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Improper integrals of distributions
by
RYSZARD WAWAK (Warszawa)

Abstract. We introduce a space of functions with bounded variation on R" and call its dual
space the space of improper integrable distributions. This definition turns out to be a
generalization of the classical Schwartz definition of integrable distributions and of the definition
of improper integrals for Li,, functions. We also define the improper convolution of
distributions,

In this paper we define improper integrals for distributions. This is a
slight modification of the definitions of Sikorski [15] and Musielak [9] and a
generalization of the classical Schwartz definition. This modification allowed
us to prove a representation theorem. The class of distributions having
improper integrals turns out to be the dual space of a space which can be
called a space of functions with bounded variation in R".

We also define the convolution of two distributions using the notion of
improper integral. This definition is more general than the classical Schwartz
definition of convolution. We show that the exchange formula is still valid
for the wider definition of convolution.

0. Notation, definitions and basic facts. We employ the usual notation of
the theory of distributions. We denote by 4,, s, for ke Ny, = {0, 1, ...} the
seminorms in the spaces 2(R") and #(R"), ie.

d(p)= Y, sup|D*q| for e CF(R"),

|| €k
si(0) = Y sup|l+|x»*D*a(x)| for ae F(R".

la| Sk
For every compact K < R" and every ke Ny, 9, (K) denotes the space C%(K)
with topology given by the norm di; % (R") is the space of all e C*(R") with
s (0) < + o0, with topology given by s;. %, (K), &% (R") are their dual spaces.
The Fourier transform and inverse Fourier transform are denoted by
and “ 7" ie.

G0 =@2m) " fo(x)e"™dx for oe F(RY.

If f is a function on R" we define f as the function satisfying J(x) =

LGAM
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f(~x) for xeR" For a distribution Te%'(R"), T is the distribution given
by T[e]= T[] for pe (R

A sequence 7, is convergent to unity in Schwartz sense in R if

@) n,eCP(R) for v=1,2,...

() d(n)<Ci< 40 forv=1,2,...,k=0,1,...

(i) For every compact K < R”" there exists N > 0 such that 5,(x) = 1
for v= N, xek.

For x=(x;,...,x,)eR" and B=(if,...,i,, =0 or 1, let xR
denote the projection of x onto the space of those coordinates which
correspond to i;=1. Obviously, for f=1=(1,...,1), x, =x If Xg
= (%5 -+» Xy, ) then we write dxg for dx;, ... dx;,. Sometimes instead of
R we write RY]. ,

An open (n-dimensional) interval is a set of the form

P={xeR" —ogaq<x<b<gow,i=1,..,n}

Every set Q such that P = Q = P for some open interval P will be called an
interval in R".

We now define the following spaces:
B={yeC=(R": sup|D*y| < + 00 for ae N’é}
with topology given by the sequence of seminorms (di)es
B ={ycC*(R": D*Y(x)~ 0 if |x| > +oo for ac N3}
equipped with the same sequence of seminorms;
B ={yeC®(R": sup|D*y| < + 00 for ae N}
with the following topology: ¥, — 0 in B as v- o0 if
B dW)<SC<+oo fork=0,1,...,v=1, 2, ...
(i) D*y, —~ 0 almost uniformly as v — oo for e Np. .

The space 2 is dense in B and in B but not in B. The spaces B and B hav
the same dual space. We denote it by D, Since & < B and the inclusion is

continuous, 9,1 is a space of tempered distributions.

DeriniTioN 1. A distribution Te Z'(R") is integrable in Schwartz sense
(over R if for every sequence #, converging to unity in R” in Schwartz sense
the limit lim, T[#,] exists and is finite. Obviously the limit does not depend
on the choice of the sequence #,. We denote it by T[1] or [T and call the
Schwartz integral of T over R ‘

Tueorem 1 (see [12], Chap. VI, § 8, Th. XXV, and [11]). Let Te %'. The
Jollowing conditions are equivalent:

i) Ted,,.
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(i) Txpell for peP.
i) T= Y D*f, where f,eL.

la| <r

(iv) T is integrable in Schwartz sense.

THeorEM 2 (see [13]). Let U, Ve 2'(R") [U, Ve &' (R"]. The following
conditions are equivalent:

i) (U,®V)o(x+y)e 2, (R*) for 0e DR [pe F(RY].

(i) U(Vxg)e 2, (R") for pe2(R") [pe L (RY].

(iii) (T x¢) Ve 2, (R for pe 2R [pe S (RV].

(i) Ux@)((V*Y) (e (R) for ¢,y DR [o, Y LRY].
If one of these conditions holds then

UK o(x+y) 1] =U(Vxo)[1] = (T x ) V[1],
JU ) (V x4 = (U QW) (@ *¥) (x+y)[1]
Jor ¢, ye2(R") Lo, ye S(R"]

Theorems 1 and 2 imply the following

CoroLrLary 1. Let U,VeZ'(R) [U, Ve (RY].
conditions are equivalent:

@) (U@ o(x+y)eZ, (R*) for e 2(R) [pe S (R)].

(i) The limit lim,(U.®V)) @ (x+y) [, (x, ¥)] exists and is finite for every
sequence 1, converging to umity in R®" (in Schwartz sense) and
pe Z(R") [pe #(R].

(iii) The limit lim,(U,®V,)[@(x+y)a,(x)] exists and is finite for every
Sequence o, converging to unity in R} and pe 2(R") [pe ¥ (R")].

(iv) The limit lim,(U,®V,)[@(x+) B, ()] exists and is finite for every
sequence P, converging to unity in R} and o D (R") [ L (R"].

(v) The limit lim, (U, ®V,) o (x+y) [«,(x) B, (¥)] exists and is finite for all
sequences o, f, converging to unity in R}, R respectively and
pe 2(R") [pe L (RY)].

If one of these conditions holds then all the limits equal (U, ®V,)o(x
+y 1]

DeriniTION 2 (see [10], [11]). Let U, Ve 2'(R™. The convolution U »V
of U, V is the distribution

(UxV)[o] =1lm(U,®¥) o (x+) [n.(x, y)]

The following

if the limit exists and is finite for every sequence #, converging to unity in
R*" and every function @e Z(R"). (The Banach-Steinhaus theorem implies
that UV is then a distribution.)
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Remark 1. Convolution can also be defined as one of the limits (i)(v)
from Corollary 1, or as the value on unity of one of the distributions (ii){iv)
from Theorem 2 (in the case 2(R"). We can also equivalently define
(UxV)[o*y] as [(Ux@)(x)(V *p)(x)dx.

If U, Ve & (R"), the existence of the convolution U+ ¥ does not imply
that U« V belongs to & (R") (see [2]). Because of this the notion of &'-
convolution has been introduced (see e.g. [2], [13]).

DeFmviTiON 3. Let U, Ve & (R"). The &'-convolution U® V of U, V is
the tempered distribution

U@V el= H:n(Ux ® Vo (x+y) [ny(x, y)]

if the limit exists and is finite for every sequence 7, converging to unity in
R®™ and every ge &(R". (Obviously the limit is a tempered distribution,)

Remark 2. &-convolution can be equivalently defined as described in
Remark 1.

DeriniTioN 4 (see [S]). Let T, Se 2’ (R". We say that the product ToS
of T, § exists if the distributional limit lim, (T %g,) S exists for every sequence
o, with the following properties:

(1) e 2(R) forv=1,2,...

(2) suppo,— 0 as v— oo.

) feo=1 forv=1,2,...

4 0,20 forv=1,2,...

It may be shown (see [5]) that this condition is equivalent to the
existence of the distributional limit lim, T(Sxp,) or the limit
lim, (T'% 0})(S * gy ) for all sequences ¢, ¢} satisfying conditions (1)~4).

THEOREM 3 (see [3], [5]); Ifﬂ U, Ve Z'(R") and the &'-convolution
U® YV exists then the product UoV exists and

(U®V) =02n"UoV,
The same is true for the inverse Fourier transform.

Now we say a few words about the definitions of improper integrals in
the sense of Sikorski [15] and Musielak [9].

For n,feR, n <¢, we write Qf = {xeR" 1< x < ¢}.

DeriNtrioN 5 (Musielak). Let Te 2 (R"). The distribution T » F o will be
called the integral of T over Qf. We denote it by j':T. (1o is the
characteristic function of the set 5. !

DEFINITION 6 (Musielak). Let Te 9’ (R"). The improper integral of T over
R" is the distributional limit

~ ¢
(] IIel= lim ([T)[e]
n

n>-®
L &+ o
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if the limit exists and is finite for p € Z(R"). (1 — — 00, £ — + 00 means: 7, —
—0, ...,y —00, & = 40, ..., £, — +00) The limit is then a constant
distribution.

The Sikorski definition of improper integral of T over R" is more
difficult to describe. As mentioned in [9], in the case of R" that definition is
equivalent to Definition 6, so we will not quote it.

We notice that for all 5, (e R", n < ¢, pe Z(R",

4
(IT)L6] =(T 7o 6] = [(T+)

and the last integral is the Lebesgue integral of the function T @.

DerintTioN 7. Let P, be a sequence of compact intervals in R". We say
that the sequence is absorbing if for every compact K — R" there exists
NeN, such that K < P, for v> N.

So we have

Remark 3. The existence of the Musielak improper integral of a
distribution T is equivalent to the following condition: lim, ij(T* @) exists
and is finite for every ¢ e 2(R" and every absorbing sequence P,.

Remark 4. If TeLi (R" and the classical improper integral of the
function T exists (i.e. "T(xl, ooy X)dxy ... dx, has a limit as n— —o0, ¢
— o0) then the Musielak improper integral of T exists and both integrals
coincide.

1. Spaces of functions with bounded variation. We now define three
subspaces of the space C®(R". Their definitions are connected with the
notion of function with bounded variation in the case n = 1. First we define,
for every compact interval P and every Ae CP(R"), the following sequence:

EX =73 Y sup [ID**PA(x)|dxs, k=0,1,...,
la) <k ps1>p--pP
with the obvious meaning of the terms corresponding to =0 =(0,...0)
and B =1. We also define a sequence /(1) in the same way, replacing P by
R".

The sequence /, is an increasing sequence of seminorms. We define the

following topological vector spaces:

DR = {AeC™(R"): () < +00 for keN,}
with topology given by the sequence of seminorms I;

D1, (R") = {AeC™(R"): for every ¢ >0 and ke N, there exists N >0 such
that for every compact interval P such that (-~ N, N"n P =@,
E() <o)
equipped with the same sequence of seminorms;
Pr(RY) = {AeC*(R": () < + oo for ke No}
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with the following topology: A,— 0 in 2r(R") as v— oo if

() LX) €Ce<+oo for k=0,1,..,v=12,..

(i) D*4,— 0 almost uniformly as v — oo for ae Nj.

The definitions imply that @, < %, and the mappings 9, < %y, and
id: @, — PDr are continuous.

Unity belongs to @, and Zr but not to .

We notice that for le @y, [9y,, D1l

k(3) = sup HE)

(we take the supremum over all compact intervals).

It is not difficult to show that the spaces %, %, P are complete.

ProrosiTioNn 1. If Ae@y [9ry 2rl Xo€R" then A(+xo)ey
(21 D5) If Ae Dy, (D1 Zi] then D* e @y, [y, Pr] for ae Nj. Both
mappings are continuous.

ProposiTioN 2. If Ae @y [P, r), e D then Axpe Dy, [D1,, VL] and
the mapping Av>A+q is continuous. We have the following inequality:

Ldxo) <lloll 1 h(d) for k=0,1,...
PROPOSITION 3. If ;€ 9y (R™), Ay D (R then the function X = A ® 4,
belongs to DL(R™*") and () < L(A) k(A,) for k=0, 1,
DR x DL (B30, ) Ay ® A€ D <R"‘*“2)
is continuous.

The same is true for 9y, and @E

ProposITION 4. 2 < @, and % <= @y, and both inclusions are continuous.
The same is true for 9, and 9r.

DerinirioN 1. We say that a sequence n, is L-convergent to unity in R" if
i) n,eCF(RY for v=1,2,...
(i) hin)<C <+ fork=0,1,...,v=1,2,...

(iii) For every compact K — R" there exists Ne N, such that #,(x) =1
for v> N, xeK.

. The mapping

Remark 1. If sequences a,, §, are L-convergent to unity in R"* and R"
respectively then the sequence 7, =a, ® B, is L-convergent to unity in
R,

Remark 2. Let ge D(R'), [o = 1. The sequence of functions 7, = y, *¢
is L-convergent to unity in R, where y, is the characteristic function of the
interval {(—v, v>. The sequence s, (x,, ..., x,) =#,(xy) ... 7, (x,) is L-con-
vergent to unity in R

PrOPOSITION 5. @ is dense in QZLO and in Dy, but not in Py

icm®
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Now we show the connection between the spaces just defined and the
notion of function with bounded variation.

Let f2 R*— C, a, be R, a <b. The variation of f on the interval {a, b)
is the number (finite or infinite)

w2 (f) = sup Z [f Ge) —=f (-1l
a=xg <. <x,=bj=1
The variation of f on the real line is defined as W (f) = sup, <, W2 (f). It is
easily seen that 2 (R!) is the set of all functions fe C°°(R1) with all
derivatives with bounded variation on R'. We have

lo(#) =supldl+W () for Ae DL(R") [Zy,(RY), Zc(R)].

2. Improper integrals. We now define improper integrals of functions and
distributions.

DeriniTioN 1. A function f e I, (R") is improper integrable (over R") if for
every ¢ > 0 there exists R > 0 such that for every compact interval P with
Pn (=R, R)" =@, we have |[,f| <s.

Remark 1. If a function fis improper integrable over R" then the limit
lim j'P f exists for every absorbing sequence P,. The limit is finite and
mdependent of the choice of such a sequence. We denote it by j R for f f1f
P is an interval in R" then the limit lim L, r, f exists, is finite and
independent of the choice of P,. We write

j f=lm | f
v PnP,

Remark 2. Let feLi, (R"), n> 1. The condition “For every interval P
in R" and for any absorbing sequence P, the limit lim, , ’, f exists and is
finite” does not imply that f is improper integrable:

ExaMpLE 1.

VACTRE a(x,-1)b(x,)

S X)) =a(xy) ...

k=1
-7
where a(t) = - Y()+2Y(t—-1)-Y(t—2), b(t) = Y(#)—Y(t—1) for teR', and
Y(t) is the Heaviside function.

Remark 3. Let feLl (RY). If lim, ijf exists and is finite for any
absorbing sequence P, then f is improper integrable, ie. in the case n= 1,
Definition 1 and the classical definition of improper integral are equivalent.

DerinrioN 2. Let fell (R"). We say that f has bounded improper

integrals if there exists M > 0 such that UP f l < M for every compact interval
Pin R"

o0
+ 2 a4V x)) a0 x )b (x,/2*
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Remark 4. Bvery I! function is improper integrable. Every improper
integrable function has bounded improper integrals. Both those inclusions
between the three function classes are strict.

ExampLE 2.

T

g(xy, ...y X,) =sinx, ... sinx,.

., X,) = (sinxy/x;) ... (sinx,/x,),

The function f is improper integrable but it does not belong to I}. The
function g is not improper integrable and has bounded improper integrals.

Now we consider the dual spaces of 9, and %;. We denote them by
%1, and ©r. Since & is dense in @, and in % both dual spaces
are spaces of distributions. Proposition 14 implies that they are spaces of
tempered distributions.

DeriniTioN 3. We say that a distribution Te %' (R") is improper
integrable if lim, T'[1,] exists and is finite for any sequence #, L-convergent
to unity in R"

The definition implies that the limit does not depend on the choice of
the sequence #,. We denote it by T[1] or [T

Now we prove the main theorems of this part of the paper. First we cite
the Banach-Steinhaus theorem in a form convenient for us.

THEOREM 1 (see [16], p. 13). Let .# be a vector space with convergence
defined by an increasing sequence gy of seminorms and suppose that M is
complete. If {®},r is a family of continuous linear functionals on M such that
[P, [E]] < o(&) < +o0 for teT, then there exist C > 0, ke N, such that

|2, [E]l < Cqu(8) for e M, teT.
THEOREM 2. Let Te 9'. The following conditions are equivalent:
(i) Te 9t
(ii) T*¢ is an improper integrable function for ¢ 2.
@) T= ZM <« D" fu, Where f, are improper integrable functions.
(iv) T is an improper integrable distribution.
TueoreM 3. Let Te @'. The following conditions are equivalent:
(i) Te 2y,
(if) T*¢ has bounded improper integrals for pe 2.

(iid) T=Zlal D" fo» where f, are functions having bounded improper
integrals.

To prove both theorems we use.the following
LemMA 1. If P is.a compact interval and @€ 9 (R") then yp » ¢ belongs to
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P(R" and
Lp* o) < Clp) < +o0  for k=0,1, ...

where the constant C,(¢) does not depend on the interval P.

If 6 S (R" then ypxoe S (R") and the same inequality holds.

The proof of the lemma is left to the reader.

Proof of Theorem 2. (i)=(ii). It is enough to show that IP\,(T*@
— 0 as v — oo for every sequence of compact intervals P, with P, {(—v, v>"
=@ for v=1, 2, ... We notice that

J(Txe)=T[F*xp].
PV
By Lemma 1, §*xp,— 0 in 9 as v— oo. Since Te Z7 the assertion follows.
(i) = (iii).
Lemma 2. If a distribution T satisfies condition (ii) of Theorem 3 then
Te % (R"), so T is a distribution of finite order.

Proof of Lemma 2. The assumption implies that for every function
@e % the function
*1 *n

F)={... [(T*@)ts, ..., t)dt, ... dt; for xeR"
o0

is bounded, so Txpe %L (R) = % (R". To finish the proof we use the
following known fact: If Te @' (RY) and Txpe ¥ (R") for o P(R") then
Te & (R").

Now we show the implication (i) = (iii). We fix a compact K
= B(0,r) = R". For every function ¢pe Z(K) there exists g(¢) such that

[[(T*@)| €eo(gp) < +o for every compact interval P.
P

This is a consequence of condition (i) and Remark 4. Moreover,
§p(T*)e 2'(K) for every such P. So by the Banach—Steinhaus theorem there
exist C > 0, ke N, such that

|[(T*@)| < Cdi(¢) for e Z(K) and every P.

P
Hence the functionals | p(T*) on Z(K) can be uniquely extended to
functionals on &, (K). Since T is a distribution of finite order, the number k

can be chosen as large as is necessary to make the distribution T'xy a
continuous function for ye &, (K). So we have

[[(T*y)| < Cdy(y) for ye % (K) and every P.
H .
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Now we show that Ty is an improper integrable function for
ye 9, (K). Let ¢, be a sequence of elements of C§*(K) tending to y in %, (K).
We fix &£ > 0. We notice that

[(T*y) = [(Txp,)+[(T*(y—¢,) for v=1,2,... and every P.
P P P

There exists voe Ny such that |jP(T*(y—rva))| < ¢/2 for every P. Condition
(i) implies the existence of N > 0 such that for any compact interval P with
PA{(=N,NY' =0, [[,(T*o,)| <&2. So Txy is an improper integrable
function for ye %, (K).

Now we take the function y = E™y, where E™ is a fundamental solution
of A™ for m so large that EmeC*(R") and ye%(K), ¥ =1 in a
neighbourhood of the origin. So T =4"f-Txg for some improper
integrable function f and some ge C§ (K). Hence T satisfies condition (iii).

(iii) = (i). Since 2 is dense in Zr, it is enough to show (see [16], Th. 4)
that every distribution T satisfying condition (iii) has the following property:
if a sequence ¥, of elements of & tends to 0 in 9y, then T[Y,]—0 as v
- 00.

Let ¥, be such a sequence. Then

Ty,] = Z (=D [ £, D*y,.
u <r

We fix ae Nj and write for simplicity f = f,, 4, = D*{,. Obyiously 4,e & for
v=1,2,... and 4,~0 in @ as v— co. We define

1 *n

Fx)= [ ... [f(ts,...,t)dt,...dt; for xeR".
0 (]

Since f e I}, (R") we see that D'F = f in the distributional sense.
Let & > 0. We write for simplicity Qy = (~M, M)" for M > 0 and fix
C > 0 satisfying the condition ||D! 4, pSCforv=1,2, .. Since fis an
improper integrable function, there exists R > 0 such that ’ f ] < gf(4nC) for
every compact interval P with P Qg = .
We define, for xe R"\Qpg, the followmg function H:
%

M .
HX)=H@xy, .o, %)= [ ... [[lty, ..., t)dt, ... dty,
0 0

where X; = sgnx; min(R, |x|) for i=1, ..., n,

It is not difficult to see that |F(x)-— H (x)l < g/(4C) for xe R"\ Qg. Since
H locally depends only on at most n—1 variables, D' H = 0. So D'(F—H)
=fin 2'(R"\Qg).

Improper integrals of distributions 215

We choose a function ne C§(Qr+2) |7l <1 and 1 =1 on Qg.4,. Then
[fa=[fan+[fil—n) '
= [fAn+(=1) [(F-H)D'((1-n)4)
= [ (fan+(=1" ¥ (F-H)D'LD'""(1-n)

ORr+2 0sp<1
+(=1" [ (F-H)D'4,(1-n).
R'\Qp

The first integral is not larger than g/2 for v large enough, because 4, — 0 in
D as v— oo, the set Qg , is bounded, f is locally integrable and F—H is
bounded. Since |F (x)— H (x)| < g/(4C) for xe R"\ Qg, the second integral can
be estimated by Csup|l—n|e/(4C) < ¢/2. Thus |fA,—0 as v— oo and the
implication (iif) = (i) is proved.

(i) = (iv). Since every sequence which L-converges to unity in R" tends
to unity in @, this implication is trivial.

(iv) = (i). Since & is dense in Py it is enough to show an extension of
the distribution T to a linear continuous functional on %y, or to prove, like
in the proof of the implication (iii) => (i), that if a sequence ¥, of elements of
9 tends to 0 in @ then T[¥,] —0 as v— oo. We leave the simple proof to
the reader.

The proof of Theorem 2 is finished.

We omit the similar proof of Theorem 3.

Remark 5. If Te2r [9,] then Txo is an improper 1ntegrable
function [a function with bounded improper integrals] for oe .

Remark 6. If T is an improper integrable function then it is an
improper integrable distribution and the value | T in the sense of Definition
3 equals the value [T in the sense of Definition 1 and Remark 1.

CoroLLArY 1. 97, & 9F & D1y

Proof. The inclusions 2y, = Zf < 9y, are simple consequences of
condition (ii) of Theorems 0.1, 2 and 3 and Remark 4. The functions f, g
from Example 2, considered as distributions, show that the inclusions are
strict.

The spaces @y, Pg, Y1, are in some way analogous to the spaces B, B,
B respectively. We obtain a representation theorem for the dual space 9
(Theorem 2) similar to the case of B. There is an important difference in the
case of 2}, because B =B and 9} # 1, The reason is the following: the
seminorms d, have the property di(@+y) < max(d(0), d(¥)) if
supp ¢ nsuppy = @. This is not true for the seminorms I (see [1], Property
(), p. 67).
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Theorem 2 and Remarks 1 and 0.3 imply the following

Remark 7. If a distribution is improper integrable in the sense of
Definition 1 then it is improper integrable in Musielak—Sikorski sense.
It is not difficult to see that in the case n=1 both definitions are

equivalent. o
In the case n>1 there exists a distribution T which is improper
integrable in Musielak—Sikorski sense, but not in the sense of Definition 1:

ExAMPLE 3.

T(xg, cos X) = 1y ® ... ® 1, ®(Y(x,+ 1)=2Y (x,)+ ¥ (x,—1)).

Remark 8. It is not possible to prove a representation theorem for
improper integrable distributions in Musielak—Sikorski sense, i.e. to prove
that every such distribution is of the form ZM < DF fus fu€ Lig, (R™), with

additional conditions of integrability for f,. In fact, an improper integrable
distribution in Musielak—Sikorski sense need not be of finite order:

ExaMPLE 4 (n=2).
T(xy, x3) = (Y (%3 4+ 1) =2Y (x1)+ Y (x; ~ DY Y9(x,—i).
: i=0

3. Convolution of distributions. In this part of the paper we define the
convolution of distributions, using the already defined notion of improper
integral for distributions. This convolution will be called the improper
convolution. It is a generalization of the classical convolution preserving all
the properties which are required for this operation.

The following theorem analogous to Theorem 0.2 may be proved:

Tueorem 1. Let U, Ve Z'(R"). The following conditions are equivalent:
W) (U ®@¥)o(x+))e 2L (R") for pe D(R).
(i) U(Vxp)e ZE(RD for oe 2(RM.
(iii) (T * ) Ve PL(RY) for pe B(R").
(iv) (Usp))(Px¥)(x)  is an improper integrable function for
®, ye D(R").
If one of these conditions holds then
U@V o(x+y)[1] = UF*g)[1] = (T »p) V[1],
[U0)(Pxy) = (U, @ )G #y) (x+y)[1]
for ¢, yre 2(R.
Theorems 2.2 and 1 imply
CororLary 1. Let U, Ve ' (R"). The following conditions are equivalent:
0 Uz @ W) p(x+y)e ZL(R*) for pe2(R").
() The limit lim,(U, ® V,) ¢ (x+y) [1,(x, )] exists and is finite for
every sequence 1, L-convergent to unity in R*" and ¢ 9(R").
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(i) The limit im, (U, ® V) [p(x+y)a,(x)] exists and is finite for every
sequence o, L-convergent to unity in R and ¢ 9(R").

(iv) The limit lim, (U, ® V;) [o(x+y) B, (y)] exists and is finite for every
sequence B, L-convergent to unity in R} and ¢e Z(R").

(v) The limit lim, (U, ® V) o (x+y) [, (x) B,(y)] exists and is finite for
all sequences «,, B, L-convergent to unity in R®, R} respectively and ¢ € 2 (R").

If one of these conditions holds then all the limits equal U, ®@V)o(x
+ [l

Dermvirion 1. Let U, Ve 2'(R"). The improper convolution U «V of U, V
is the distribution

U]l =1mU, ® V) o (x+y) [1.(x, y)]

if the limit exists and is finite for every sequence 7, L-convergent to unity in
R*" and every function pe 9 (R").

Remark 1. Improper convolution can also be defined as described in
Remark 0.1,

Remark 2. Definition 1 is a generalization of Schwartz’ definition of
convolution. There exist pairs of distributions U, ¥ which are convolvable in
improper. sense, but not in Schwartz sense:

ExampLE 1.
Ux)=1, V(x)=(sinx/x,) ... (sinx,/x,) for xeR".
ExaMPLE 2.

Ui, t)=E(x,1)= 2—1c- Y(ct—|x]) for some constant ¢ >0 and x, teR',

V(x, t) =sint/t? for x,teR , [t| > 1, V(x,t)=0 for jt] <1.
We notice that E, is a fundamental solution of the wave operator [1,
= 0%/0t* —c? 9%/0x* (see [16], § 31). So the improper convolution E, * V is a
solution of the equation
Pu
5T
Remark 3. If U, Ve 2'(R") and the improper convolution U * V exists
then all improper convolutions which appear below exist and
(@) UsV=VxU.
(b) Ux(V(+1)=(U(+1))xV=(UxV)(-+1) for teR"
© Uy " =0xV
(d) D*U)xV =Ux(D*V)=D*(U*V) for acNj.
If Ve 2'(R") then the operation UrsU *V is linear on the set of all
distributions U such that the improper convolution U %V exists.
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For the same reason as in the classical case we.introduce the improper
'-convolution of tempered distributions. First we note that Theorem 1 and
Corollary 1 are still true if we replace the functions ¢, Vve 2 by functions
from & and assume that U, Ve &' (R").

DerinrmioN 2. The improper &'-convolution of tempered distributions U,
V is a tempered distribution U ® V defined as follows:

(U® V) [0] = lim(U, ® V) o (x+y) [m(x, )]

if the limit exists and is finite for every function oe % (R") and every sequence
7, L-convergent to unity in R*"
%'-convolution can also be defined as described in Remark 0.1.
Obviously the improper &-convolution is a generalization of the
classical &”'-convolution. This is an essential generalization (see Examples 1
and 2).

4. Product of distributions and the exchange formula. In this paper we
consider a more general definition of the product of distributions than
Definition 0.4. It is connected with the notion of the value of a distribution
at a point (in the sense of Lojasiewicz, see [6]-[8]). This definition of
product can be found in [4], [8], [14]. Similarly we define the notion of the
&-product of tempered distributions.

DermniTioN 1 (see [6], § 3, p. 15). We say that a distribution Te 2'(R")
has a value C at a point xoe R*: T(xy) =C, if the distributional limit
lim; o4 T (xo+4x) exists and is the constant distribution C, ie.

lim T(xo+4)[¢]l=C[o for pcD (R,
120+

where T(xo+4°) denotes the distribution defined as the composition of T
with the function f(x) = xo+4x, so

T(xg+4)[0] = T[%(p (:I’fﬂﬂ for pe 2(R), 4 # 0.

Remark 1.If T js an improper integrable‘ distribution (in the sense of
Definition 2.3) then T has a value at 0 and T(0) =(2r)~"* T[1].

Proof. Since
1 Y L
<7¢<1>) =G4

T[inqa @] ~ T[H].

we have

©
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We notice that ¢(1)— (2n)™"2 (¢ in %1 as A~ 0+, so
lﬁfg T[N =TI2n) ™2 [¢.

Hence T(0) exists and T(0) =(2mn)" "2 T[1].

Improper integrable distributions in Musielak-Sikorski sense do not
have this property. In fact, an improper integrable distribution in this
meaning need not be a tempered distribution (see Example 2.4).

DeriviTioN 2. We say that a sequence g, converges regularly to & (is a
regular d-sequence) if

1) 0,e2(R) for v=1,2,...

(2) suppg,—0 as v— co.

(3) jo,=1 forv=1,2,...

(4) For every ae Nj there exists M, > 0 such that sup|D*p,| < M,/Ale+"
for v=1, 2, ... where suppg, = (—4,, 4,)".

The following theorem is true:

Treorem 1. Let U, Ve 2'(R) [%(R)]. The following conditions are
equivalent:

(i) The limit lim,(U % g,) V exists in &' (R") [ (R")] for every regular 5-
sequence g,.

(ii) The limit lim, U (V % ,) exists in &' (R") [%” (R"] for every regular é-
sequence g,.

(ii1) The limit lim,(U % @})(V * 0, exists in &' (R") [ < (R")] for all regular
d-sequences ¢, gy.

(iv) The distribution U »(Vip) has a value at O for e 2(RY) [Z(RM].

(v) The distribution (U¢)*V has a value at 0 for ye 2(R" [ (RY].

(vi) The distribution (U )*(Vp) has a value at 0 Jor @, ¥ye2(R"
[Z(RY]. :
If one of these conditions holds then the limits (i)(iii) are equal and

lim (U % ) (V' * 4) [@] = (T (Vo)) (0) = (U} * P)(0),
lim (U + ) (V +03) [o] = (OF) + (V) (0)

Jor all regular S-sequences g,, o) and ¢,ycD(RY [¢,Ye SR if
U, Ve & (RM].

DerINITION 3 (see [14]). If distributions U, V satisfy one of conditions
(i)~(vi) of Theorem 1 (in the case of 2'(R™) then we say that the product UV
of these distributions exists, defined as one of the limits (i)iii).

Since, for U, Ve &' (R"), the existence of the product UV does not imply
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that UVe & (R"), we introduce the notion of %'-product, denoted by U Q V.
It is one of the limits (i)-(iii), under the assumption that conditions (i)-(vi)
hold in the case of &' (R"). So U @V is a tempered distribution.

Now we give a generalization of Theorem 0.3 on the exchange formula:

THeOREM 2. Let U, Ve & (R"). If the improper y’-convolution of U,V

exists then the &'-product of their Fourier transforms exists and
U@V =Qn"U0oV.

The same is true for the inverse Fourier transform.

The theorem is a consequence of Theorem 1 and Corollary 3.1 in the
case of &' (R") and the definitions of improper #'-convolution and -
product. We omit the simple proof.
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Nonlinear transformations on spaces of
continuous functions

by
HANS VOLKMER (Essen) and HANS WEBER (Potenza)

Abstract, We study nonlinear transformations on spaces of continuous functions with
values in a Banach space. The continuous functions are defined on an arbitrary topological
space and have totally bounded range in a second Banach space. In particular, we consider
transformations which satisfy the Hammerstein property of Batt [1973] and integral operators.
Our results, which are obtained by a systematic use of the semivariation, generalize some of the
results of Batt. Further, we point out some connections between our results and the theory of
locally solid Riesz spaces and abstract integration theory.

0. Introduction. This paper deals with a generalization of the classical
Riesz representation theorem to nonlinear transformations. In [VW2] we
have given a new approach to the representation of continuous linear
operators T: 4(Q, E)— F, where @ is an arbitrary topological space, E and
F are Banach spaces and %(£, E) denotes the space of all E-valued
continuous functions on Q with totally bounded range endowed with the
topology of uniform convergence. J. Batt asked whether it is possible to
obtain with our method [VW2] his integral representation theorem for
certain nonlinear transformations [B2]. Batt investigated in [B2], for a
compact Hausdorff space €, transformations T %(Q, E)— F which are
uniformly continuous on bounded sets and satisfy TO=0 and the
“Hammerstein property”

T(f+fi+2)+ T(f) = T(f+)+ T(f+/2)

for all f, 11, f,e 4(Q, E) with f; and f, having disjoint supports. For a short
description of the relation with earlier research of Drewnowski-Orlicz,
Mizel-Sundaresan, Chacon-Friedman, Friedman-Katz and Friedman-Tong,
see [B1].

Our approach to the representation of nonlinear transformations
T: 4(Q, E)y— F is based on a systematic study of the semivariation of T
(= modulus of continuity) in Section 1. The semivariation is used to obtain a
continuous extension of T in Section 2. In Theorem (4.3)a) we show the
following result, which may be considered as the kernel of a representation
theorem: Let Q be an arbitrary (not necessarily compact) topological space.
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