@ ©
lm STUDIA MATHEMATICA, T. LXXXVIL (1987)

Two-weight mixed norm inequalities for maximal operators and
extrapolation results for the fractional maximal operator

by

MARK LECKBAND (New Brunswick, N. J))

Abstract. Two-weight mixed norm inequalities are studied for a generalized maximal
operator through the use of a rearrangement inequality. Necessary and sufficient conditions are
obtained for the restricted weak type norm inequality. One application of the methods presented
in this paper is to study the problem of lowering a two-weight norm inequality for the fractional
maximal operator. Necessary and sulficient conditions are established for this problem which is
the two-weight fractional maximal operator analogue of the 4, implies 4,-, result for the
Hardy-Littlewood maximal operator,

1. Let u and v be Borel measures on R" and f: R"— R a Borel
measurable function. For every cube Q in R" let there be associated a Borel
measurable function ¢g supported in Q. We define the general maximal
operator as

MY () = sup [ pg f dv,

where the supremum is taken over all ¢, where the center y of Q satisfies
|x—y| < 4diam Q. For 0 < p< g < oo, we first establish the following rear-
rangement inequality.

Tueorem 1. (Mf)%(£97) < A ? B() fXt0)dr, 0<E<oo.
0

The rearrangement of a function g with respect to a measure w is g¥(2)
=inf{s: @ {lgl > s} < t}. The function & will depend upon g, v, p and ¢. If
p=1 we may apply Holder's inequality on the right and obtain

A (MY (D) < Cll@ly, o1 M5, 1,0

Thus M maps LI'' boundedly into L%* if @ belongs to LP>*(0, ).
Other variations can easily be obtained and we use some of them in our later
application to the fractional maximal operator. However, we are able to
reverse the above which we state as Theorem 2. That is, if the functions ¢g
are compatible (Definition 1), which includes most reasonable examples, or if
u satisfies a doubling condition, then @ belongs to LF**(0, c0) if M maps
Li' boundedly into L%®. Thus we can establish if and only if conditions for
two-weight, mixed, restricted type norm inequalities for many general maxi-
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mal operators. We should note that by [4, Theorem 4] this is the best
possible result in this direction.

The advantage of using @ to study weighted norm inequalitics is that

@ can be decomposed into simple pieces (Lemma 1). This gives us a simple
picture which we can use to study all weighted norm inequalities for M. In
particular, we shall study M, f(x) = sup jQ Jdx/|Q]%, 0 <o < 1, in Sections 3
and 4. The case « = 1 is the Hardy—Littlewood maximal operator which has
been studied extensively for p=¢ (see for instancc [4]-[8]). Given
1Mo fllgy oo < Al fllpavs 1 p < g < o0, we establish (Theorem 3) necessary
and sufficient conditions to have

. p—t
L I
And we establish (Theorem 4) sufficient conditions to have

. p-- O
UMy Fllogn < Aslflesmn 4= (”;)q

This is the two-weight fractional maximal operator generalization of the
single weight 4, implies 4,_, result of [6]. However, key ideas for obtaining
the above results are derived in [4] and [5] where the case & = 1, p =g is
handled. We define pseudo-iterated operators as

M, f(x) = SUP,‘Q'I; ([ (fr)* () —

3

el (1O /¢
! Iogn_(l%’r/fi?). d

id] J o
M (9= supr [ (g0 E A 4,
(o5 il

where j=1,2, ...

We study and estimate the functions @ they generate. We are thus able
to show that if the above operators are bounded from L' to Li” by a
geometric constant 4, then we may push the norm inequality for M, down
and up respectively, keeping the ratio p/g fixed.

We note that when o =1, M, ; is the (j+1)-iterated Hardy- Littlewood
maximal operator. M is the Hardy-Littlewood maximal operator divided by
J! for which pushing up the norm inequality is trivial,

2. Let p and v be Borel measures on R"; to avoid technicalities we will
assume Borel sets always have nonnegative measure, The nonincreasing
rearrangement of a function g with respect to a measure o is defined as gk@)
=inf {s: @ {jg| > s} <t}. We define the space L4 [3] as the collection of all
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g with ||gll5.q.0 < 00, Where

q°7 dr\'
(A’“-[(‘”"gz(t))"?') , 1<p<w, 1<q<oo,

0

supt'/Pgk(r), 1< p<g o, g=o00.
>0

“g”p.q.w =

For each cube @ = R" let @y R" - (0, o) be Borel measurable and support-
ed in Q. We consider the maximal operator Mf (x) = sup g f dv, where the
supremum is taken over all @y where the center y of  satisfies |x—y|
<ddiam Q. Given 0 < p< ¢ < o0 let

®(1) = sup 4" (Q) (po)¥ ("4 (Q) )

where the supremum is over all py. We note that p and p' will always be
related by 1/p+1/p" =1 and A, B, C will denote constants depending only
upon the dimension n and possibly u and v, with a subscript denoting further
dependence.

TueoreM 1. Let 0 < p < g < 0. We have

(MF)¥ (€99 < 4 ? () £ (¢2) dt

Jor 0 <& < o0 where A depends only upon the dimension n.

Proof. We let M, f(x) = sup { ¢ fdv, where the supremunm is restricted
to cubes Q with center y and |x—y| <$diamQ, [Q] <r. Tt suffices to prove
the theorem for M, [ and then let r? oo,

Let E, = {x: M, f(x) >t} and E,x = E,n{|x| < R}. For every xeE _x
we have a Q, with center y, |x~y| <4diamQ, and 7 < fpq_fdv. We may
apply -the Besicovitch covering lemma [2] and select {Q;} = {Q,: xe€ E x}
such that E,p = (JQ; and ¥ Xg; S C, where C depends only upon dimension
n. Set

N N
Hy = Z N"/"(QJ)a Py = Z H(Q)) Pg;-
J=1 j=1

"Then since p < ¢ we have

) T (EN: W@ < tHy < [Py} /() dv < E(%)C‘ () X (0 de.
i ‘

We claim that (dy)*(¢) < C(t/Hy) where C is the Besicovitch constant.
To see this consider a > 0, If $y(x) > « then xe|JQ; and the nurgber of O;s
containing x is at most C. Thus u?(Q) wqj(x) > a/C for some j. We have

{x: @y (x) >a} = U {x: p(Q) g, (x) >a/C},
v{x: W(Q) pg,(x) > /Ct < wM(Q)I{t: @) >a/C).
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The two statements imply

[{t: (@0} () >}l < Hyl{t: 9(0) > o/C}.

Hence ()} (1) =inf {a: |{(Py)F > a}| <t} < CO(L/Hy).
Inequality (I) now becomes

cHy < CJ B/Hy) 2 (0t < C [ D/H) 30
0

where H =) y?%(Q;) = Hy. Since Hy1H and u?(E, ») < H we infer

C 00 o0 o
TS 7 fo@/H) fHndt=C [®0) fFeH)dr<C ‘ & (1) ¥ (w4 (E, rH)dr.
0 0 0 '

Let ©o = (M, /)2 (&) =inf {z: 4(E) < £}. Then for t < o, u(E.) > ¢, and for
some R >0, u(E, g) > ¢ From this we have

T <C [ B0 frem)d,
o

and letting 7 {7, completes the proof.
By applyix?g Hélder's inequality and Minkowski’s inequality to the
rearrangement inequality of Theorem 1 we derive, respectively,

”Mf”q,uo,u s4 ”d)“p’,r’ ”pr,r,v and ”Mf”q,s,u <4 ”¢“p‘,l ”f“p,x,v'

Thus we have norm inequalities if we know that & lies in L™ (0, o0).
Next we show that if 4 is doubling, ueD,, ie. if u(2Q) < C,u(’Q) then
1Mflg, 0,0 < Bllfllp1,s if and only if PeL"=(0, 00). If y is not doflb]ing
then we must require that the collection {p,! satisfy a compatibility condi-
tion which we define below in Definition 1. We note that the Hardy-
Littlewood and fractional maximal operators satisfy this condition.
DEFINITION 1. The set {pg}e C,, if given ®g and [ there exists a ¢  such
that 2Q < Q, the centers x and X of Q and { satisfy |x—%| < {diam(Q) and

Clifogdv=[feqdv,

where C is independent of the choice of J, pg and @g.

THEOREM 2. Suppose {py} bel
: 2 o) belongs to C, or the measure u belongs
Then () and (i) below are equivalent: ® e s elongs 10 Do

@ IMfllg 0. < Blifllp,ye  feIPl 1< pPSg<oo,
(ii) Pl (0, o), p+1fp=1, 1<p<oo.
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Proof. We first prove (ii) implies (i). Applying Hélder’s inequality to the
left side of the rearrangement inequality of Theorem 1, we obtain

(M)} (E7) < Al @lly, o0 1f115,1,,/E", 0 <& <00,

Equivalently, sup; 2" (Mf)}(2) < A9, w11 1,0

We now assume (i). Given ¢y choose f such that suppf < Q, || fll1,»
=1and [@g/dv 2 Clloglly,wy If peDy then for xeQ/4 we have Mf(x)
2 Clloglly,w,v. If not, we require the compatibility condition to hold for
fpy) Lo obtain Mf (x) 2 C2llglly, v for xe Q. In cither case our assumption
implies 114(Q) < C/ll@glly, w,v- Thus it follows that

nld * [l #"(0) AP (g -1y
18 (Q) (o) (i (Q)t)<]TWWSUPT (¥ (1) < Ct™ 7P,

where 1/p+1/p' = 1.
Hence ®(f)eL7"*(0, o) since our choice of ¢g was arbitrary. This

completes the proof. .

By Theorem 2, @ is the correct quantity for establishing if and only if
conditions to obtain two-weight restricted weak type mixed norm inequali-
ties. By [4, Theorem 4], we can infer that this result cannot be strengthened
to include weak type or strong type norm inequalities. We note that weak |
type norm inequalities are classified by a variant of Muckenhoupt’s A4,
condition, ie. u”4(Q)(fpfdvy ™' <C.

As for strong type norm inequalities, we have Sawyer’s condition [8]

J‘(Mu(xav—p’/p))qd'u < C(j’vw'/p)qlp!

Q 2
for the case @ = xo/(v|Q), 0 <a < 1. Presumably a variant of Sawyer’s
condition might classify strong type norm inequalities for our general maxi-
mal operators.

Our next result is crucial in that it makes ® a useful object of study. In
Lemma 1 we decompose @ and obtain a simple picture that applies to all
two-weight problems involving our general maximal operators. In the appli-
cations of the following sections, Lemma 1 is decisive in computing needed
estimates. )

We require u(E) = [gpudx and v(E) = fgvdx for measurable functions px
and v. Since @ is basically a rearrangement, we assume we have perturbed ¢p
slightly so as to have (pg)} (t) strictly decreasing for t&(0, v(supp ®g)). This
can be done so as not to appreciably affect the size of ®.

LemMa 1. Let NeZ. There exist @gy, dy and parallel rectangles Ry and

Ry with Ry "Ry = @, Ry, Ry = Qy and each of Ry, Ry having two parallel
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sides as large as a side of Qy. Moreover, there is a set Sy = Ry such that the
following estimates are true for 1 < p <gq <o0:

@) @Y < Cypt(Ryay.

(i1) < gy (%) < Suy, xeSy.
(iii) %4"/‘1 LpPla(Ry) 2N < v(Sy) < 4Pia~ 1 ppla(Ry) 28
(iv) < (Poy Asy) (4741 P4 (Ry) 2Y) < Say.

If ®eLP=(0, o), and peDy, or {pg}eCy, then we also have
(V) w2 (Ryay < C2” NP,
Proof. We begin by choosing a Qy and ¢gy for which
(2" < 217 (0) (g% (7 (On) 2V).
Partition Qy into four rectangles {R;} using three parallel (n— 1)-planes such
that u(Qy) =% u(R), i =1, 2,3, 4. Then from the inequality
4
i (@ < Y (@gy ar ) (1/4),
i=1

we have an i such that for each j=1, 2, 3, 4,
P(2") < C47 P11 (R)) (g xr )% (47971 P9 (R)) 27).
Select a j so that R; "R; = (. Let Ry = R; and R} = R;. Let us denote

by R’ a rectangle in R} which has one side equal to the side of R¥ furthest
from Ry. Set

B(2%) = sup WU (R) (9gy xry)¥ (4797 uP(R)2").
. R’

We observe & (2" > ®(2V)/(C47). Select an R’ for which the sup is nearly
attained. Let

ay = (@gy Ary)k (471471 u?19 (R 2%),
Sy= IXERN Say 2z gy (x) = “N}: and
Sy= {x& Ry: (PQN() ay)
Since v {pga(1)} = 0,1 >0, we see that
v(SN) = v{ogy try > oy} = 47471 pPA(R) 2V,

We claxrn that v(Sy) > £v(Sy). To prove this we assume v(Sy) > v(Sy). If
v(Sy) <$v(Sy), then

PR 2 > v(Sy\Sy) > $v(Sy) = $477 o (R) 2V
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We choose R” < R¥% for which

4ria=t P (R 2N € v(Siy \Sy) < 47471 ypla (RN + 1

and R” is a candidate for the sup of &. Then y"?(R") > % u"4(R’) and since
(Poy Xsyrsy)¥ (4Pl 1 yrla(R") 2Y) = 5ay,

we get

B(2) > W (R") (g, Tsysy)t (474 4 (R')2")

> 207 (R auy > B(2V).
Hence our claim is established and
,}411/11 1,14”/”(R’) 2N <V(Sy) < £ 4pa-1 ,u”/“(R’) N

If we now let Ry be R’ properties (i), (ii), and (iv) follow.

To establish (v) we must work a bit harder than expected since 1t 1s not
obvious that & (2") < CP(2"). Assuming P L”**(0, cv) by Theorem 2(i) we
have (IMfllg e < BllS|lp1,v for fels!. In the proof of Theorem 2 we have
seen that this implies

w9 (Q)sup(pg)t (1)t < C.

Thus
B (2M) < sup uP1(R) (pgy Ary)¥ (47971 uP (R') 2Y)
-

1/q R! , ,
< supv-——wi—,—)supr”” (pr)¥(x)y < C27N7,
R 20r T N

since Ry, Ry = Qy. Thus we have (v) and our proof is complete.
3. We shall investigate the problem of extrapolating a two-weight mixed
norm inequality for the fractional maximal operator defined as

M, f(x)—-sup FS (x)dx,

191* o
where 0 <« < 1 and the supremum is taken over all cubes with center y
such that |x—y| <4diam Q. We require u(E) = [z udx and v(E) = fgvdx for
measurable functions x4 and v.

Remark. To avoid the trivial cases of u =0 almost everywhere and
v = o0 almost everywhere, it will be assumed that « < 1/g+1/p'. This addition~
al restriction makes no difference in the following computations. This fact
can be interpreted as follows: If we bound the size of the cubes @ used
in defining M, away from zero, then the above trivial cases do not arise
necessarily for a > 1/g+1/p’ and we still have a theory.
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Assuming M, fllg, o < Allfllp1.0, 1 <p < g <00, we deduce by Theo-
rem 2 that (1)< C/t"", 0<t<oo. We observe that t™'# is not in
I51(0, o) for any s. Thus the problem of extrapolating down is equivalent
to showing & () < C/t¥®™® for 0 <t < 1 and some ¢ > 0. And similarly the
problem of extrapolating up is equlvalent to showing ®(t) < C/tYP+d for
1<t < oo and some § > 0.

In [4],[5] the problem of extrapolating down was solved for the case «
=1 and p=q by considering iterations of the Hardy-Littlewood maximal
operator which has the following equivalence'

M. M x)~sup’Q-| T (1o (012020 ('Q'“

It is unreasonable to iterate M, for 0 <o <1 so we will use the following
pseudo-iterations to solve the problem of extrapolation.

DeriNiTIoN 2. For j= 1,2, ... we define M,; and M respectively as

log/ 3
Ma,jf(x)‘—‘supIQlaj'(f 10)* (0) _9g_(|Q._|'/ith
e

where the supremum is taken over cubes Q whose center y satisfies |x—y|
<4diam Q. We may realize the above integrals as integrals over Q for
functions f satisfying |f~!(f) =0 by replacing |Q|*/t by |Q|*/gq(x), where
0o(x) = inf {t: xe {z: £ () = (frg* (@)}

The maximal operators M, ; and Mi have an associated & function
which we will denote by ®; and @’ respectively. For the remainder of this
section we shall just investigate M, ; and ®; together with the problem of
extrapolating down. The problem of extrapolating up and the role of MJ and
@' is discussed in Section 4.

The next two lemmas provide the needed estimates on & and &
respectively. Lemma 2 shows that the boundedness of M, ; provides bounds
on &(t) for the critical range 0 <t < 1. Lemma 3 shows that @, is weakly
controlled by &. We list the implications of these estimates as Theorem 3,
thus showing that the problem of extrapolation down is entirely controlled
by Mm,j'

Lemma 2. Suppose [IMy; fllg oon < Ajllflp1v FEIBY for j=0,1,2, ...,
1<p<gq <oo. Then there is a constant B >0 such that for every j and
positive N,

il
&2~ < Bp/ Aj%,'j MY,

Proof. We may assume without loss of generality that [y~ 1(f)| = 0 for
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>0 Let N>0. By Lemma 1 we may choose Qy and rectangles
Ry, Ry O, Ryn Ry = @, and Sy = Ry such that

@ P@27N<Cp(Ry)ay.
Xon
NS -
V(X)IQ o

< Say, xeSy.

(i)

C,
(ii) ,,5 ﬂﬁ/q (Ry)2~ N g <v(iSy <G, ﬂﬂ/q (R 2~ N

x) QNI
V) u(Ry)ay < C32V7.
We note that for yeRy and go(x)=infit: xe{z: p' 77 (2)
207 a* 0}

. 1
M0 15000 > g ] 77 0,9 B8 (v Jox

(iv) oay< ( """""""""""" ) (Cz /«lp/q(RN ) < Soty.

We begin with
YU s M (017 s ) () >y} < ARV 2syl1B 10
and observe, using v'™ P (x) ~ (ay|Qx|%)* ! for xe Sy, that
log’ (10" o
v (x X ( +e )dx
] () x5 (%)= i1 gy
AP (Souy)? ™ QNP TV |SN

pla
P (R )[IQ R,

which reduces further to

, . ISyl log/ [lOn 4
W Ry )[ ok |QN1“<§“"’>7!“(|SIL| +")]

< AP (So)” QM T Shl.

From this we derive

A j! r
e (Ri )(iIQ'N"E“J < C[Togf(iQNf:/snlJre)} |
We use $Coay 4 (Ry) 27" < ayv(Sy) < [Syl/IQx" and
ISNI/IQNI* < Sy v(Sy) < 5Cay Pl (R 27N < 27WP
to estimate the left and right sides respectively to obtain
oy @1 (Rp)1P 20N < CLp/ 4!/ N'DP.
We take the power 1/p to complete the proof.
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Lemma 3. We have the following estimate for NeZ,j=1,2,....
a>,-{2”) <C (3 Al Do (2V" 1)+3][IN’ ] 21NI>.
Proof. For N s 0 consider a Q = R" and let

_ ool %o log’ (101*/0p + )
0 = KP(Q) (MVIQI“ ' )‘ (w7'2(Q) 2"),

where gg is any function supported in @ with |{x: 0 < gp(x) < t}| =1, for 0 <t

<|Ql. Let
Oy = ixeQ: log(IQ[%/eq (x)+e) > 3 |Nllog(2)}

and observe that |Q] = |Q[*(23M—¢)~1. Hence
3j|N[ij\Q *
Ly, < ple (__w_”i> pla () aN-1
0. < 1(Q) A (7"(Q) )

Aoy log! (101" /ag+e)
+pP(Q) (e
vIQr !
The first term on the right of the inequality is at most

(3 INP) ®o(2¥"Y). To estimate the second term we assume v(Qy)
> ppl12N -1 Construct a set Sy = Qy such that if we let

) (#p/q(Q) 2N—1).

Yox 108/ (1Q1/0g + ) )
N-(————m—wvlglj, )‘( (@),

then
FUP(Q) 2V < v(Sy) < uP(Q) 21,
log/ (1Q1*/0q (x)+e)
| <—-—————————.v(x)!lej! for xeSy.
We compute
1 IQNII J (1
vt < g | LU,
1 " og 21010 10y [log! 210"
]
SigFd T 4s IQV‘[ (|Q~| HE
Thus

- —x1Qxl [ log/ 21012\
ocN‘,u”"’(Q)SC2 Noayv(Sy) < C2 Nﬁ“—[?!-(IQNI >+1J2f

< C27¥ 23N 3{%’-@1]

and the proof is complete.
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* Tugorem 3. (i) If

sup (| Myy fllgxp=0(49), 1<p<g<on,
WA p1 =1

then there exists &>0 such that ®eL® 910, ) and thus
1M fllgps S CllSp-svr where g, =((p—2)/p)g
@) If 1 MT My 00 < AN g0 Jor =1, 2 and py/gy = pafga, p2 > p1 2 1,
then for py < Ppo < pay and o = po(q;/p,) we have
1 Ma,s S g < (Apg) 1/ 15,5+
Proof. To prove (i) we use Lemma 2 for N <0 to get
@ (27N < C(A/NYjI 2N

for some constants 4 and C. We use Stirling’s formula j! ~ /2m e~/ ji*1/2 1o
get

AV .
M < o[ 2L 2N,
b2 )\C<eN)]

Let y = ¢/(24) and choose j = [yN]. Then

CNY2? , oNi(p—e)
o2 N) < ."EW, NP g C, VMNZ

for some &>0. This implies Yy.o®@2 M2 P~ <co. Since
Pl ®(0, co) we have &(2M < C2~M" and we infer
T oMV < o,
N>0 ’
Thus ¢eL*P9"1(0, o0).
To prove (ii) we use Lemma 3 to derive

@2 < Cs}m-[ PNy 272N 32N NeZ.

Since @ is in L™ (0, o) and L/*(0, oo) we have
et o<t g
KU {Cz/r”’"z, 1<t <o,

Thus for py with p, < po < p,, We estimate
logf(l/t) dt *log/(t) [ 1 dr
”(pj”P'o 1S CAJ[ fm-»—:]! r”pl tm;a'{- 1 J‘ ;‘1’/7’—'?? t1/F0 .
We compute the right hand side to be less than CB’, where B depends upon
Pos Py and p,.
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4. The behavior of M,, 0 <a < 1, differs markedly from M, the Hardy-
Littlewood maximal operator, in the problem of extrapolating up. If we do
not make any restrictions on the size of cubes used in defining M, (see
Remark) then extrapolating up is trivial. In the case p = g, if M, maps 2!
boundedly into L* then u(x) < Cv(x) ae. and extrapolating up is simply
interpolation between LP and L* spaces.

To investigate the problem of extrapolating up a mixed norm inequality
of M,, we use the behavior of the operator M} (Definition 2) to obtain
estimates on @ (1) for 1 <t < oo. We list these estimates as Lemma 4. Finally,
the last theorem (Theorem 4) contains our result on this problem as part (i)
and two results (i) and (iii) using both M,; and M} to obtain weak type
sufficiency conditions to have M, map LZ to L= and LY to L% boundedly.

Lemma 4. Suppose  |IM] flly.xp < Al S Np1y Sor felB' and |
=0,1,2,..., 1< p< g <oo. Then there is a constant B, > 0 depending upon
0 <e < 1/p such that for every j and N >0,

@(2") < max {2“”“'“, 383%2'”/”}‘

Proof. Given ¢ with 0 <& < 1/p we assume @®(2V) > 2"M!~9 We begin
the proof, just as in Lemma 2, by fixing N and then applying Lemma 1 to
obtain Qy, Ry, Ry and Sy satisfying properties (i) through (v). We apply the
hypothesis to Mj(v' ™% y5,) to derive

, - 1 log’ (g0 (x) »
uPla(R 1 2
pla( N)[aﬂ TANCERD [xsy 7t (IENI“ +e>dx]

< AF (Se)” T HQAHP ISy,

We use
S L oI P o
& o8N Z “ o pry AN s)ds
O 2V 7 TRy 2Y g WQI“’)V

2 Co2N » Cc27Nu-9

to estimate [Sy|/|Qyl* = C 2™,
We reduce the left side of the first inequality to obtain

o~ Swl log! (Sw/(21Qu") +¢
ToNERR Jt

P (R'N)[ )]" < CAP ) QN7 VS

or

NN [ 4 '
Pla(R S .
e (levl“) <€ logf(|s~1/(2|Q~|“)+e)]'

©
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We now use #C;2Voyu"M(RY) < oy v(Sy) < ISNI/IQN® for the left and
ISN/ION = C2+M for the right side. Thus the above becomes

AP
q 7 4 -1)N J

Lot ,um(RN)]z 2p= 1N « C, \:N NJ} i

The proof is completed by taking the power 1/p of both sides.
TueoreM 4. (i) If

sup  [IMLfllgmp So(4), 1<p<g<o0,
I o= 1
then there exists & >0 such that ®e LP*%2(0, 00) and thus
p+d
1My fllgge < CllSMptay,  where g5 = (T>q

@ If 1<p<qg<o, [Myifllgou<AlSllpry and 1M £l o0
< A||fllp1,vr then @177 (0, 00) and thus

Mo fllgcon < ClS Nlpys-
i) If 1<p<q<o0, IMuzfllgru<SAISp1n and [IMZ Sl
< Al fllp1.v then ®eLP*(0, o0) and thus
1Mo fllgsw < Cllfllpsws 1S5S 0.
Proof. To prove (i) we assume there exists C > 0 and ¢ > 0 such that

®(2M) > C27¥4-9 for all N > 0. Otherwise we are done since ®(2~") < 2N/
and #(2Y) < C27N for N > 0. We use Lemma 4 to derive

4V )
M<c(E 2", N>o.
(27 C(6N>J
We use Stirling’s formula j! ~ /2me™ "2 to get
A4Y .
M < C 2 11/2 9= Nip',
P2 <C (eN)J
Let y = ¢/(2A4) and choose j = [yN]. Then
12 ) 2= Ni(p+8y
o(2M SEN&"“"‘“TN/" < C— 2

for some 6 > 0, Thus Y y»o®(2%) 27 V"9 < co. Since Pe L7 (0, 0), we
have ®(2~M < C2V% and

T B M2Vt < oo,

N>0



GUEST


e ©
180 M. Leckband " lm

Hence ®eLP*91(0, o).

To prove (i) and (ili) we observe that it is enough to show
®(2% < C27¥7/IN| and ®(2%) < C27M7/|N|* respectively. For N >0, we
use Lemma 4 to derive the estimates. For N <0 we use Lemma 3.
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On A-uniform convexity and drop property
by
S. ROLEWICZ (Warszawa)

Abstract. Let (X, || [}) be a real Banach space. The norm || | is called d-uniformly convex
if for each ¢ > O there is a & > 0 such that for each convex set E contained in the unit ball B
with measure of noncompactness greater than e, inf{||x||: xe E} < 1-4. It is shown that the
norm || || is 4-uniformly convex if and only if it satisfies uniformly a certain condition (x)
equivalent to the drop property. The paper contains an example of a reflexive space in which
there is no A-uniformly convex norm equivalent to the given one.

Let (X, || [l) be a real Banach space. The norm || || is called uniformly

convex [2] if for each ¢ > 0 there is a § > 0 such that for x, ye X such that
lixll = llyll =1 and

o llx— i > e,

we have .

@ [$(x+p)ll < 1-0.

Of course, in this definition we can replace condition (2) by
(3) inf {|lz||: zeconv({x, y)} <1-4

where conv(4) denotes the convex hull of a set A.
Indeed, (2) trivially implies (3). On the other hand, if (3) holds then there
is zeconv({x, y}) such that

@ llz|| < 1-=34.
We have two possibilities: either

$(x+y)=(1—~0)x+tz for some t,0<t<1,
or
$(x+y)=(1—t)y+tz for some t,0<t < 1.

In both cases t >4 and the norm of 4(x+y) can be estimated as follows:
(5) B+ € (L =)+t(1=8) = 1—~t5 < 1~%3,

and we obtain (2) with & replaced by 44.

Goebel and Sekowski [8] extend the definition of uniform convexity
replacing condition (1) by a condition involving the Kuratowski measure of
noncompactness.
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