q@held) 1
Lg ) iod
v (0 b ”> |ylj<1w(y)az|‘f<1 " ey e
Q(z)h(elzl) 1
) dzdy.
+|y1j<1wy)|zlj>1 2" x—y -z zdy

By the same method as in the above proof, the second term is bounded by

Ml 120 g1, C" ] o B w K52

I In i —Rea *

The first term, by Fubini’s theorem and the cancellation of Q, equals

Q(z) h(el2)) { }
|=|j;l Izl""‘“ Iylo‘;i"b(y)lx_y_zln o j 'p(y)[ ln adJ dz.

But, after a change of variables, the term in parentheses is

LM(X*y—Z)—!l/(x—y)Iry,—,.l:mdy<CIZI |

Iyl <8

<clzl  (if Rex >0 and very smdll).

Therefore, the first term is bounded by llhlleQHths,,,l)
=6,

1 1
[} =Ll 3 e e
6 = = Lo
Q@hield) 1

d
CRE et :

1
b

. Finally, when |x|

Jz| >1

| ‘/’(Y)f ‘,,fa!fﬂ - 1 ~—dz dy

in<1

icm®
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. o Q@ h(elz) 1 1
= [y ( dzd
Iy{jq Izlj>1 [+ [x—2z|""® Ix y-= Z|" i
Qz)h(z|z)) 1
-y " : —dzdy.
Iy\‘q | a<r 2" x—y—z]"
By the cancellation of Q(x), the second term is equal to
, Q()hie |z|)( 1 1 ) ‘
V() - e ~— |dzd
m"«; ! e T \x—y—z e ey )Y
< Clill o 1921 (since |x| > 6).

1,115"*1)}x{n+1~nea
Next, we separate the first term into

[ ..dzdy+ |

plet jx-z/>2 <t jx—-z] <2
fzl>1

|z)>1
| .Q(z)h(a]z[)( 1 _ 1 _ dzdy’-
’x___zl" x Ix_y_zln o

Ldzdy =1+11,

M= ¥
Iyl <1

. zn'ba
lx|:5->|12 | !
Q(z 1
<ci. f i dz

l_l TZ IYII"RLR lx z|n+l Rea

= CllHl H -2zt

I In~+1 Rea?
B . .Q(z)h(a[z!)< L 1 )d p )
=LY (y)fx.].;’i;z T\ =y )

Clbl (o it g o 2 )

len Rea 'xln Rea

We have proved our claim; thus Theorem 3 is proved.
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On subsequences of the Haar basis in H!(5) and isomorphism
between H'-spaces

by

PAUL F. X. MULLER (Linz)

Abstract. We classify and characterize the subspaces of H'(6) spanned by subsequences of -
the Haar basis. /, and (ZH,’,),' and H'(3) are the only isomorphic types which occur in this way.
We also give a necessary and sufficient condition on an increasing sequence of fields (#,) for
H'((#,) to be linearly isomorphic to H*(8), thus verifying a conjecture of B, Maurey.

Introduction. To the pair (n,i), neN, 0<i<2"—1, we associate the
dyadic interval () = (27", 27"(i +1)] and the Haar function h,, which is 1
on the left half of (2"'1‘, 27"(1+1)], —1 on the right half and zero elsewhere.

" The o-algebra generated by the sets {(277i,27"(i+1)]: 0<i< 21} is

denoted by &,. Dyadic intervals are nested in the sense that if I nJ % @
then either I <J or J = 1. ,
We will work in the following setting: Given f = Y a, hy in I} (0, 1], we
(ni)
write

S =(Tazhe)"* and Nl =[SU),

(nl)
H1(5) = {fELli ||f”51(5) <o}

H) denotes the subspace of H!(§) which is spanmed by
{hw: m<n,0<j<2"—1}, and

(X Ha) = {(fdnen: fucHy and Y [1£ill < 0}
Given feL'(0, 1] and a dyadic interval I we write f; = |I|™* {f and
' I

1/ lamore = sup {11! J' F=f?)'?: I a dyadic interval},

BMO@) = {feL!: [f =0 A[lflsmom <}

The connection between BMO (8) and H'(d) is given by the following .
formula: . :

1l = sup {|§ fol: llgllswo =1 A geL®}.
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