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that UVe & (R"), we introduce the notion of %'-product, denoted by U Q V.
It is one of the limits (i)-(iii), under the assumption that conditions (i)-(vi)
hold in the case of &' (R"). So U @V is a tempered distribution.

Now we give a generalization of Theorem 0.3 on the exchange formula:

THeOREM 2. Let U, Ve & (R"). If the improper y’-convolution of U,V

exists then the &'-product of their Fourier transforms exists and
U@V =Qn"U0oV.

The same is true for the inverse Fourier transform.

The theorem is a consequence of Theorem 1 and Corollary 3.1 in the
case of &' (R") and the definitions of improper #'-convolution and -
product. We omit the simple proof.
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Nonlinear transformations on spaces of
continuous functions

by
HANS VOLKMER (Essen) and HANS WEBER (Potenza)

Abstract, We study nonlinear transformations on spaces of continuous functions with
values in a Banach space. The continuous functions are defined on an arbitrary topological
space and have totally bounded range in a second Banach space. In particular, we consider
transformations which satisfy the Hammerstein property of Batt [1973] and integral operators.
Our results, which are obtained by a systematic use of the semivariation, generalize some of the
results of Batt. Further, we point out some connections between our results and the theory of
locally solid Riesz spaces and abstract integration theory.

0. Introduction. This paper deals with a generalization of the classical
Riesz representation theorem to nonlinear transformations. In [VW2] we
have given a new approach to the representation of continuous linear
operators T: 4(Q, E)— F, where @ is an arbitrary topological space, E and
F are Banach spaces and %(£, E) denotes the space of all E-valued
continuous functions on Q with totally bounded range endowed with the
topology of uniform convergence. J. Batt asked whether it is possible to
obtain with our method [VW2] his integral representation theorem for
certain nonlinear transformations [B2]. Batt investigated in [B2], for a
compact Hausdorff space €, transformations T %(Q, E)— F which are
uniformly continuous on bounded sets and satisfy TO=0 and the
“Hammerstein property”

T(f+fi+2)+ T(f) = T(f+)+ T(f+/2)

for all f, 11, f,e 4(Q, E) with f; and f, having disjoint supports. For a short
description of the relation with earlier research of Drewnowski-Orlicz,
Mizel-Sundaresan, Chacon-Friedman, Friedman-Katz and Friedman-Tong,
see [B1].

Our approach to the representation of nonlinear transformations
T: 4(Q, E)y— F is based on a systematic study of the semivariation of T
(= modulus of continuity) in Section 1. The semivariation is used to obtain a
continuous extension of T in Section 2. In Theorem (4.3)a) we show the
following result, which may be considered as the kernel of a representation
theorem: Let Q be an arbitrary (not necessarily compact) topological space.

3 — Studia Mathematica 863
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Denote by A the algebra generated by the cozero sets {¢ > 0)
(1= {xeQ: ¢(x)>0}), pc%(Q, R), and by M(A, E) the uniform closure of
the space (A4, E) of A-simple functions with values in E. Then the restriction
S+ S|%4(Q, E) defines an algebraic isomorphism between the space of all
transformations S: 9N(A, E)— F which are uniformly continuous on
bounded sets and “regular” and.the space of all transformations T: €(Q, E)
— F with these properties. This result also makes transparent the role of the
Hammerstein property for an integral representation Tf = [ fdu
(fe¥4(Q, E)) for certain transformations T % (R, E)— F; the Hammerstein
property guarantees that a transformation S: (4, E)— F can be

icm®

considered as an integral S/ = [ f du with respect to the set function u defined -

by u(A)y:=S(x.y) (cf. Sections 3 and 4),

In Sections 5 and 6 we examine various properties of transformations
T: 4(Q, E)—F, namely s-boundedness, weak compactness, g-smoothness
and t-smoothness, further, the connection between these properties of the
represented transformation and the representing content. For the
transformations considered, weak compactness implies s-boundedness, and s-
boundedness implies regularity, hence representability in the sense mentioned
above. If 2 is compact, the transformations considered are always -smooth,
hence o-smooth. Our approach is related to an abstract integration theory.
Combining both we immediately get a characterization of s-bounded o-
smooth transformations T 4(Q, E)— F with the Hammerstein property,
which generalizes a result of Brooks-Lewis [BL] for T linear and €
compact.

1. The semivariation. Throughout this paper, 2 is a topological space
and (E, | |), (F, | |) are Banach spaces over the real or complex field. In this
section let

T. #—~F

be a nonlinear transformation defined on a linear subspace & of the space
B(Q, E) of all bounded functions on Q with values in E. If not explicitly
stated otherwise we .consider B(f2, E) and its subspaces as normed spaces
with the sup-norm [if||,:=sup {|f(x)|: xe ©}. The function space # will
mostly be one of the following spaces:

(i) The space %(f2, E) of all continuous functions on € with totally
bounded range in E.

(i) The space €(4, E) of A-simple functions on Q with values in E
where 4 is an algebra of subsets of . More precisely, €(A, E) is the linear
span of {x,y: AeA, yeE} where x, denotes the characteristic function of A.

(iii) The space M(A, E) of totally A-measurable functions on  with

values in E. This space is defined as the topological closure of €(A, E) in
B(Q, E). ‘
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We denote the corresponding vector lattices of real-valued functions by
B(Q), 6(Q), €(A4), M(A).

We shall use Riesz pseudonorms on these vector lattices to generate
topologies. A Riesz pseudonorm (see [AB, p. 39]) is a map -p defined on a
vector lattice L such that

@) p: L-[0, oo[.

(i) ple+¥) <p(e)+pW) for all ¢, yecL.

@iii) p(A@)— 0 as A—0, for each pelL.

(iv) p(@) <p(y) whenever |o| < |y| holds in L.

Our pseudonorms will be defined in terms of the semivariation of the
given transformation T. The semivariation of T with respect to o > 0,

Il llze: BE)— [0, o],
is defined by

llollz,. : = sup{|Tf— Tyl: f, ge F.. |f—gl <lol}
where
Foi={heF: |, <a}, [H():=]h(x)

Obviously, the semivariation satisfies property (iv) of a Riesz psendonorm.
The transformation T is uniformly continuous on #, if and only if condition
(iii) holds. In this case the range of T on %, is bounded and, therefore, the
range of || lr, is also bounded, hence (i) holds. In general, the semivariation
does mnot satisfy (i) on the whole lattice B(£2). The following lemma is useful
in this context.

(1.1) LeMMA. Let F, &' be one of the pairs of spaces €(R, E), €(Q) or
(A, E), €(A) or WA, E), M(A). Let f, ge F,, o B(Q), Y F' and assume
that |f—g| <|p+y). Then there are sequences k,, 1, in %, such that |f
—ka < W, ll—gl <ol and Jk,~1L| <1/n (= 1/n-y,).

Proof. Let h= f—g and set

A

for h: Q— E.

a_wlhI—I'/JI L
=Ynvi T tnvin

ky:=(1—0)f+eg, IL:=af+(1-0)g,

where A and v denote the pointwise infimum and supremum, respectively.
Since 0 < ¢ <1, 0< o < 1, the functions k, and I, are in #,. Moreover, |f
—kil = olh <W| and [l,—g| =0k <|¢|. From g+o =[h/1/nv [h) we
obtain

Un v |h— |k
1/n v [H

< 1/n
SinvH

0<1—(g+0) =

Hence |k,—1,| =(1—(g+0))|h < /n.
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(1.2) ProrosiTioN. Let F, # be as in (1.1) and assume that T is
uniformly continuous on F,. Then

W+ lire < Wllratlielr,. for all peB(Q) and YyeF'.
In particular, the restriction || llr.|.#' of the semivariation || ||y, to F is a
Riesz pseudonorm.
Proof. Let f, ge #, and assume that | f—g| <|@+y|. Choose k, and |/,
according to Lemma (1.1). Then
|Tf—Tg| < |Tf~ Tk, +|Tl,— Ty} +|Tk,— T},
< Wlra+ll@llra+ 111/,

= Wllza+l@llr,.

because T is uniformly continuous on ,. It follows that |T/— Tg| < [l
+|l¢llr,. and this proves the proposition.

We remark that (1.1) and (1.2) are valid for more general spaces #, #.
It suffices to assume that # is a linear subspace of B(Q, E), #' is a vector
lattice in B(Q), |FlcF', F-FcF leF and ofyeF whenever
@, Ye F are such that inf{if (x): xeQ} > 0.

If #e€(Q, E) then we can prove a further result on the subadditivity of
the semivariation. As in [VW2, p. 174] we set

2:={peB(Q): ¢ >0 and {p >1t}eP for all real t}

as n-— oo

where P is the system of cozero sets in Q. The system of zero sets will be
denoted by Z. The definitions of P and Z as well as the basic properties of
these systems which we need in the sequel can be found in [VW2, pp. 173-
174]. The book [GJ, 1.10-1.15] contains a more detailed study of these
systems,

(1.3). ProrosmoN. Let T %(2, E)—F be uniformly continuous on
%(R, E),. Then

llos+@allre < l@ullretl@allr,

for all ¢, 8.
The proof parallels that of [VW?2, (1.1.3)] and is omitted. The reference
in that proof to [VW1] has to be replaced by Proposition (1.2) of this paper.
If we use the system of open sets instead of the system of cozero sets in
the definition of £ then, in general, Proposition (1.3) is true only if Q is
normal.

2. Extension of transformations on %(Q, E). In this section let
T %(Q, E)~ F be a nonlinear transformation which is uniformly continuous
on bounded subsets of #(Q, E). For each o >0, we define I e B(Q)

©
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— [0, oo by

llolly := inf {7, |0l < e 2},

It follows easily from Proposition (1.3) and €+ @ < @ that || ||, is a Riesz
pseudonorm. If @ £ then ||¢]|, coincides with the semivariation lollr . The
system (|| |l).>0 generates a vector topology 1’ on B(Q). This topology is
locally solid in the sense of [AB, p. 33]. The topology 1’ can be generated
by a single Riesz pseudonorm, for instance,

loll:= 3 27 (loll, A 1,
n=1

but we shall not use this pseudonorm.
Let 3(9) denote the t'-closure of %(Q). Then J(€) is a vector lattice in
B(Q). For each a >0, we define
Ml la: B, E)— [0, oo

Y /1l : =11 1/] lla- The system (| [llJa>o generates a vector topology t on
B(Q, E). Let 3(Q, E) denote the closure of % (£, E) with respect to this
topology. Then J(Q, E) is a linear subspace of B(Q2, E).

The following lemma is obvious.

(2.1) LemMA. (a) The t'- and t-topologies are coarser than the topologies
generated by the sup-norm || ||, on B(Q), B(Q, E), respectively.
(b} For dall f, ge% (R, E),,

IT/= Tyl <llf~glll.

Hence T is uniformly t-continuous on % (R, E), for each a > 0.

(2.2) TueoREM. (a) There exists a uniquely determined extension
T 3(Q,E)—F of T which is uniformly t-continuous on all || ||..-bounded
subsets of J(Q, E). )

(b) This extension satisfies

ITf~ Tyl < Il f—gllla
Jor all f, ge 3(Q, E),, in particular,

lloll5,q < lloll,
Sor every gpeB(Q).
Proof. First we prove that J(®, E), is contained in the 7-closure of

%(Q, E), for each a>0. Let fe3J(Q, E),. Then there is a sequence
J,€6(Q, E) such that f, is T-convergent to f. Define a map ¢: E— E by

L))
°0):= {(a/lyl) y

if |yl € «,
if |y > a.
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Then ¢ satisfies the Lipschitz condition

le(y)—e()l <2[y1—yal

for all y,, y2€E. Hence the functions g,:=go f, belong to €(R2, E), and
|f~gd =loof—eofil 2|1
It follows that g, is T-convergent to f, consequently, f is in the t-closure of
%(R, E),. By this result and by Lemma (2.1)b), T|%(£, E), can be extended
to a uniformly 7-continuous transformation on J(&2, E),. Since this is true
for all o >0 the statement (a) follows. Part (b) of the theorem is now
obvious.
\ We call a subset M of Q T-measurable if x) ye I(Q, E) for all ye E. The
system of all T-measurable sets is denoted by M.

The next theorem gives some alternative descriptions of T-measurable
sets.

(2.3) Tueorem. The following five statements are equivalent for every
cozero set M. If M is an arbitrary subset of Q then the first three statements
are equivalent.

() MeM.

(i) xme I(Q).

(iii) For all >0 and ¢ >0, there are sets ZeZ and PeP such that
ZcMcP and tpzllr. <e

(iv) The system {Yye%(2): 0 <Y < xp} increasingly directed by the
usual pointwise-defined order relation is Cauchy in (B(Q), 7).

(v) The system {ye €(Q): 0 <y < ype} is T'-convergent to yy.

The proof is similar to that of [VW2, Theorem (1.3.2)] and is omitted.
Since J(Q) is a vector lattice which ¢ontains y,, the equivalence of (i) and (ii)
shows that M is an algebra of sets. If there are enough T-measurable sets
then T can be extended by continuity to a transformation defined on a space
of totally measurable functions:

(2.4) TueOREM. Assume that all cozero sets in Q are T-measurable, and let
A denote an algebra of subsets of Q such that P < A = M. Then 4(Q, E) is
contained in M(A, E), and S := T| DA, E) is an extension of T. Moreover, S is
uniformly continuous on bounded subsets of (A, E) and the following relations
hold for the semivariations:

I lire < llsa < g

ollze = llollss = lgllra for every peg.

Proof. The inclusion 4(R2, E) = M(A, E) is shown in [VW2, (1.2.4)]. By
the definition of M, the inclusion (A, E) < 3(2, E) holds, By (2.1)a), it
follows that M(A, E) = 3(Q, E). Hence we can define § = T|M(A, E). By

icm
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Theorem (2.2), S is uniformly t-continuous on || ||-bounded subsets of
M(A, E). Since uniform z-continuity implies uniform continuity with respect
to || |, S is uniformly continuous on bounded subsets of (A, E), too.
Since T = S = T, we obtain

IFlira <l Hlsa ST Iz

If pe £ then, by (2.2Xb) and the definition of || ||,,

llolra < llelle = ll@lra

This completes the proof of the theorem.

The s-bounded transformations form an important class of
transformations which satisfy the assumption P < M of Theorem (24). T is
called s-bounded if, for every a >0 and every sequence ¢,e % () such that
0<@,<1 and ¢, A ¢,, =0 for m % n, the sequence |lo,llr,. converges to
zero.

(2.5) TueoreM. If T is s-bounded then every cozero set in Q is T
measurable.

Proof. We assume that there is a set PeP which is not in M. Then, by
(2.3) (i) <> (iii), there are a > 0, & > 0 such that |lyp\zllr, > € for each zero set
Z = P. Choose Zye Z, Z, = P. Since lxprzollr,e > € there is @, € %(£2) such
that 0 < @, < xpyz, and (@4l > & It follows from the next lemma that we
can assume that there is a set Z, e Z such that {p; #0} ¢ Z, = P\Z,.

We now repeat the previous argument with Z, U Z, replacing Z,. We
obtain ¢@,e%(Q) and Z,eZ such that 0< ¢, <1, l@lr,>¢ and
{p,# 0} = Z, € P\(Z, U Z,). In this way we construct a sequence ¢, & %(Q)
such that 0<¢,<1, ¢, A9, =0 for m#n and ||@,llr.>¢& Hence T is
not s-bounded.

(2.6) LemMa. Let @e%(Q) and ||@llr, > 7 for some y>0. Then there
exist Yeb6(Q) and ZeZ such that |Yllr.>y O0<y<|p| and
{y#£0=Zc{p#0}..

Proof. We can assume that ¢ = 0. Then set ¢, := (¢ —1/n) v 0. We see
that y,e4(Q), 0<y,<¢ and |¥,—o|l,—0 as n—oo. It follows that
W llra = ll@llrq Hence y:=,, Z:= {p > 1/n} satisfy the statement of the
lemma for sufficiently large n.

We remark that the s-boundedness of T can be reformulated in several
ways. For instance, Lemma (2.6) shows that T is s-bounded if and only if
llxz,/lr,« — 0 as n— oo for every a > 0 and every sequence Z, of disjoint zero
sets. Our definition of s-boundedness is also equivalent to the pre-Lebesgue
property of the locally solid Riesz space (¢(R), v') in the sense of [AB, p. 53].
This follows from [AB, Theorem 10.1 (i) <> (iii)]. The same theorem shows
that the pre-Lebesgue property of (4(£2), ') is equivalent to the property that
every increasingly directed net (¢;) in %(Q) which satisfies 0 < ¢; < ¢ for
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some @€ % () and every i, is a 7-Cauchy net. This yields a second proof of
Theorem (2.5) because of the equivalence (i) <> (iv) of Theorem (2.3). Another
equivalent formulation of s-boundedness of T is that, for every « > 0 and
every sequence ¢,c % (2) such that

Y lod
n=1

is bounded, the sequence ||¢,|lr, converges to zero. This property is called
“schwach halbadditiv” in [S, Section 2.5].

3. Transformations on E(4, E) or M(A, E) and the Hammerstein
property. The aim of this section is to introduce the Hammerstein property
and an integral for totally measurable functions. We need both concepts for
the integral representation presented in the next section. Our notions coincide
with those of [B2, Sections 1, 2]. As in [B2, p. 147] we denote by M (E, F)
the linear space of all transformations U: E — F which satisfy U0 = 0 and
are uniformly continuous on bounded subsets of E. Let % be a linear
subspace of B(2, E) and Te M(#, F). Then T satisfies the Hammerstein
property if :

TU+A+)+Tf = T(+)+ T(f+1)

for all f, fi, fre # such that |fi| A |fy) =0. The space of all Te M(F, F)
which satisfy the Hammerstein property is denoted by M, (#, F).

If % =4(Q, F) then Batt uses {f; # 0} n{f; #0} =@ instead of
[fil A1f2l =0 in the definition of the Hammerstein property. We note that
both definitions are equivalent. This follows from the continuity of T and the
following observation. If f;, f, € (@, E) and [f;| A |f,| =0 then the functions

U=y v o
ﬁn-—m—f,e ¢(Q2, E)

satisfy || fiu—fill« <1/n—0 as n—cow and (f;, 0} n{fon#0} =@ for
every n.

We also note that the Hammerstein property for Te M (&, F) implies
that

T(f1+f2) = T+ TN

whenever f;, f,e # and |fj| A |f] = 0.
In general, this property is not equivalent to the Hammerstein property.
This is shown by the example [B2, p. 150]

Tf =inf {|f (0)): xe[0, 11}
and # =%([0,1].

e ©
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In the rest of this section let 4 be an algebra of subsets of Q. A content
u A— M(E, F)

is a finitely additive set function. The integral {fdp of an A-simple function
J: Q— E with respect to the content y is defined by

jfd# = kZ 1Ay
=1

if f has the representation

=3 xad
k=1

where y;, ..., y,€E and A4, ..., 4, are disjoint sets in A. It is easy to see
that the integral is the same for every such representation of f.

The semivariation of p is defined as the semivariation of the
transformation S: €(4, E)— F where Sf := [ f du. We sometimes write || |,
for || lls.- The transformation § is in ‘M((E(A, E), F) if and only if
lim, . ,||1/n]|, . = O for each a > 0. The linear space of all contents x which
satisfy this condition is denoted by ba(A4, E, F).

(3.1) ProrositioN. (a) The map p—({-dyu establishes an algebraic
isomorphism between ba (A, E, F) and My, (€(4, E), F).

(b) For every Se M(G(A, E), F), the Hammerstein property is equivalent
to

S(fi+f) = Sfi+ 5,

Jor all fy, fye €(A, E) such that |fi| A |f3] = 0.

Proof. (a) Obviously, the map p+sS:= j‘du is linear and one-to-one
from ba(4, E, F) to M (€(A, E), F). As in [B2, p. 148] we see that S satisfies
the Hammerstein property. If Se My (€(A, E), F) then u(Ad)y =S(1y)
defines a content peba(A, E, F) such that S = {-du.

(b) This follows from the observation that the last argument of the proof
of (a) remains true if SeM(G(A, E), F) satisfies the weaker additivity
condition.

For every transformation SeM(€(A, E), F), there is a uniquely
determined continuous extension Se M (A, E), F). Hence there is a natural
isomorphism between these spaces, ‘

(3.2) Proposirion. Let S, § be as above. Then

(a) ” ”S.a =|| “§,a'

(b) S satisfies the Hammerstein property if and only if § satisfies this
property.
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Proof (a) Let us prove that | [ls. <l lls.r Let ¢@eB(Q) and
£, geM(A, E), with |f—gl<¢. Since E(4, E), = M(4, E), there are

fi» g1€ €(4, E), such that ||f—fill, <& llg—gillo <& for each & > 0. Then
IS/~ 8| < |Sf; —Sg1| +I5f—Sf1| +1Sg1 —Sal < ||+ 2ellsc + 2 lellsa-
It follows from Proposition (1.2) that
IS~ Sql
Hence [|¢lls,a < l1@lls-
(b) 1t suffices to prove that for every fe (A, E) there exists a sequence
e €(A, Ey such that ||f,—f|lo—+0 as n— oo and {f, # 0} = {f #0}. Let
feM(A, E), & > 0. Choose

< lollse+4lelse = llolls.  as e—0.

h

g= ZXA,,
k=1

in A4, ||f—9gllo<& We can assume that
Ay rey Ap CJ;&O} mtts s Ay E{f # 0}, Let m+1<k<n xoed,,

f{xo)=0. Then &2 |f(xo)— g(xo)l = |yl and, for each xe A4y, |f(x) <|f(x)
~g () +y < 2&. Now

Yi»

wekE, A, disjoint sets

m
h= 3 Xa Y
k=1

satisfies {h 0} < {f # 0} and ||f—h||, < 2¢

If peba(d, E,F) then S:= [-dueMy(€(A, E), F). Hence we can
define the integral

[fadu:=8f
for all feIR(4, E) and Se My, (M(4, E), F).

4. Integral representation of transformations on % (2, E). In this section
we continue our theory of the second section in order to obtain integral
representations  of transformations on #(Q, E) which satisfy the
Hammerstein property.

(4.1) Prorosrrion. Let Te M(%(Q, E), F) and assume thar T (g, +42)
= T§1+ Ty, for all gy, g, € € (Q, E) such that |g;| A l|g,| = 0. Define M and T
as in Section 2. Then T satisfies the Hammerstein property on M(M, E).

Proof. Since T is continuous with respect to the | || o-norm,
Propositions (3.1)b) and (3.2) show that it suffices to prove T(h+f) =Th
+Tf, for all f,, f,e €(M, E) such that Al Alfal =

We choose a positive integer « such that f;, fze €(M, E), and write

m
f1=k§:1XM,‘yh f= E XMy Yis

k=m+1
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where My, ..., M, are disjoint sets in M. By Theorem (2.3), for each & > 0,
there are sets Z,eZ, P,eP, k=1,...,n such that Z, c M, < P, and -
I XPk\Zk“T,m <é. Sincg: Zy,..., Z, are disjoint zero sets there are disjoint cozero
sets Py,..., P, such that Z, <« P, for k=1, ..
by P, NPy, we can assume that P; < P,.

There are. continuous functions ¢,: Q— [0, 1] such that ¢, (x) =1 for
xeZ, and @ (x) =0 for xeQ2\ P;. Then

., n. Since we can replace P;

”|XM,‘ Y= O Villle < allXag, — il < alixpozliva <oe.

Define

Z Px Vi

k=m+1

m
= Z P Yis
k=1

g2:=

Since g;, g.€4(Q, E), |g1l Alg2] =0, it follows from our assumption that

T(g,+9g,) = Ty, + Tg,. Hence

IT(h+/)—THh-Tf
ST, +f) - T(g1 +9) +ITf — Tgi| +1 T2 — Tl
<1 +f2—9: —gallle HILf —gullla+ L2 — g2l

<2 Y, llxag Ye— e villla < 2ane.
k=1

Since ¢ > 0 can be made arbitrarily small it follows that T(f; +f,) = Tf
+Tf,.

In the sequel let us denote by A the smallest algebra containing P. This
algebra will be used for the integral representation.

(4.2) CoroLLarY. Let Te M(%(Q, E), F) and assume that all cozero sets
of Q are T-measurable. Then the following three statements are equivalent:

(i) T satisfies the Hammerstein property.

@iy T(h+f) =THi+Tf, for all fi,,e4(L, E) such that |fi| Alfd
=0

_(ii)) There is a content peba(d, E, F) such that Tf = jfdu for all
fe¥%(@, E).

Proof. By (3.1) and (3.2), (iii) implies (i). (i) = (ii) is trivial. In order to
prove (i) = (ili) we apply Theorem (24). This theorem shows that S
:= T|9(A, E) is in M(IM(A, E), F) and extends T By Proposition (4.1), S
satisfies the Hammerstein property. Hence by (3.1) and (3.2) there'is a
content peba(d, E,F) such that Sf ={fdu for every fe(4,E)
> %(Q, E).
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In order to simplify the formulation of the next theorem let us introduce
the class of “regular” transformations T: % — F on a linear subspace # of
B(2, E). We call T regular if the semivariation of T is regular on A, i.e. if for
all AeA, £>0, a>0 there are sets PeP, ZeZ such that Z < 4 = P and
lxpallr. <e If = %{Q, E) then, by Theorem (2.3), T is regular if and only

if all cozero sets in 2 are T-measurable. For example, the transformation Tf

:=inf {|f(x)|: xe[0, 1]} satisfies (ii) but not (i) of Corollary (4.2). Hence T is
not a regular transformation.

We denote by rba(4, E, F) the set of all contents ueba(4, E, F) such
that the semivariation || ||, is regular on A for each a > 0.

(4.3) TueoreM. (@) The map W: S S|4 (Q, E) establishes an algebraic
isomorphism  between the linear space of all regular transformations
SeM(M(A, E), F) and the lnear space of all regular transformations
TeM(%(Q, E), F).

(b) The map ® defined by

QS =|fdu. fet, E),

establishes an algebraic isomorphism between rba(A, E, F ) and the linear space
of all regular transformations Te My, (6 (R, E), F).

Proof. (a) Obviously, ¥ is a well-defined linear map. ¥ is onto by
Theorem (2.4). If Sf = 0 for every f &% (R, E) then it follows easily from the
regularity of § that Sg = 0 for every ge €(A, E) (see [VW2, (14.1)]). Hence,
by the continuity of S, Sf =0 for every fe M(A, E).

(b) The map @ is the composition of the following three isomorphisms
and, therefore, is itself an isomorphism. By Proposition (3.1), the map
i [du is an isomorphism between rba(d, E, F) and the space of regular
transformations Se My, (€(4, E), F). By Proposition (3.2), the map § S is
an isomorphism between the space of regular  transformations
Se My (€(4, E), F)  and the space of regular transformations
TeMyp(M(A, E), F).

Finally, by Proposition (4.1) and part (a) of this theorem, the map
THT|%(Q, E) is an isomorphism between the space of regular
transformations  Te Myp(W(4, E), F) and the space of regular
transformations Ue My, (%(, E), F).

Il Te My, (6(Q, E), F) is regular and T = &(x) then we call 4 the
representation content of T The semivariations of T, T and 4 are closely
connected:

(44) Lemma. Let Te My, (%(82, E), F) be regular and p the representation
content of T. Then

@ Il e < I e <N Ml
®) 19llra = 19l,e = llgllz,. for every peg.
This lemma is a consequence of (24) and (3.2)a).
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5. s-Bounded and weakly compact transformations. The aim of this
section is to give several conditions for a transformation T: %(Q, E) — F
which guarantee that T can be represented as an integral. We shall need the
following lemma.

(5.1) Lemma. Let Te My, (%(Q, E), F). Then
lollra = sup {| T/~ Tyl: £, ge (2, E),, |f—gl < ||,
f#0julg0}={p=0}}
Jor every pe B(Q),.

Proof. The inequality > is trivial. Now assume that lolly. > 7. We
shall construct f, ge% (€, E), such that |f—g|<|gl, [f#0]u g0}
< {¢ # 0} and |Tf— Ty| > y which will complete the proof. There is Ye¥b(Q),
0< ¥ <|¢|, such that ||y|lz,>7. By Lemma (2.6), we can assume that
W#0lcZ<=Pc{p#0} for some ZeZ, PeP. Choose a continuous
function g: Q — [0, 1] such that g¢(x) = 1 for xeZ and ¢(x) =0 for xeQ2\P.
Since [[Yllr, >y there are f, g€ %(Q; E), such that |f;—g,| <y and
|Tfi— Tygs| > y. Now define

fi=efi, g:=(01-0g:~/1)+eg;
Since |fi—gil <Y <|pl<a, we see that f,ge% (R, E),, |f—g|=If,

=gl <lpl and {f#0}U{gs£0l =P c|p#0). Since T satisfies the
Hammerstein property and |f;—gy| A [l—p| =0 we have

Tg = T(fi+(e=1) fi+(g: =) = Tf+ Ty, — Tf,.
Hence [Tf—Tg| = |Tf, — Ty} > 7.
(5.2) THeOREM. Let Te My, (%(Q, E), F).
(@) If T is weakly compact, ie. T(%(R, E),) is relatively weakly compact
in F for each a >0, then T is s-bounded.
(b) If F has no subspace isomorphic to ¢, then T is s-bounded.
(¢) If T is s-bounded, then T is regular.

Proof. (a)b) By Lemma (5.1), it is sufficient to show that Tf,— Ty,
converges to zero for all sequences f,, g,& % (2, E), such that |f,—g,| <1 and
the sets {f, # 0} u {g, O} are disjoint. Let f,, g, be as above, e F' a
continuous linear functional on F and Q a finite set of positive integers.
Then, by the Hammerstein property of T,

(*) 2(Th—Tg) =T(L £)-T(Y g.)e H
neQ neQ neQ

where H:= {Tf—Ty: f, ge (@, E),}.
Since T(%(2Q, E),) is bounded, the set H is bounded. Hence

|2 &(Tf,~ Ty < ¢
"0
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where ¢ is independent of Q. It is well known that this implies

w

Y E(Tf— Tyl < 0.

n=1

(4

By (%) and (*+), we see that the sequence Z:J:l (Tf,—Ty,) is contained in H
and is weakly Cauchy-convergent. The same is true for all subsequences of f,
and g,. Hence if T is weakly compact, then H is weakly compact and the
series Z:;l(Tf,,——Tg,,) and all its subseries are weakly convergent in F. By
the theorem of Orlicz-Pettis [D, Ch. IV, Th. 1] this implies that the series is
also convergent in the norm of F; consequently, Tf,— Tg, converges to zero.
This completes the proof of (a).

If F contains no subspace isomorphic to, ¢, then, for every sequence
z,eF such that Y7 |éz,/ < oo for all ¢eF, there is a ze F such that

Ez=Y &z, for all {eF
n=1

(see [B2, p. 173, line 4]). We can apply this property to z, = Tf,—Tyg,
because (x*) holds. Hence the series Z:’:l (Tf,— Ty,) and all its subseries are
weakly convergent in F. The test of the proof is the same as above.

(c) is another formulation of (2.5).

Every functional in My, (%(Q, E), K) is (weakly) compact where K
denotes the scalar field of E. Hence (5.2} yields the following corollary (cf.
[B2, Theorem 1]).

(5.3) CoroLLARY. The map ur [-du defines an algebraic isomorphism
from rba(A, E, K) onto My, (%(2, E), K).

(54) Tueorem. Let TeMyy(%4(Q, E), F) be regular and p the
representation content of T Then T is s-bounded if and only if u is of s-
bounded semivariation on A, i.e. for every sequence A, of disjoint sets in A the
sequence ||y 4 |l,,. converges to zero for each a > 0.

Proof. Assume that u is of s-bounded semivariation on A and let

0. (Q), 0< ¢, <1, satisfy @, A @, =0 for m#n. Set 4,:= {p, # 0}eP

< A. Then, by (44)a),

lodire < ll2allre < lxaluea—0 as n—co.

Hence T is s-bounded. Conversely, assume that T is s-bounded. As we
remarked at the end of the second section, | ||, is “schwach halbadditiv” on
{Ye#(Q): ¥ > 0} in the sense of [S, Section 2.5]. Therefore we can apply [S,
(252)]. 1t follows that, for every sequence ¢,& J(Q2), 0 < ¢, < 1, such that
®n A @y = 0 for m 5 n, the sequence ||¢,||, converges to zero. Now let 4, be
a sequence of disjoint sets in A. Then %4,€ 3(€), hence |jx,,|l. converges to
zero for each a > 0. By (4.4), (2.2)b),

”x,{,,”u.a < ”XA,,”T,u < ||XA,,||1~

icm

©

Nonlinear transformations 235

Hence ||x4]l,« converges to zero. This completes the proof.
(55) TueoreM. Let TeMyp(4(2,E),F) be regular and yu the
representation content of T. Then the following statements are equivalent:
(i) T is (weakly) compact. '
(il) S+ § fdy is (weakly) compact on IM(A, E).
(iii) £+ [ fdu is (weakly) compact on €(A, E), i.e. the set

{3 w(Adn: neN; yeE, |yl <a, Aye A disjoint k=1, ..., n}
k=1

is relatively (weakly) compact for each o > 0.

The proof is similar to that in the linear case [VW2, Theorem 1.5.5] and
is omitted.

6. Smooth transformations. A transformation T2 #(Q, E) — F is called z-

smooth (o-smooth) if, for every decreasingly directed (countable) subset ¥ of
Q)

inf =0 implies inf|Ylly,=0 for each a > 0.
Ye¥

It follows from Dini’s theorem that every transformation Te M (#(@, E), F)
is g-smooth (t-smooth) if 2 is psendocompact (compact) (see [VW2, (1.6.7)]).

By the next theorem the smoothness of a regular transformation is
expressed in terms of its representation content.

(6.1) TueoreM. Let TeMyy(%(2, E), F) be regular and p the
representation content of 1. Then

(a) T is t-smooth if and only if u is of t-smooth semivariation on Z, i.e. for
every decreasingly directed subset Z, of Z,

NZ, =@ implies = inf ||xzll,, =0 for each a > 0.
2ZeZy

(b) The following statements are equivalent:
@) T is o-smooth.
(i) u is of o-smooth semivariation on Z.
(ili) p is of s-bounded and c-smooth semivariation on Z.
The proof of this theorem is similar to that of [VW2, (1.6.4)] and is
omitted. We remark that [VW2, (1.6.2)] remains valid for - Riesz
pseudonorms.

In the next theorem we show that a o-smooth regular transformation
Te My (4(Q, E), F) is representable in the form

Tf = [fdo, [e%(@,B),

with a Baire measure  (with respect to the topology of uniform convergence
on bounded sets in M(E, F)) of regular semivariation. By a measure we
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mean a g-additive content and by the system of Baire sets the ¢-algebra o (P)
generated by P. Observe that a content with values in M(E, F) is a measure
if it is of g-smooth semivariation on its domain.

(62) TueorEm. Let TeMyp(%(Q, E), F) be a g-smooth regular
transformation and u the representation content of T Then there exists a
(uniquely determined) extension werba(c(P), E, F ) of wand w is of o-smooth
semivariation on ¢(P).

The proof is similar to that of [VW2, [1.6.5)].

If Te M(#(R, E), F) is o-smooth and s-bounded, then an analogue of
Lebesgue’s dominated convergence theorem holds for T. J(Q, E)—F
defined in Section 2.

(6.3) TeorEM. Let Te M (%(R2, E), F) be o-smooth and s-bounded. Let f,
be a sequence in 3(Q, E) and let fe B(Q, E) be such that f,(x) -~ f(x) for
every xef. Assume that there is a real a such that ||fille < o for every n.

Then f, converges to f .in (B(RQ, E), t). In particular, fe3(RQ, E) and

Proof. This follows easily from [VW], Section 1.2]. The “upper norms”
which are needed for the integration theory of [VW1] can be defined as in
Section 2 or as in [VW1, (2.1.1)].

(6.4) CoroLLarY. The following statements are equivalent for every
Te Myp (4(R, E), F):

(i) T is s-bounded and g-smooth.
(i) T is regular and c-smooth.
(iii) For every a >0 and all sequences f,, g,e 4(Q, E),,

Ju(X)=gn(x) >0 (n—o00; xeQ) implies Tf,—Tg,— 0.

Proof. (i) = (i) follows from (5.2)c) and (ii) = (i) from (6,1)(b) and (5.4).

(iii) = (i). Assume that T is not s-bounded. Then there are o > 0, ¢ > 0
and sequences f,, g, in (2, E), such that |f,~—g,| A |fw—¢ml = 0 for m+# n.
and |Tf,— Ty, > ¢ for every n. Therefore (iii) is not satisfied.

Similarly, if T is not ¢-smooth then it follows immediately that (iii) is
not satisfied.

(i) = (iii). Let «, f,, g, be as in (iii). Set ¢,:=|f,~g.e%(Q) and choose
yeE, |yl =1 Then ¢,(x)y converges to zero as n- co for every x and
ll@n¥ll < 2a. Hence, by Theorem (6.3),

1Tho= Tyl < fa=8allla = llon yll, = 0.

(6.5) CoroLLarY. If' @ is pseudocompact then every weakly compact
trangformation Te M, (4 (Q), F) takes a weak Cauchy sequence into a strong
Cauchy sequence.
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Proof. Let Te My, (4(R), F) be weakly compact and f, a weak Cauchy
sequence in %(2). Then the limits f(x) : = lim,, f; (x) exist for every xe Q
and there exists a real a with |/f,||. <« By Theorem (5.2), T is s-bounded.
Hence, by Theorem (6.3), we have f'e 3(Q, E) and T, converges to Tf. This
completes the proof.

Batt [B2, Theorem 9] has shown the same result by different methods.
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