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Hence ®eLP*91(0, o).

To prove (i) and (ili) we observe that it is enough to show
®(2% < C27¥7/IN| and ®(2%) < C27M7/|N|* respectively. For N >0, we
use Lemma 4 to derive the estimates. For N <0 we use Lemma 3.
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On A-uniform convexity and drop property
by
S. ROLEWICZ (Warszawa)

Abstract. Let (X, || [}) be a real Banach space. The norm || | is called d-uniformly convex
if for each ¢ > O there is a & > 0 such that for each convex set E contained in the unit ball B
with measure of noncompactness greater than e, inf{||x||: xe E} < 1-4. It is shown that the
norm || || is 4-uniformly convex if and only if it satisfies uniformly a certain condition (x)
equivalent to the drop property. The paper contains an example of a reflexive space in which
there is no A-uniformly convex norm equivalent to the given one.

Let (X, || [l) be a real Banach space. The norm || || is called uniformly

convex [2] if for each ¢ > 0 there is a § > 0 such that for x, ye X such that
lixll = llyll =1 and

o llx— i > e,

we have .

@ [$(x+p)ll < 1-0.

Of course, in this definition we can replace condition (2) by
(3) inf {|lz||: zeconv({x, y)} <1-4

where conv(4) denotes the convex hull of a set A.
Indeed, (2) trivially implies (3). On the other hand, if (3) holds then there
is zeconv({x, y}) such that

@ llz|| < 1-=34.
We have two possibilities: either

$(x+y)=(1—~0)x+tz for some t,0<t<1,
or
$(x+y)=(1—t)y+tz for some t,0<t < 1.

In both cases t >4 and the norm of 4(x+y) can be estimated as follows:
(5) B+ € (L =)+t(1=8) = 1—~t5 < 1~%3,

and we obtain (2) with & replaced by 44.

Goebel and Sekowski [8] extend the definition of uniform convexity
replacing condition (1) by a condition involving the Kuratowski measure of
noncompactness.
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Let 4 be a set in a Banach space X. The Kuratowski measure of
noncompactness of A is the infimum «(4) of those ¢ > 0 for which there is a
covering of 4 by a finite number of sets A4; such that diam(4;) = sup {|lx
—y|I: x, yed;} <e. It has the following properties (see for example [1]):

(a) a(A) =0 if and only if the closure A of A is compact.

(b) a(A) = a(A).

(c) a(conv(A)) = a(A).

(d) x(A+B) = a(A)+a(B).

(e) a(Ad) =[Aa(A4).

A norm || || in a Banach space X is d-uniformly convex [8] if for each
&> 0 there is a 6 > 0 such that for each convex set E contained in the closed
unit ball B= {xeX: ||x]| <1} such that

(6) x(E) > &,
we have
0 inf{||x||: xeE} <1-4.

Goebel and Sekowski [8] have shown that if || || is 4-uniformly convex,
then each nonexpansive mapping T of a closed convex set C = X into itself
has a fixed point.

We say that a Banach space X is superreflexive (d-uniformly convexi-
fiable) if there is a norm || || which is equivalent to the given one and
uniformly convex (4-uniformly convex).

Let (X, | |) be a Banach space. We say that the norm has the drop
property [10] if for any closed set C disjoint with the unit ball there is a
point ae C such that
(8) D(a, BInC = {a}

where for brevity we have put
©) D(a, B) = conv({a} U B);

we call D(a, B) a drop [3].

It was shown by Rolewicz [10] and Montesinos [9] that a Banach space
is reflexive if and only if there is a norm || || equivalent to the given one such
that || || has the drop property.

In the present paper we shall discuss the relations between the drop
property, the A-uniform convexity and uniform convexity of norms, as well
as the relations between reflexivity, 4-uniform convexifiability and superrefle-
xivity,

Let (X, || |) be a Banach space. We say that the norm || || satisfies
condition () if for each continuous linear functional f of norm one

(10) lima(S(f, €)= 0,
. . g—0
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where S(f, &) denotes the “slice”
(11 S(f, &)= {xeX: |Ix| <1, £(x) > 1—¢}.

Tueorem 1 ([91, [10]). The norm || || has the drop property if and only if
it satisfies condition (o).

CoroLLARY 1 ([9D). Let (X,| I)) be a Banach space. Let (Y, || ||) be a
subspace of X. If the norm || || has the drop property then

(i) The norm || || restricted to Y has the drop property.

(ii) The norm ([[x]llg = inf {|x+yll: ye Y} in the quotient space X/Y also
has the drop property.

Proof. (i) Let /' be an arbitrary functional of norm 1 defined on Y. Let f
be a norm one extension of /' to X. Then S(f,¢) = YnS(f e and
a(S(f, &) < a(S(f, #)) which tends to zero, because the norm || || on X has
the drop property.

(if) Let f be a functional of norm one defined on the quotient space X/¥.

It induces a functional [ of norm one on X by the formula S x) = f([x]).
Observe that for each ¢

S(f,) = {[x]: xeS(f o)}
Since diam {[x]: xe A} < diam A4, we have
a(S(f ) < a(S(F, o)
and the drop property of the norm || || implies the drop property of the

quotient norm,

TueoreM 2. Let (X, || |)) be a Banach space. Let x, be a point of norm
greater than 1. Let

(12) By = conv({xy, —x,} U B).

The set B, induces a new norm || || equivalent to the given one.
If the norm.|| || has the drop property, then so does the norm || ||o.
The proof is based on some propositions.
Let f be a continuous linear functional on X of norm 1. We write

g’ (&) = a(S(f, 2).
Proposimion 1, For 0 <A <1 and 0 <g <1,
(13) g/ (Ae) = g’ (e).

Proof. Let § be such that 0 < <& Let x be an element of norm 1
such that

(14 S =1-3.
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By the convexity of the unit ball
-8
(15) x{+/18—6—-—(S(f,a)—x§)cS(f, Je).

Thus )
1222 (5(7,0) < (S0 Ja).

Letting & tend to O, we get (13).
We do not know whether the function g/ is always concave.

ProposiTioN 2. Let (X, || ||) be a Banach space. Let X, = X xR, where
the norm || ||, in X, is defined by

(16) G, Dllx = lixll +1d.

If the norm || || has the drop property, then so does the norm || ||;.
Proof. Let f be an arbitrary linear functional of norm one in X, ||f|I;

= 1. Let f; denote the restriction of fto X, fo = f|x. Of course, || fol| < 1. We
write

(17) S(fo, &) = {xeX: |Ixl| <1, fo(x) > 1—¢}.
Of course, if || fol] < 1 the set S(fp, &) is void for sufficiently small &. Now we
have two possibilities:
(1) Neither (0, 1) nor (0, —1) is a point of support of the functional f.
(ii) Either (0, 1) or (0, —1) is a point of support of f.
In case (i) it is easy to observe that for sufficiently small &

(18) 5(f, &) =conv({(0, 1), (0, —=1)} US(f,, &)
and by property (b) of the measure of noncompactness
19) «(S(f, &) < «(S( S, ¢))-

Now we consider case (ii). Without loss of generality we may assume
that f(0,1)=1. Let t be an arbitrary number, —1<¢t<1. Let 4,
= {xeX: (x, DeS(f, &)}. Of course

(29) Sho=s U Ax{t}h
-1<i€1
Using a compactness argument we can easily show that (20) implies
21 a(S(f,e)) = max a(d,).
-1sr<€1

Novy we shall estimate «(4,). We divide the interval [—1, 1] into three
sections: [—1, 0], [0, 1—¢], [1—¢, 1]. In [—1, 0]

(22) 4, x{t} =conv{{(0, —1)} u(S(fo, &) x {0}))

©
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and so
(23) a(Ady) < a(S(fo, 8))-
In [1—¢, 1], A, = (1-1)B, where B denotes the closed unit ball in X. Thus
(24) a(dy) < 2

The most complicated case is the interval [0, 1—¢]. In this section we obtain
A, by cutting off a piece of the ball (1—t)B by a hyperplane with distance
from the center not smaller than & In other words,

(25) A< (l—t)S(fo, l—f_—t)

and by (b)

(26) 2 (4) <(1-1)g”° ({_—t)
By Proposition 1

@7) L Sup a(4)< 7).

Therefore by (23), (24), (27) and (21)
(28) (S (f, ¢)) < max (2, g ().

Thus the norm || ||, satisfies condition (x), which finishes the proof of
Proposition 2.

Proof of Theorem 2. We embed X into the space X, described in
Proposition 2. Let T be a projection of X; onto X such that T(0, 1) = x,. It
is easy to see that

TBI = conv(fxo, _x()‘l UB)! Bl = ‘{(X, t): ”(x’ t)”l < 1}’

and by Corollary 1 the norm || ||, in X has the drop property.

If the convergence in formula (10) is uniform with respect to all f, |lf Il
=1, then we say the norm || || satisfies the uniform condition (a).

More precisely, we say that a norm | || in a Banach space (X, )]
satisfies the uniform condition («) if for each ¢ > O there is a 8 > 0 such that
for each continuous linear functional f of norm one

(29) a(S(f, 9) <e.
TueorEM 3. Let (X, || |) be a Banach space. The norm || | is A-uniformly
convex if and only if it satisfies the uniform condition ().

Proof. Observe that the norm is 4-uniformly convex if and only if for
each ¢ > O there is a 6 > O such that for each convex subset E of the unit
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ball B

(30) inf{||x||: xeE} = 1—
implies

31 w(E) <.

Let E be an arbitrary convex subset of the unit ball satisfying (30). Then
by the separation theorem there is a continuous linear functional f of norm
one such that

(32) E =S(f, 6).

Thus the uniform condition (&) implies (31). On the other hand, S(f, §) is a
convex subset of the unit ball satisfying (30). Thus the d-uniform convexity
implies the uniform condition (a).

In a similar way as in Corollary 1 we obtain

Prorosirion 3. Let (X, || ||) be a Banach space. Let (Y, || ||) be a subspace
of X. If the norm || || is A-uniformly convex then:

(i) The norm|| || restricted to Y is also A-uniformly convex.

(1) The quotient norm (|[x]lly =inf {|[x+yll: ye Y} is d-uniformly convex
in the quotient space X/Y.

ProposITION 4. Let (X, || |)) be a Banach space. Let X, = X x R with the
norm {|(x, ), = |[X||+[t]. If the norm || || is 4-uniformly convex, then so is the
norm || ||, .

Proof. The proof is a slight modification of the proof of Proposition 2.
Let € be a small positive number. Let f be an arbitrary continuous linear
functional of norm one defined on X,.

Without loss of generality we may assume that f (0, 1)
consider two cases: B

@ fO, H<1-

Gi) £(0, 1) > 1—e.

As previously, we denote by f, the restriction of / to X.

In_ case (i)

= 0. We shall

(33) (/. 8) =conv({(0, 1), (0, = 1)} LS (o, 8))
for 6 < ¢ and by property (b) of the Kuratowski measure of noncompactness
(34) g'(0)<g”°0)
In the second case we also introduce the sets
A, ={xeX: (x, )eS(f, §)).

We divide the interval [—1, 1] into three secti -
[1—s—8, 1]. ] sections [~1, 0], [0, 1—&—d),

for 6 <e.
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In the first section the estimation is the same as in the proof of
Proposition 2. The proofs for [0, 1~¢—4), [1—&—4§, 1] are also more or less
the same, except that we replace ¢ by ¢+8. Hence we have finally

a(S(f, &) < (S (fo, 20),
which finishes the proof.
By Propositions 3 and 4 in the same way as in Theorem 2 we get
THeOREM 4. Let (X, || ||) be a Banach space. Let B denote the unit ball in
X. Let xo¢B and let
B, =conv({xy, —xo} U B).

The norm induced by B, will be denoted by || ||;. If the norm || || is 4-
uniformly convex, then so is || |l,.

Of course, each superreflexive space is 4-uniformly convex1ﬁable and
each A-uniformly convexifiable space is reflexive. The converse implications
are not true in general as follows from the following theorems.

Turorem 5. Let (X,, || |l.) be a sequence of finite-dimensional Banach
spaces. Let X =(X; xX,x .. 1 < p < +o00, be the space of all sequences
x = {x,}, x,€X,, such that

Jips

(3%) (Z llx[P) < o0

llxll =

Then the norm || || is A-uniformly convex.
Proof. Let f be an arbitrary continuous linear functional on X of norm
one and let ¢ be an arbitrary number such that 0 <e <1.
By the construction of the space we can find an index N such that the
restriction of f to the space
Z=Xypy XxXn+2 %

has norm smaller than &:
(36)
Let

If12ll <e.

Y=X;x... xXy.

In this way we obtain a decomposition of the space X into the direct sum of
two spaces Yand Z, X = Y+Z, such that (36) holds, Y is finite-dimensional
and for yeV, zeZ and x =y-+z

&N [1x[I” = lly+z[l” = [P +]lzII".

Let as before S(f,8) = {xeX: |x[|<1,f(x)=1—-s}. Let xeS(f,e). We
represent x as the sum x = y+z, ye Y, ze Z. By (36) and (37), |f (@) <& and

(38) fO) =f(x=2) 2/ (=1 (@) >1-e—¢ =1-2e.
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The functional f has norm one. Thus (38) implies

(39) Iyl > 1-2s.

By (37) and (39),

(40) (12117 = IxllP = IlP < 1—(1—-2¢)" < 2pe,
and so

(1) llzl < &/ 2pe..

Thus by (37), (38), (41),

S(fe) =(S(f, 2N Y)+ {ze Z: ||zl < &/2pe}.

The set S(f,26)nY is compact since Y is finite-dimensional. Thus by
properties (a) and (d) of the Kuratowski measure of noncompactness

a(S(f, ) =a({zeZ: ||zl < &/2pe}) = 22/2pe.
CoroLLaRY 2. There is a A-uniformly convexifiable space which is not
superreflexive.
Proof. Taking for X, n-dimensional spaces either with the ¢, norm, ie.
Ixll, = sup (&,  x=(&, ..., &),

1<isn
or with the I norm, i.e.
n
1/
lIxlly = (2 1&4™)"™,
i=1
With P, — o0, we obtain the classical examples of Day [5] of nonsuperreflex-
Ive spaces. By Theorem 5, those spaces are d-uniformly convexifiable.

THEOREM 6. Let X, = I™ with the standard norm. Assume that Py — 0.
Then the space

X=(X;xX,x s 1<p<+oo,
is not A-uniformly convexifiable.
Proof. We shall denote the standard norm by || ||. Suppose that there
is a 4-uniformly convex norm I I in X equivalent to |l 1. This means that

there are two positive numbers m, M such that ||x|| < mlxl < M||x||. Repla-
cing || || by m|| |rwe may assume without loss of generality that

3) lIxll < Ixl < M|x]).

This means that the unit ball in the standard norm contains the unit ball in
the new norm I 1 and that the unit ball in the new norm contains the ball of
radivs a = 1/M in the standard norm.

We shall denote by the same symbols || || and 1 I the restrictions of the
norms-|| || and I 1to each component X, = I’". The calculation will be done
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in one space X, = I"" with p, sufficiently large. The choice of p, will follow
from the construction. For brevity we put

Pn=1D, X n= X .
We decompose X into two infinite-dimensional subspaces by decompo-

sing the set of natural numbers into two disjoint infinite sets N,, N, and
putting

Y={xeX: x,=0, ieN;}, Z={xeX: x,=0,ieN,}.
Of course, X = Y+Z and for yeV, zeZ
[ly+2l17 = |IylIP+ )]},

Now let ¢ = ja. Since we have assumed that the norm 1 1 is Ad-uniformly
convex there is § > 0 such that for each convex set E < {x: Ixl < 1} such
that a(E) <¢ we have

(44) inf{Ixl: xeE} <1-34.

Let y be an arbitrary element of Y such that

(45) lIyll < a(1-1/29Y.

Then, of course, for an arbitrary ze Z such that ||z|| <}«
46) [ly+2l < a.

Thus

y+iaizeZ: 2l 1) c {xe X: |Ixf <o} = {xeX: Ld< 1}

The set y+3a{zeZ: ||z|l < 1} has the Kuratowski measure of noncompact-
ness in the standard norm not smaller than ¢ = $«. By (43) the same is true
in the new norm. Thus there is zeZ, ||z|| <%a, such that ly+zl < 1—§. Of
course ly—zl < 1 and finally
Wl < Sy +zl+ly—zl) < 1—146.
Thus ly/{1—%8)l <1 and we have shown that for each yeY such that
(1-1/2pr
< gt L
”y” o 1 »__%5

we have Iyl < 1.
Now, p ought to be chosen so that
1—~1/2nYP
-y
1-36
This is possible since p, — co. Now repeating the decomposition procedure n
times we deduce that there is an infinite-dimensional space Y, such that for

@7
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all yeY, such that

(1—1/2R4F ]
(48) lIyll Sa[ 1-1s
we have
(49) <1,

By (47) this contradicts (43).

CoroLLARY 3. There are reflexive spaces which are not A-uniformly
convexifiable.

Proof. The space X described in Theorem 6 is reflexive [5].

Now we shall distinguish a property lying between uniform convexity
and 4-uniform convexity. The starting point is the following.

ProposiTiON 5 [10]. Let (X, || ||} be a Banach space. Let x not to belong
to the unit ball. Let

(50) R(x) = D(x, B)\B.

The norm || || is uniformly convex if and only if for each ¢ > 0 there is a § >0
such that

(51 fxl| < 146
implies
(52) diam (R (x)) <e.

Proposition 5 suggests the investigation of the following condition on
the norm:

(B) For each &> 0 there is a § > 0 such that ||x|| < 1+J implies
(53) a(R(®) <e. ‘

ProrosiTioN 6. If a norm || || satisfies condition (B) then it is A-uniformly
convex. -

Proof. Suppose that the norm is not A-uniformly convex. Then by
Theorem 3 it does not satisfy condition (x). This. means that there is an
&0 > 0 and sequences of continuous linear functionals of norm one {f,} and
positive numbers §, > 0 such that

(54) a(s (f;n 5n)) ?‘ €.
Let x, be an element such that 1+25, < ||x,|| < 1435, and
(55) Sulxp) = 1+23,.

By (55) for each element of the form (x,+)), yeS(f,, 8,), we have
fEER+y)>1
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and 4(x,+y)¢B. On the other hand, %(x,+3)eD(x,, B. Thus %(x,
+y)e R(x,). Observe that the set {4(x,+y): yeS(f,, ,)} is homothetic to
the set S(f,, 6,) with coefficient 1/2. Thus, by (54) and property (e) of the
Kuratowski measure of noncompactness

(R (x) > £0/2,

which completes the proof.

Observe that d-uniform convexity does not imply condition (). Indeed,
in Proposition 4 we have constructed a A-uniformly convex space which is

“the I*-product of a 4-uniformly convex space (X, || |y by R. It is easy to see

that for x; = (0, 1+ ) the closure of R(x;) = D(x;s, B)\B contains the unit
sphere in X, thus a(R(x;) > 1 independently of 6 > 0.

We shall say that a Banach space (X, || ||) is a (f)-space if there is a
norm || [|; equivalent to || || such that || ||, satisfies condition (f).

We have shown that every superreflexive space is a (f)-space and every
(B)-space is A-uniformly convexifiable. We do not know anything about the
converse implications.
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