® ©
254 S. Pilipovi¢ and B. Stankovié lm

[7] J. Lavoine et O, P. Misra, Théorémes abéliens pour la transformation de Stieltjes des
distributions, C, R. Acad. Sci. Paris 279 (1974), 99~102. )
[8] —, =, Abelian theorems for the distributional Stieltjes transformation, M
; : S , Math. Proc.
Cambridge Philos. Soc. 86 (1979), 287-293. o
[9] W. Magnus und F. Oberhettinger, Formeln und Sdtze fir die speziellen Funktionen der
mathematischen Physik, Springer, 1948.
[10] V. Mari¢, M. SkendZi¢ and A. Taka&i, On Stieltjes transform of distributions behaving
as regularly varying functions, to appear. .
Ell] E. Seneta, Regularly Varying Functions, Springer, 1976,
12] Z. Szmydt, Characterization of regular tempered distributions, Ann. Pol
(1983), 255-258, » A Folon. Math. 41
[13] A. Taka&i, A note on the distributional Stieltjes transformation, Math. P i
| ] $ , . Proc.
Philos. Soc. 94 (1983), 523-527. o Cambridge
[14] V. 8. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow 1979
[15] B. 1. Zav'yaloy, Automodel asymptotics of electromagnetic form-fuciors and the behaviour

of their Fourier transforms near the light cone, Teoret, Mat, Fi i
ol at, Fiz. 17 (2) (1973), 178188 (in

THE UNIVERSITY OF NOVI SAD
dr Hije Djuritica 4, 21000 Novi Sad, Yugosiavia

Received November 11, 1985 (2107)

STUDIA MATHEMATICA, T. LXXXVI. (1987)

Estimates in Sobolev norms ||| for
harmonic and holomorphic functions and
interpolation between Sobolev and Hilder

spaces of harmonic functions

by
EWA LIGOCKA (Warszawa)

Abstract. In the paper the duality theory is extended to the case of Sobolev spaces of
harmonic functions whose derivatives are in (D). The behaviour of Bell's operators L' on each
space is studied. These operators together with the orthogonal projection P on harmonic
functions are used to the study of interpolation between I7, Sobolev and Hlder spaces of
harmonic functions. It turns out that all these spaces form a double interpolation scale. If P
maps L*(D) onto the space of Bloch harmonic functions, as in the case of the unit ball, then this
last space is the vertex of this scale, No assumptions on the existence of traces on the boundary
are needed in this approach. The possible use of above approach in the study of the regularity of
the Bergman projection and of solutions of the d-Neumann problem is discussed. The duality
and interpolation theorems are also proved for the spaces of holomorphic functions on strictly
pseudoconvex domains,

1. Introduction and the statement of results. The present paper is a
continuation of [16]-[19]. We extend the duality theory for spaces of
harmonic functions, originated by S. Bell [3], [4] and developed in [53, [10],
[16]-[18], to the spaces Harmy;(D) of harmonic functions belonging to the
Sobolev space W (D), 1 < p < 0. In [16] we gave the detailed description of
this duality for p = 2. Let us define the “negative Sobolev spaces” W, *(D), 1
< p <, s an integer, s > 0, as the spaces of distributions g on the domain
D such that g = Zicl-aDc g;+go, Where go, gy If (D). The space W, *(D) is
the adjoint space to W;(D) which is the closure of C&(D) in W}(D),
q=pfp—1).

In fact, W, *(D) and W; (D) are mutually dual with respect to the I?
scalar product ¢ , >. We equip W, *(D) with the dual norm of (WD)

If s is not an integer, we define W;(D) as the value of the complex
interpolation functor [Wi(D), Wi+ (D)]g for 6 = s—[s], where [s] is the
integer part of s. If s>0 then the “negative Sobolev space” W, *(D)
represents the dual space to W(D) = [W (D), Wi*! (D), 0 = s—I[s], q
= p/(p—1). The space W;(D) is equal to the closure of C&(D) in W (D) for
s#k+1l/g, k=0,1,2,...
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In the sequel we shall need the following important property which
follows from the W; estimates for the solution of the Dirichlet problem 4™y
= f, v vanishes on 8D up to order m~1 (see [1] and [21], Theorem 54):

(¥ I Dis a bounded domain in R" with boundary of class C®, then the
operator 4° is an isomorphism between W;f(D) and W,*(D) for each
integer s > 0.

If p=2 this can be proved elementarily (see [16]).

Let D be a bounded domain with C* boundary. We shall call a
function ge C*(R") a defining function for D if D = {xeR" ¢(x) <0} and
gradg £ 0 on dD.

Let us recall a well-known property of the spaces W; (D). Xf fe Ws(D)
then f/lo*e (D) and ||f/lell,, S|If1l; (this follows e.g from Theorem 2,
1.3.1 of [20], or [22]). This means that W;’ < IP(D, 1/|e/™) and the inclusion
is continuous.

Let us define Bell's operators [3]:

r—1
Lu=u—A4(Y 6,0,
k=0

. 4 —z_a_tﬂ _‘_9___1=1 x; 0x;
0: - (t+2)' IVQI (a"]> u, = )

Du=u-4(050%), 0p=ztn

where ¢ is an arbitrarily chosen C* function equal to 1 in a neighbourhood
of 6D and equal to 0 in a neighbourhood of the set {7g = 0}.

We should mention here the work of E. Straube [26], [27] who
constructed an operator T from C*(D) into the space CZ(D) of functions
vanishing on @D up to infinite order, which extends to a continuous operator
from W%(D) into W;(D) for each s> 0 and has the following property:
P(Tv) = P(v) for each v, where P denotes as usual the orthogonal projection
from I?(D) onto the space of square-integrable harmonic functions.

We will prove

TueoreM 1. Let D be a bounded domain in R" with C*-smooth boundary
and let o be a defining function for D. Then

(2) The operator T, f = ¢* f maps continuously Harmy, (D) into Witk(D)
Jor every —co <s< +o0, s real, k a nonnegative integer.

(b) The operator I’ maps continuously Harmj, (D) into Wi (D) ~ (D, 1/™),
§20, 725, r a nonnegative integer.

THEOREM 2. Let D and ¢ be as above.

(2) Harm$ (D) and Harm;*(D), q = p/(p—1), are mutually dual with
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respect to the pairing {, >, for r=s, r an integer, where {u, v, = {u, Lv)
for ue Harm, *(D), ve Harmg (D).

(b) Harm, *(D) is equal to I!Harm(D, |o|*) with equivalent norms.

It should be mentioned here that if both 4 and v are in I? Harm (D) then
o=, Y>({, )is as above the usual I?(D) scalar product). Theorems 1
and 2 for p=2 and integer s were proved in [16].

The proof of Theorems 1 and 2 is based on the following two facts.

ProrosiTion 1. The projector P maps continuously IZ(D, 1/|o|**) onto
Harmy, (D).

In [17] it was proved that P maps L*(D, 1/j¢|) onto the space
A, Harm (D) of harmonic functions belonging to the space 4, (D) of Holder
functions on D. L* (D, 1/lg|*) denotes here the space of functions f such that
|f)/lel* is bounded on D with norm || f]|% = sup(|fl/lel.

ProrosiTioN 2. If 1 <p< oo and 1 <q< o0 then

LD, Ylef), B(D, 1/lelV ] = (D, 1/l
where 0 <0 <1 and

[ IS

_s(1=6)g+rdp

—!—*"-1——:—'4- and — jf g #
m p 4q q(1—6)+po ’
- P s+ =
m=i—s and t s+1_0 if g=o0.

The statement of Proposition 2 needs some explanation. If (4,, 4,) is an
admissible pair of Banach spaces then [A;, 4,];s denotes the value of an
interpolation functor at 6, 0 <6 < 1. We shall always use the complex
interpolation method. For the definition and the properties of the
interpolation functor see [6] and [11]. We shall also denote by [A;, 4,15
the completion of [Ay, A;];s With respect to the space A4,+ 4, (see [11]).

We can now state our interpolation theorem.

THeoREM 3 (interpolation theorem). Let D be a bounded domain with C*-
smooth boundary in R". Then

(@)  [Harm}! (D), Harm? (D)) = Harm{(D),

lml:ﬁ _(L)_.‘ t=(1—0)8;+0s;, 5,820 1<p;, p, <.
q Pr P2
(b)  [Harmj (D), A, Harm (D)o = Harmy(D),
q:TE-é«, t=(1-0s+0a, 520,0>01<p<oc0.

(©) [4,Harm(D), Ag Harm (D)) = A, Harm(D),
4 t=(1—0)a+0p, a,p>0.
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This means that if we write

A% =Harmi(D), 1<p<o, Ay =4,HamD), s5>0,

we get a double interpolation scale of spaces.

The bottom row of this scale is formed by the spaces AJ = Harm,, (D)
= I?Harm(D), and the right border column by the Holder spaces of
harmonic functions A%, = A;Harm(D), s > 0. Then the question arises: What
could stand at the “vertex” of this scale, that means, what is 4%?

We conjecture that it should always be the space of Bloch harmonic
functions, ie. the space of harmonic u such that

el = Sl:glg(Z)u(Z)Hsugla(Z) gradu(z)| < co.

At present we are only able to prove the following.

ProrosiTioN 3, Let D be as above. If the projector P maps continuously
I2(D) onto BlHarm(D) then A% (D) = BlHarm(D) and

P
1-0

s= 0.

(@) [4;, Ago][@]':A:s t=(1-0s, r= l1<p<oo,s20,

(®) (A%, A% = A% ™,

Unfortunately, we can verify the assumptions of Proposition 3 only in
the case when D is the unit ball in R". This can be done by exhibiting an
explicit formula for the projector P for the unit ball. The details will be given
in the paper The reproducing kernel for harmonic functions and the space of
Bloch harmonic. functions on the unit ball in R" (in preparation).

We think that the assumptions of Proposition 1 are valid for every
smooth domain D and that it can be proved via the estimates similar to the
Holder estimates in [1]; but this is not done yet.

Theorem 1 can be used to prove the following.

THEOREM 4. Let D be a smooth bounded domain in C". If the Bergman
projection B maps continuously A, (D) into A,(D), a >0, and L[*(D) into
BlHarm (D) then it maps continuously W (D) into W;(D) for s 0 and 1 <p
<,

Recall that the Bergman projector is the orthogonal projection of I#(D)
onto the space I? H(D) of holomorphic square-integrable functions on D.

We shall denote by A, H(D) the space of Hblder holomorphic functions,
by Hj(D) the space of holomorphic functions from Wi#(D), by I H(D, |g[)
the space of holomorphic functions from (D, |g|") and by BIH (D) the space
of Bloch holomorphic functions.

In [2] and [23] the Hlder estimates for the projector B for a strictly
pseudoconvex domain D with C® boundary were proved. In [15] a more
elementary proof of the Holder estimates for a strictly pseudoconvex domain

icm
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with C***-smooth boundary with « < k was given (see Remark 1 at the end
of the present paper). In [19] it was proved that if D is a strictly pseudocon-
vex domain with boundary of class C* then B maps (D) onto BLH (D). In
view of the above results Theorem 4 yields the following.

THeorEM 5. If D is a strictly pseudoconvex domain with C® boundary
then B maps continuously W; (D) onto H3(D) and I (D, 1/|0|*) onto H;(D),
520, 1<p<oo.

It turns out that the most elementary and easy way to get the estimates
in Sobolev norms for the projector B of a C*-smooth strictly pseudoconvex
domain is to prove Holder estimates as in [15], Bloch norm estimates as in
[19] and use our interpolation theorem. Note that the estimates in [15] can
be essentially simplified by proving that B maps L®(D, 1/|o|*) into A,(D),
which is equivalent to the fact that B: A,(D)— A4,(D) and peeds simpler
gradient estimates (see [15], [17]). Theorem 5 for s = 0 was proved in [23].

Theorem 5 implies the following facts.

TueoreM 6. Let D be a bounded strictly pseudoconvex domain with C*-
smooth boundary. Then

(a) H3 (D) and H;*(D), q = p/(p—1), are mutually dual with respect to the
pairing { , D, 28,

(b) H;*(D) is equal to I8 H(D, |g|*) with an’ equivalent norm.

TueoreM 7. The projector B extends to a continuous projection from
I#Harm(D, |o|") onto BH(D, |o) for all 1 <g< o0, t >0, and D as above.

TureoreMm 8 (Interpolation theorem). Let D be as above. Then

@ [H (D), H}2 (D) = Hy(D),
—1 ___lﬂ+ﬂ’ t=(1—0)s +0sy, 81,8, 20,1<p,p, <oo.
q P1 P2
(b)  [H(D), A, H(D)]gy = Hg (D),
q=vi=£-—6, t=(1—0)s+0a, s$20,2a>0, 1<p<oo.

tc) (4, H(D), Ag H(D)]i3; = AH(D), t=(1=~0a+08, a,f>0.

(@) [H3(D), BLH (D)) = Hy(D),

t=(1-0)s, l<p<oo, s20.

q=7

|4
11—
(€ [A,H(D), BLH(D))fn = Ag-au H(D), s20.
Theorem 8 implies that the spaces Fy=Hj (D), s>0, 1<p <o,
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Fo (D)= A,H(D), s > 0, and FS, = BI H(D) form a double interpolation scale
and the space of Bloch holomorphic functions is the vertex of this scale.

The fact analogous to Theorem 6 also holds-for the Szegd projection
(see Remark 2 at the end of the paper).

The interpolation theorem (Th. 3) could also be used in the theory of the
7 Neumann problem (see [8]). We state the following

ProrosiTioN 4. Let D be a smooth pseudoconvex domain in C". Let N
denote the operator solving the 0-Neumann problem on D. Then if N muaps
B, (D) into Wi, (D) and Ay (D) into Ay ypq (D) for some s, 0 < s <1,
then N maps WY, (D) into WE53, (D) for all k>0, 2 <r < oo,

B, (D), Ay gy (D), Wk, (D) are the spaces of differential forms of type
(p, q) with coefficients from I?(D), A,(D), W*(D) respectively. However, we
again have the same situation as with Bloch harmonic functions since the
only domain for which the Holder estimates for the ¢-Neumann problem are
known is the unit ball in C". M. Range [24] proved that if D is the unit ball
in C" then N maps A, ;y(D)— Agr1,pg(P) and *N: 4, (D)
= Ags1/2,ng (D). Thus by Proposition 4, N maps WS, (D) — Wi (D), s
20, 2<r<oo, and &*N: WS, (D)~ WEH%(D).

It should be mentioned here that I. Lieb and M. Range [12]-[14]
proved the same estimates (they proved them for ¢* N, but this also implies
the estimates for N) for the A-Neumann problem connected with the Levi
metric, ie. with the Ki#hler metric whose potential is a strictly
plurisubharmonic function ¢, which is also a defining function for D.
However, the complex Laplacian for such a metric is not equal to %4 as in
the case of the Euclidean metric,

We hope that our method can be extended to fit also this case. Our
optimism is based on the following observation: Let T be a strongly elliptic
selfadjoint differential operator with C*® coefficients (on R"), and let D be a
smooth bounded domain. Let P, denote the orthogonal projection from
2(D) onto the space I? Harmy (D) of functions from I?(D) on which T = 0.
Then we can construct the family of Bell's operators Iy in the following
manner:

r—1
Lru=y—T() 6,0"""),
k=0
dp @
0 =~——L-(G(VQ))“(~(?~‘ ¢ u ,‘?_zg-_,‘_ml
' +2m)! )T e
1 ou
Lhu=u—T(0,0*™ D e
Th=1u (0o0™™), - 0 (2m)!a(VQ)’

whefe o(Fg) denotes the value of the principal symbol of T at the vector Fg,
2m is the order of T and ¢ is an arbitrarily chosen C® function equal to 1 in
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a neighbourhood of dD and to 0 in a neighbourhood of the set {Fp = 0}.
In this general case, Pr f = f~TG,, Tf, where G, denotes the operator
solving the Dirichlet problem T?u = v, u vanishes on 8D up to order 2m— 1.
The most difficult problem is to prove Proposition 2 and the fact that
Py maps L*(D, 1/lgl*) into A,(D). We hope that this can be solved in the
affirmative.

At present we are able to prove that all results of this paper and of [17]
remain valid when T=4" ie for the spaces Harm, ,(D) and
A, Harm, (D) of m-polyharmonic functions. The details will be given in the
paper On duality and interpolation for spaces of polyharmonic functions (in
preparation).

We end this introduction with a comparison of our interpolation
theorem (Theorem 3) and the results which can be achieved by applying the
more standard method of identifying harmonic functions with their traces on
AD and interpolating between spaces of traces.

In fact, if s > 1/p then the trace on 8D of the space Harms, (D) is equal to
the Besov space BS3P(8D) (for definition of Besov spaces see [6], [25],
[23]). Moreover, the Besov space B%, .,(0D) is equal to the Holder space
A,(@D). In [6], Theorem 6.4.5, it is proved that

P

1-6
[B:;J:p”pv Bam,w][ﬂ] = B:;,qﬁ t = (1 ~0)S+0a"7‘, q= 1—6

(This is proved there for the Besov spaces on R"™!, but remains true also in
our case) The space B, (D) is the space of traces of functions from
Harm} (D), r = (I —6)s+ 0. Thus we can obtain the statement of Theorem 3
by this classical method but only for s > 1/p. If s < 1/p then the trace may
not exist at all. In particular, we get no information about interpolation
between IF Harm (D) and A, Harm (D) which seems to be most useful. Thus
our method gives essentially new information.

II. Proofs.

1. Proof of Proposition 2. For g < oo our proposition is a direct
consequence of the Stein-Weiss interpolation theorem (see [6], Theorem
5.5.3). Let ¢ == co. The space [ (D, 1/j¢|") is the dual space to L' (D, [o}), and
(D, Yo is dual to IFP- (D, |gMr~ 1), By the duality theorem ([6],
Th4.5.1) we have

LD, i), L*(D, Yle e = (LLP~ (D, Jel*~ 1), L (D, eIV Ta)*-

Thus again by the Stein-Weiss theorem

(2D, 1lgl), L*(D, 1/leY] = (E (D, le)*,
N AN _S(1=0)+rpb
Tp=140  p—1+46

a
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We have
(2(D, leP)f* = L"(D, 1/lel),

This ends the proof of Proposition 2.

Before proving our Proposition 1 we observe that the projector P can
be written as Pu = u— AG, Au, where G, is the operator solving the Dirichlet
problem 4 f =g, f vanishes on D up to the first order. Thus by () and
[1], [21], [28], P is a continuous projection from Wy (D) onto Harm} (D), s
20, 1<p<o. Thus

[Harm;} (D), Harm}?, (D)]s = Harm (D),
-0 0
= ...m.,...,,.,'_.___

PL P2

This follows immediately from the well-known results on interpolation of
Sobolev spaces W;(D) (see [6]). This also means that the first part of
Theorem 3 is a direct consequence of the continuity of P.

r=(1~0h1+0h,$

2. Proof of Proposition 1. The above considerations imply that P
maps I?(D) into I¥(D). Let 5 be a positive integer. Just as in the proof of
Proposition 2 in [17] we have for fe I?(D)

Pf = A4(v—G,4%v),

where v is the solution of the Dirichlet problem Adv = f, v =0 on 8D. The
properties of Green functions imply that
=)
e —y|"=*

< A VLI
be—y"=2

G, denotes here the same operator as above, ¢ is a constant depending only
on n.

If feIZ(D, 1/lo/”) then f = ulol’, where ueI¥(D) and

1Moo, 10 = Ml

[Ilg(y WAL (y)dV)].

b x—=y2
The expression in square brackets is the biharmonic extension of the function
‘u(y)dy,
g(%) = jIQ(y)I (312 .
b 1x—yl

The estimates'from [1] and [21], Theorem 5.3, yield that in order to prove

We have
d V,

Inz

cPf (x)

icm
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our proposition it suffices to show that the trace Trg on 8D belongs to

Tr Wi*?(D) and Tr 8g/dn on D belongs to Tr Wy** (D). Now the boundary

values of g are the same as those of the function

(@) —eFuw)

I B
o=yt~

and the boundary values of ﬁg/an are equal to those of

w(x) = | dv,
D

- )
{fe()—o) 1u(y);?;e(y)

Pe—ypr=2

0
=~(;)-;1-w(x)—-s£ dv,.

If we differentiate w(x) s times then we obtain the following expression for
o] = st

(e(x)—
[x~y

o) (x—y)f

|n~2+2m

(1) Drw(x)= |
1B]=2m=5~kD
RCET]

+less singular terms

u(y) of (9 dY,

where ¢f,, are smooth functions on R" Thosg less singular terms can be
differentiated twice and their second derivatives are integral operators on u
with kernels dominated by ¢/|x—y|"~!. Hence these operators are compact
from I#(D) into /(D). Now we can always assume that ¢ vanishes identically
on some neighbourhood of infinity, disjoint with D. By Taylor’s formula we
have

n

e(x)—e(y Z

(i~ y)+g(x, y),

g(x, y) = O(x—y?) on R"x R". We substitute this formula in (1) and observe
that those terms of (1) which contain g(x, y) are also less singular, can be
differentiated twice and the resulting operators are compact If(D) - I2(D).
Thus it remains to estimate the operators with kernels of the type

) sz'"(" NOWUG) 4y

b Ix ylwzm-z

where Q,, is a monomial of degree 2m, ¢ is a smooth function on R".
1t foliows from [257, Chap, III, § 3, that Q,,, can be written in the form

Qam (&) = [t +[t*"™ % p3 () + ... + Pam(®),
where p,, (1) is a harmonic homogeneous polynomial of order 2r. Thus (2)


GUEST


264 E. Ligocka

consists of terms of the type

u(y) o (y) and

Fix)= § r——=5dV,

,'f..lx—yl z

69 = ;P———-NZ'I(;:;’I{?:SZ‘QSXMV,, r>0.
R

(Putting u(y) = 0 outside D we can extend the integration over the whole R")

Let us consider F(x). We have ¢dF (x) = u(x) ¢ (x)e I’ (R™ since u has a
bounded support. If R is so large that D € B(0, R/2) then all derivatives D* F
are bounded on the sphere |[x| = R by

2n—2+|o¢|
e iz 4y

Let H(x) be the solution of the following Dirichlet problem on the ball
B(0, R): ¢cAH = @(y)u(y), H =0 on 9B(0, R). We have He W;*2(B(0, R))
and F(x)~ H (x) is the harmonic extension of F(x) from the sphere {|x| = R}.
Therefore

F(x)—H(x)eC(B(0, R)), |IF (x)~H(@)lws* 2ao,my < ¢llull;.

Thus F(x)e W:*%(D) and W (lws+ 2y < € llull -
Now let us consider G(x). Since p,,(f) is a harmonic homogeneous

polynomial,
P2 () P (t)
4 (|t|n+lr- 2) =C mnr+ 2

R
R’

|x—y
The operator on the right is the Riesz transformation of order 2r. By
Theorem 4, Chap. 11, § 4 of [25], it maps continuously I#(R") into itself (1
< p < o). Thus ||AG(x)|[pr(0’R» s ”““pr)‘

Now we can again solve the Dirichlet problem on the ball B(0, R) and
obtain

Thus we have

llG(x)”w;",* 2py S |jull

Thus we have proved that ||w||w;+2(,,) < ”“”Ll’(u)‘
_ Now we can repeat the whole procedure for the second term in wy (x)
taking s, = s—1 and obtain |jw, (x)llW;H(,,) < ”"”uw)'
Thus P_ maps continuously I#(D, 1/|g|™) onto Harmg (D). This follows
from the estimates from [1] and [21] applied to the biharmonic extension.
Thus we have proved Proposition 1 for integer 5. Now we can use

LPny*
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Proposition 2 and interpolate between (D, 1/o")) and (D, 1/)|P4s1+ 1)
(and between Harm{)(D) and Harmi** (D). This proves our proposition for
every s> 0.

Remark. If p>2 then the above annoying procedure can be avoided
by using the results of [16] and [17]. There it was proved that P maps
(D, 1/0*) into Harm$(D) and I*(D, 1/le*) into A, Harm(D). If s > 1 we
can interpolate between Harms (D) and A, Harm(D) and between 2(D, 1/0*)
and L*(D, 1/|gl"). This follows from Proposition 2. and the remarks at the
end of the introduction. However, this shorter method will not work for p
<2

3. Proof of Theorems 1 and 2. The proof of Theorem 1 for s > 0 is
the same as that given in [16] for p = 2, We shall give a brief account of it.
If 20 is an integer and weHarmi(D) then A*(¢*u)e W:=%(D). Thus
d“ue Wit*(D) as the solution of the Dirichlet problem 4*v = 4*(o*u), v
vanishes at D up to order k1. This implies by interpolation that T, maps
Harmj (D) into W;**(D) for each s > 0. (Interpolation in a similar context
was first used by H. Boas in [7]) This also implies that if ue Harmg, (D) then
D*u- e W3(D) if § = a. This yields that Zue W; (D) by the very construction
of . Moreover, I' maps continuously Harmg, (D) into W;(D) = (D, 1/1o™),
if r 2 s. We can again use Proposition 2 and interpolate to get the statement
of Theorem 1 for s 2 0. Also, {, > = ¢, 5 on Harm,* x Harmj if r 2 5, ¢
= pf(p—1).

We can now prove Theorem 2. First we prove that the smooth
harmonic functions are dense in Harm, *(D), s an integer. It follows from (%)
that if he Harm;*(D) then there exists ue W;(D) such that 4%u = h. Thus
4**'u =0 and u is (s+ 1)-polyharmonic. The orthogonal projection onto the
space of (s+ 1)-polyharmonic functions Harm{ 4 ),,(D) is continuous in the
W7 (D) norm and maps smooth functions to smooth functions. Then there
exists a sequence u, —u in Harm, , 10.q(D), u,& C*(D). Thus 4°u, is a sequence
of smooth harmonic functions st. 4%u, — h in Harm; *(D).

Now we can prove Theorem 2 in the same manner as in [16] and [17],
following Bell's proof from [3]. Let ¢ be a continuous functional on
Harm, (D). It can be extended to a continuous functional & on W,;”*(D) and
therefore there exists a function fe W,;”(D), p = q/(q—1), which represents .
Then Pf represents ¢ on Harm, *(D). Since the smooth functions are dense in
Harm,*(D) this representation does not depend on the choice of f and gives
us an isomorphism between (Harm; *(D))* and Harms (D).

Now, let i be a continuous functional on Harm}, (D). It can be extended
to a functional ¥ on W3 (D). Each such functional can be written in the form

w)allz D1, 4>+ <f, oYy Gus o II(D), g =—E

1
1] = inf (X llgall +llgoll)s

2080
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the infimum being taken over_a.ll du» 9o Tepresenting V (see [20]). If s 9o
and he Harmé (D) are in C*(D) then
Y=g =Y <D*h, Egd+<h, god

Jo| =g
= <h, P((—1F Y, D*Ega+go))-
: la| =s
It is obvious that
SW)=P((=1F ¥, D*Eg,+go)

o] =5
does not depend on the choice of the functions g,, go representing 1. We
must show that this mapping extends to a continuous mapping from
(W (D))* onto Harm,*(D). We have

IS@l* = sup [<P((~ 1YY D*gu+40), 4|
uuuj,zl
= sup [<go, Pup+Y <gss D“Pu>lSC(leyallmw)+llyollhq(p,)-
ueWs @ @
»

Hull €1
This means that P((—1)'Y D*Lg,+go) extends to a continuous operator
from H|u|=sH(D) x I9(D). Hence
ISWll7* < cllwll.
Thus (Harms(D))* = Harm, *(D).

To prove (b), we must proceed as in [17] and prove that Harms(D)
represents the dual space of I Harm(D, |9|%), ¢ = p/(p—1). As in [17] we can
prove that each heHarmj(D) represents a continuous functional on
I Harm (D, |g*), the closure of I?Harm(D) in (D, |o|), via the pairing
o

Since every continuous functional ¢ on [N Harm(D, |o/*) can be

extended to a continuous functional @ on 14(D, |g|*), it can be represented as
()= {f,m), meX(D, 1/}o|™), p=gqf(g~1). Since by Proposition 1, P
maps If(D, 1fjo") continuously onto Harm(D), it follows that Pm is the
desired representation of ¢ and we have ¢(h) = ¢h, L Pm> on
I8 Harm(D; |g|*). It can be easily proved that Pm is independent of the
choice of extension of ¢ and thus independent of m. Hence
(I Harm (D, |/*))* = Harm,(D).
Now we have
rHarm(D, |g*) < Harm, *(D).

These two spaces have the same dual space and equivalent norms. Thus
I#Harm(D, |g|*) = I Harm (D, lo*) = Harm;*(D) and we have proved
Theorem 2 for integer s.

1

o
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Now we can again use Proposition 2 and interpolate to get our theorem
for all s.

Part (b) of Theorem 2 immediately implies Theorem 1 for s <0,

4. Proof of Theorem 3 and Proposition 3. Part (a) of Theorem 3
has been proved above. Part (c) is a direct consequence of the fact that P
maps continuously A,(D) onto A, Harm(D) and [A4,(D), 4, (DYl = A,(D), t
= (1-0)a-+0p (see [6], Th. 64.5, A, = B, ). Thus only part (b) remains to
be proved. Recall that Harmj (D) is the image of IP(D, 1/1o*") under the
projection P and A, Harm(D) = P(L*(D, 1/lel). Recall also that
L=(D, 1/lgl*) = lo* L* (D). Thus P maps continuously

LD, 1/lel*"), L* (D, 1/1el)iey ~ [Harmy (D), A, Harm (D)]y,
and I (r 2 max(s, @), r an integer) maps continuously
[Harm},(D), 4, Harm (D)Jg ~ [I2(D, 1/lal"”), L*(D, 1/1g/]is.
By Proposition 2
LE(D, 1/lel™), L*(D, 1/lgl*) )y = (D, 1/lel™),

L .
4=1op  m=1g(1=0)+6).

Thus
[Harmj, (D), A, Harm (D))o = P(L3(D, lol™) = Harmy (D),
t=(1—6)s+0a.

The above used fact that I maps A, Harm(D) into LD, Yo if r>a
follows directly from the construction of I and the estimate

mmm<~i¢%%~ if ) >
= dist (x, oD)FT-= %

The proof is the same as in [17] for r = [a]+1.
We now prove Proposition 3. The mean value theorem implies that if
ueBlHarm (D) then

0 o llllmmumin)
P U < S, oDy

This and the construction of I imply that L maps continuously Bl Harm(D)
into L*(D). Thus if P maps continuously I2(D) onto Bl Harm (D) we can
repeat the above procedure and get the proof of part (a) of Proposition 3. To
get part (b) we must interpolate between I*(D) and L®(D, 1/|g|).

Here we have the following situation: [I°(D), (D, 1/161%];ey is equal to
the space I5(D, 1/|g]*) of functions f from I®(D, 1/jo]®) such that
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0 _, 0 if o(x)— 0. The completion of L% (D, 1/1g[*") with respect to
l[{;(zcg)/ |igs()£)°“’ (D, 1/|gt°‘Q")(. ()Recelll that if E; < E, then the wml?letion of E,.with
respect to E, is the space Ey of all elements ac E, f?r which 1.here~ exists a
sequence a,-+a in Ey, a,eEq, 3¢ Vo llallg, <c The norm in E; is the
least ¢ for which there exists such a sequence.) Thus we have

(L2 (D), L*(D, el = L (D, 1/1el*)

(cf. [11], Chap. 1V, § 1, items 6 and 9). Hence P maps L*(D, 1/lg]") Ento
[BlHarm (D), 4, Harm(D)] and L, r> 0, maps the last space into
I*(D, 1/le|*®. Thus

Ay Harm(D) = P(L*(D, 1/le|*)) = [Bl Harm(D), A, Harm (D).

5. Proof of Theorems 4-8. Theorem 4 can be proved in the following
way. The projector B is continuous from (D) into I}(D) from the very
definition of B. Since, by the assumptions of Theorem 4, B maps L*(D) into
BIH(D) we find that B maps [IZ(D), L” (D) = 209Dy into
{2 H(D), Bl H (D)} The operator ' maps L*H(D) into I#(D) and BL1H (D)
into [*(D). Thus I! maps [[?H (D), BIH (D) into [/~%(D). We have
Pllu=u if wu is holomorphic. and hence [2 H(D), BLH (D)]ig =
PZ/4~9 Harm (D). This means that B maps continuously I7(D) onto IPH(D)
for each p = 2. Since B is selfadjoint a simple duality argument ylelc'is that
B maps I7(D) onto I? H(D) for every 1< p < oo, Thus Theorem 3_1mp11es
that B maps Harm (D) onto Hj(D) for all s 20 and 1 <p < co, since we
can interpolate between IHarm(D) and A,Harm(D) for all p and a > 0.
Since BP = B, we find that B is continuous in all Sobolev norms.

Theorem 5 follows immediately from Theorem 4, the Holder estimates
of B, and Bloch norm estimates from [19].

In order to prove Theorem 6 we must show that [*H (D) is dense in
I H(D, |o|*). The rest will follow from Theorem 5 (cf. [3), [16] and [17]).

Let us consider the Forelli-Rudin projections on D. These projections
are constructed in the following way. We take a domain D < C"*!, b
={(t, 26 C"*': [tP+0(2) <0}. D is also a strictly pseudoconvex domain
and its Bergman projection maps LY(D) into [4(D) and smooth functions on
D into smooth functions.

If fis a function on D we take B, (f) = B(" f)r™. B denotes here the
Bergman projection on D, It is easy to check that B, maps continuously
B(D, |gI™**Y) onto I§H(D,|oj™/**"). This implies that the smooth
functions are dense in I9H (D, |gj"™2"1).

Thus for each s we can find s, >s such that I?H(D) is dense in
Y H(D, {0|"""). Suppose that I? H(D) is not dense in L9 H (D, |g|*). Then there
exists a functional ¢ on LIH(D, |o|**) such that ¢ =0 on [*H(D) and

©
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o) #0 for some hel!H(D,|g|*). Note that heISH(D, le™). The
functional @ can be extended to a continuous functional @ on
I4Harm(D, [0|*) and therefore there exists ue Harmj, (D), p = g/(q— 1), which
represents . We have Bu = (. Since B is continuous in all Soboley norms,
there exists a sequence of smooth harmonic functions u, — u in Harmj(D),
Bu, = 0. Therefore if n is sufficiently large then <, uyps 7 0. Hence <{h, u, Dsy

= Choups #0 and (f uy D, = (f, u,> for all feI? H(D). Thus I* H(D)
cannot be dense in I# H(D, |o|*!). Contradiction.

Now, Theorem 7 is a direct consequence of Theorems 6 and 2. Theorem
8 follows immediately from Theortems 3, 5 and 6.

6. Proof of Proposition 4. First we shall prove that it suffices to
estimate N on forms with harmonic coefficients. Let

w(x) = Y ay(x)dz; A dz,
7

be a (p, g)-form on D. Let
byy(x) = Pay;,  ¢ry(x) = G, dayy,
where G, is the operator defined above. Then we have
o(x) = O(Noy (x)+w;(x)),
wy (%) = [Zlbu(x)dfz', Adzy,  @y(X) = 2'2;0”(x)d2, A dzy.

If we W} (D) then w,e Wx*2(D) and therefore it suffices to estimate Neoy (x).

This also implies that N maps L, (D) into W3, (D) and A, , into
Agsspg IfF it maps the space A, Harm,, (D) of forms with harmonic
coefficients into the space A,Harm®, (D) of forms with biharmonic
coefficients and the space I?Harmg,(D) of I? forms with harmonic
coefficients into the space Harm{*(D) of forms with biharmonic cogfficients.

It was mentioned in the introduction that all results of this paper remain
true if the space of harmonic functions is replaced by the space of m-
polyharmonic functions. For biharmonic functions this is really easy to see.
It suffices to replace the potential 1/|x—y|*"~% in the proof of Proposition 2
by 1/lx—y*~* and go through the proofs of Theorems 1 and 2
remembering that the Laplacians of biharmonic functions are harmonic. In
particular, we can interpolate between [ Harm(?, (D) and A, Harm{®, (D) as
in the case of harmonic functions. Thus we can prove that N maps W¥, . (D)
into Wi (D) for all k>0 and 2 <r < oco. The same procedure can be
used for the operator #* N,

IIX. Remarks. 1. If the boundary of D is of class C*** then we can take .
a special defining function g, which is a biharmonic function on D such that

6 — Studia Muthematicn 6.3
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0o =0 and fg,/dn =1 on @D, and using the same methods as in [17] and
[18] we can find that Theorems 1-3 remain valid for s, @ < k. However, the
interpolation theorem alone gives worse results than in the smooth case; e.g.
we can prove Theorem 4 only for s, p such that (p—1)k/p > 5. This result is
far from the best possible. In [9] Greene and Krantz proved the estimates
for the 7~Neumann problem in the || || norm if 8D is of class C**3. If we use
in addition these estimates we get Theorems 5-8 for strictly pseudoconvex
domains with C*** boundary, s <k, p=2or 1 <p <2, s<(2p—2p.

2. In [197 it was proved that on a smooth strictly pseudoconvex domain
the difference between the Szegd projection considered as an operator acting
on harmonic functions and the Bergman projection restricted to the space of
harmonic funections is a smoothing integral operator. Thus the Szegd
projection extends to a continuous mapping from Harm},(D) to H4(D), 1 < p
< oo, s 2 0. To prove this we use the Halder estimates for the Szegs and
Bergman projections, the fact that the difference between S and B is a
compact operator on IfHarm(D), and Theorems 3 and 4.

3, In [18] and [19] it was proved that the operators: Q of orthogonal
projection on pluriharmonic functions, S, of orthogonal projection on
Re?H(D) and § =S, ® C have the same regularity properties as B for any
pseudoconvex domain D.

Thus Theorems 5-8 remain valid if B is replaced with one of these
projections and the spaces of holomorphic functions with the corresponding
spaces of pluriharmonic functions.

4. The duality theorem for the interpolation functor implies that the
spaces ‘

l<p<ow, $s20,

Ej=EHam(D, o), ¢ = ;—’17,

ES, = I!Harm(D, |g|), s>0
(the closure of I? Harm(D) in L (D, |o))

also form a double interpolation scale. If P maps (D)~ Bl Harm (D), then
the “vertex” of this scale is EJ, = [! Harm (D) since in this case (L' Harm (D))*
= BlHarm (D). ;
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