

Hence $\Phi \in L^{(p+\delta)',1}(0, \infty)$.

To prove (ii) and (iii) we observe that it is enough to show $\Phi(2^N) \le C 2^{-N/p'}/|N|$ and $\Phi(2^N) \le C 2^{-N/p'}/|N|^2$ respectively. For N > 0, we use Lemma 4 to derive the estimates. For N < 0 we use Lemma 3.

References

- [1] H. M. Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on L(p, q)-spaces with weights, Indiana Univ. Math. J. 31 (1982), 109-120.
- [2] M. de Guzmán, Differentiation of Integrals in Rⁿ, Lecture Notes in Math. 481, Springer, 1975.
- [3] R. A. Hunt, On L(p, q) spaces, Enseign. Math. (2) 12 (1966), 247-275.
- [4] M. A. Leckband and C. J. Neugebauer, A general maximal operator and the A_p-condition, Trans. Amer. Math. Soc. 275 (1983), 821-831.
- [5] -, -, Weighted iterates and variants of the Hardy-Littlewood maximal operator, ibid. 279 (1983), 51-61.
- [6] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, ibid. 165 (1972), 207-226.
- [7] B. Muckenhoupt and R. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 55 (1976), 279-294.
- [8] E. T. Sawyer, Two weight norm inequalities for certain maximal and integral operators, in: Lecture Notes in Math. 908, Springer, 1982, 102-127.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY New Brunswick, New Jersey 08903, U.S.A.

Received May 5, 1986 (2166)

On A-uniform convexity and drop property

b

S. ROLEWICZ (Warszawa)

Abstract. Let (X, || ||) be a real Banach space. The norm || || is called Δ -uniformly convex if for each $\varepsilon > 0$ there is a $\delta > 0$ such that for each convex set E contained in the unit ball B with measure of noncompactness greater than ε , inf $\{||x||: x \in E\} < 1 - \delta$. It is shown that the norm || || is Δ -uniformly convex if and only if it satisfies uniformly a certain condition (α) equivalent to the drop property. The paper contains an example of a reflexive space in which there is no Δ -uniformly convex norm equivalent to the given one.

Let (X, || ||) be a real Banach space. The norm || || is called *uniformly convex* [2] if for each $\varepsilon > 0$ there is a $\delta > 0$ such that for $x, y \in X$ such that ||x|| = ||y|| = 1 and

$$(1) ||x-y|| > \varepsilon,$$

we have

Of course, in this definition we can replace condition (2) by

(3)
$$\inf \{ ||z|| \colon z \in \text{conv}(\{x, y\}) \} < 1 - \delta$$

where conv(A) denotes the convex hull of a set A.

Indeed, (2) trivially implies (3). On the other hand, if (3) holds then there is $z \in \text{conv}(\{x, y\})$ such that

$$||z|| < 1 - \delta.$$

We have two possibilities: either

$$\frac{1}{2}(x+y) = (1-t)x+tz$$
 for some $t, 0 \le t \le 1$.

or

$$\frac{1}{2}(x+y) = (1-t)y + tz \quad \text{for some } t, \ 0 \le t \le 1.$$

In both cases $t > \frac{1}{2}$ and the norm of $\frac{1}{2}(x+y)$ can be estimated as follows:

(5)
$$||\frac{1}{2}(x+y)|| \le (1-t)+t(1-\delta) = 1-t\delta < 1-\frac{1}{2}\delta,$$

and we obtain (2) with δ replaced by $\frac{1}{2}\delta$.

Goebel and Sekowski [8] extend the definition of uniform convexity replacing condition (1) by a condition involving the Kuratowski measure of noncompactness.

Let A be a set in a Banach space X. The Kuratowski measure of noncompactness of A is the infimum $\alpha(A)$ of those $\varepsilon > 0$ for which there is a covering of A by a finite number of sets A_i such that $\operatorname{diam}(A_i) = \sup |||x - y|| : x, y \in A_i\} < \varepsilon$. It has the following properties (see for example [1]):

- (a) $\alpha(A) = 0$ if and only if the closure \overline{A} of A is compact.
- (b) $\alpha(A) = \alpha(\overline{A})$.
- (c) $\alpha(\operatorname{conv}(A)) = \alpha(A)$.
- (d) $\alpha(A+B) = \alpha(A) + \alpha(B)$.
- (e) $\alpha(\lambda A) = |\lambda| \alpha(A)$.

A norm || || in a Banach space X is Δ -uniformly convex [8] if for each $\varepsilon > 0$ there is a $\delta > 0$ such that for each convex set E contained in the closed unit ball $B = \{x \in X : ||x|| \le 1\}$ such that

(6)
$$\alpha(E) > \varepsilon$$
,

we have

(7)
$$\inf\{||x||: x \in E\} < 1 - \delta.$$

Goebel and Sękowski [8] have shown that if $\| \|$ is Δ -uniformly convex, then each nonexpansive mapping T of a closed convex set $C \subset X$ into itself has a fixed point.

We say that a Banach space X is superreflexive (Δ -uniformly convexifiable) if there is a norm $\|\cdot\|$ which is equivalent to the given one and uniformly convex (Δ -uniformly convex).

Let (X, || ||) be a Banach space. We say that the norm has the *drop* property [10] if for any closed set C disjoint with the unit ball there is a point $a \in C$ such that

$$(8) D(a, B) \cap C = \{a\}$$

where for brevity we have put

$$(9) D(a, B) = \operatorname{conv}(\{a\} \cup B);$$

we call D(a, B) a drop [3].

It was shown by Rolewicz [10] and Montesinos [9] that a Banach space is reflexive if and only if there is a norm || || equivalent to the given one such that || || has the drop property.

In the present paper we shall discuss the relations between the drop property, the Δ -uniform convexity and uniform convexity of norms, as well as the relations between reflexivity, Δ -uniform convexifiability and superreflexivity.

Let (X, || ||) be a Banach space. We say that the norm || || satisfies condition (α) if for each continuous linear functional f of norm one

(10)
$$\lim_{\varepsilon \to 0} \alpha \left(S(f, \varepsilon) \right) = 0,$$

where $S(f, \varepsilon)$ denotes the "slice"

(11)
$$S(f, \varepsilon) = \{x \in X : ||x|| \le 1, f(x) \ge 1 - \varepsilon\}.$$

Theorem 1 ([9], [10]). The norm $\| \ \|$ has the drop property if and only if it satisfies condition (α).

COROLLARY 1 ([9]). Let (X, || ||) be a Banach space. Let (Y, || ||) be a subspace of X. If the norm || || has the drop property then

- (i) The norm || || restricted to Y has the drop property.
- (ii) The norm $||[x]||_Q = \inf \{||x+y||: y \in Y\}$ in the quotient space X/Y also has the drop property.

Proof. (i) Let f be an arbitrary functional of norm 1 defined on Y. Let \widetilde{f} be a norm one extension of f to X. Then $S(f, \varepsilon) \subset Y \cap S(\widetilde{f}, \varepsilon)$ and $\alpha(S(f, \varepsilon)) \leq \alpha(S(\widetilde{f}, \varepsilon))$ which tends to zero, because the norm $\|\cdot\|$ on X has the drop property.

(ii) Let f be a functional of norm one defined on the quotient space X/Y. It induces a functional \tilde{f} of norm one on X by the formula $\tilde{f}(x) = f([x])$. Observe that for each ε

$$S(f, \varepsilon) = \{ [x] : x \in S(\tilde{f}, \varepsilon) \}.$$

Since diam $\{[x]: x \in A\} \leq \text{diam } A$, we have

$$\alpha(S(f, \varepsilon)) \leq \alpha(S(\tilde{f}, \varepsilon))$$

and the drop property of the norm $\|\ \|$ implies the drop property of the quotient norm.

Theorem 2. Let (X, || ||) be a Banach space. Let x_0 be a point of norm greater than 1. Let

(12)
$$B_0 = \operatorname{conv}(\{x_0, -x_0\} \cup B).$$

The set B_0 induces a new norm $\| \|_0$ equivalent to the given one.

If the norm $\| \ \|$ has the drop property, then so does the norm $\| \ \|_0$.

The proof is based on some propositions.

Let f be a continuous linear functional on X of norm 1. We write

$$g^f(\varepsilon) = \alpha(S(f, \varepsilon)).$$

Proposition 1. For $0 < \lambda < 1$ and $0 < \varepsilon < 1$,

(13)
$$g^f(\lambda \varepsilon) \geqslant \lambda g^f(\varepsilon).$$

Proof. Let δ be such that $0 < \delta < \varepsilon$. Let x_{δ}^{ℓ} be an element of norm 1 such that

$$f(x_{\delta}) = 1 - \delta.$$

By the convexity of the unit ball

(15)
$$x_{\delta}^{f} + \lambda \frac{\varepsilon - \delta}{\varepsilon} (S(f, \varepsilon) - x_{\delta}^{f}) \subset S(f, \lambda \varepsilon).$$

Thus

$$\lambda \frac{\varepsilon - \delta}{\varepsilon} \alpha (S(f, \varepsilon)) \leq \alpha (S(f, \lambda \varepsilon)).$$

Letting δ tend to 0, we get (13).

We do not know whether the function g^f is always concave.

PROPOSITION 2. Let (X, || ||) be a Banach space. Let $X_1 = X \times R$, where the norm $|| ||_1$ in X_1 is defined by

(16)
$$||(x, t)||_1 = ||x|| + |t|.$$

If the norm $\| \| \|$ has the drop property, then so does the norm $\| \| \|_1$.

Proof. Let f be an arbitrary linear functional of norm one in X_1 , $||f||_1 = 1$. Let f_0 denote the restriction of f to X, $f_0 = f|_X$. Of course, $||f_0|| \le 1$. We write

(17)
$$S(f_0, \varepsilon) = \{ x \in X \colon ||x|| \le 1, f_0(x) \ge 1 - \varepsilon \}.$$

Of course, if $||f_0|| < 1$ the set $S(f_0, \varepsilon)$ is void for sufficiently small ε . Now we have two possibilities:

- (i) Neither (0, 1) nor (0, -1) is a point of support of the functional f.
- (ii) Either (0, 1) or (0, -1) is a point of support of f.

In case (i) it is easy to observe that for sufficiently small ε

(18)
$$S(f, \varepsilon) \subset \operatorname{conv}(\{(0, 1), (0, -1)\} \cup S(f_0, \varepsilon))$$

and by property (b) of the measure of noncompactness

(19)
$$\alpha(S(f, \varepsilon)) \leq \alpha(S(f_0, \varepsilon)).$$

Now we consider case (ii). Without loss of generality we may assume that f(0, 1) = 1. Let t be an arbitrary number, $-1 \le t \le 1$. Let $A_t = \{x \in X: (x, t) \in S(f, \varepsilon)\}$. Of course

(20)
$$S(f, \varepsilon) \subset \bigcup_{-1 \le t \le 1} A_t \times \{t\}.$$

Using a compactness argument we can easily show that (20) implies

(21)
$$\alpha(S(f, \varepsilon)) = \max_{-1 \le t \le 1} \alpha(A_t).$$

Now we shall estimate $\alpha(A_i)$. We divide the interval [-1, 1] into three sections: $[-1, 0], [0, 1-\varepsilon], [1-\varepsilon, 1]$. In [-1, 0]

(22)
$$A_t \times \{t\} \subset \operatorname{conv}(\{(0, -1)\} \cup (S(f_0, \varepsilon) \times \{0\}))$$

(23)
$$\alpha(A_t) \leqslant \alpha(S(f_0, \varepsilon)).$$

In $[1-\varepsilon, 1]$, $A_t = (1-t)B$, where B denotes the closed unit ball in X. Thus

(24)
$$\alpha(A_t) \leq 2\varepsilon.$$

The most complicated case is the interval $[0, 1-\varepsilon]$. In this section we obtain A_t by cutting off a piece of the ball (1-t)B by a hyperplane with distance from the center not smaller than ε . In other words,

(25)
$$A_{t} \subset (1-t) S\left(f_{0}, \frac{\varepsilon}{1-t}\right)$$

and by (b)

(26)
$$\alpha(A_t) \leqslant (1-t)g^{f_0}\left(\frac{\varepsilon}{1-t}\right).$$

By Proposition 1

(27)
$$\sup_{0 \leq t \leq 1-\varepsilon} \alpha(A_t) \leq g^{\int_0}(\varepsilon).$$

Therefore by (23), (24), (27) and (21)

(28)
$$\alpha(S(f, \varepsilon)) \leq \max(2\varepsilon, g^{f_0}(\varepsilon)).$$

Thus the norm $\| \|_1$ satisfies condition (α), which finishes the proof of Proposition 2.

Proof of Theorem 2. We embed X into the space X_1 described in Proposition 2. Let T be a projection of X_1 onto X such that $T(0, 1) = x_0$. It is easy to see that

$$TB_1 = \operatorname{conv}(\{x_0, -x_0\} \cup B), \quad B_1 = \{(x, t): ||(x, t)||_1 \le 1\},$$

and by Corollary 1 the norm $\| \|_0$ in X has the drop property.

If the convergence in formula (10) is uniform with respect to all f, ||f|| = 1, then we say the norm || || satisfies the uniform condition (α).

More precisely, we say that a norm $\| \|$ in a Banach space $(X, \| \|)$ satisfies the uniform condition (α) if for each $\varepsilon > 0$ there is a $\delta > 0$ such that for each continuous linear functional f of norm one

(29)
$$\alpha(S(f, \delta)) \leq \varepsilon.$$

THEOREM 3. Let (X, || ||) be a Banach space. The norm || || is Δ -uniformly convex if and only if it satisfies the uniform condition (α) .

Proof. Observe that the norm is Δ -uniformly convex if and only if for each $\varepsilon > 0$ there is a $\delta > 0$ such that for each convex subset E of the unit

ball B

(30)
$$\inf\{||x||: x \in E\} \geqslant 1 - \delta$$

implies

$$(31) \alpha(E) < \varepsilon.$$

Let E be an arbitrary convex subset of the unit ball satisfying (30). Then by the separation theorem there is a continuous linear functional f of norm one such that

$$(32) E \subset S(f, \delta).$$

Thus the uniform condition (α) implies (31). On the other hand, $S(f, \delta)$ is a convex subset of the unit ball satisfying (30). Thus the △-uniform convexity implies the uniform condition (α).

In a similar way as in Corollary 1 we obtain

Proposition 3. Let (X, || ||) be a Banach space. Let (Y, || ||) be a subspace of X. If the norm $\| \cdot \|$ is Δ -uniformly convex then:

- (i) The norm $\| \|$ restricted to Y is also Δ -uniformly convex.
- (ii) The quotient norm $\|[x]\|_0 = \inf\{\|x+y\|: y \in Y\}$ is Δ -uniformly convex in the quotient space X/Y.

Proposition 4. Let (X, || ||) be a Banach space. Let $X_1 = X \times R$ with the norm $||(x, t)||_1 = ||x|| + |t|$. If the norm || || is Δ -uniformly convex, then so is the norm $|| ||_1$.

Proof. The proof is a slight modification of the proof of Proposition 2. Let ε be a small positive number. Let f be an arbitrary continuous linear functional of norm one defined on X_1 .

Without loss of generality we may assume that $f(0, 1) \ge 0$. We shall consider two cases:

- (i) $f(0, 1) \leq 1 \varepsilon$.
- (ii) $f(0, 1) > 1 \varepsilon$.

As previously, we denote by f_0 the restriction of f to X.

In case (i)

(33)
$$S(f, \delta) \subset \operatorname{conv}(\{(0, 1), (0, -1)\} \cup S(f_0, \delta))$$

for $\delta < \varepsilon$ and by property (b) of the Kuratowski measure of noncompactness

(34)
$$g^f(\delta) \leq g^{f_0}(\delta) \quad \text{for } \delta < \varepsilon.$$

In the second case we also introduce the sets

$$A_t = \{x \in X \colon (x, t) \in S(f, \delta)\}.$$

We divide the interval [-1, 1] into three sections [-1, 0], $[0, 1-\varepsilon-\delta)$, $[1-\varepsilon-\delta, 1]$.

In the first section the estimation is the same as in the proof of Proposition 2. The proofs for $[0, 1-\varepsilon-\delta)$, $[1-\varepsilon-\delta, 1]$ are also more or less the same, except that we replace ε by $\varepsilon + \delta$. Hence we have finally

$$\alpha(S(f, \varepsilon)) \leq \alpha(S(f_0, 2\varepsilon)),$$

which finishes the proof.

By Propositions 3 and 4 in the same way as in Theorem 2 we get

THEOREM 4. Let (X, || ||) be a Banach space. Let B denote the unit ball in X. Let $x_0 \notin B$ and let

$$B_1 = \text{conv}(\{x_0, -x_0\} \cup B).$$

The norm induced by B_1 will be denoted by $\|\cdot\|_1$. If the norm $\|\cdot\|_1$ is Δ uniformly convex, then so is $\| \cdot \|_1$.

Of course, each superreflexive space is \(\Delta\)-uniformly convexifiable, and each \(\Delta\)-uniformly convexifiable space is reflexive. The converse implications are not true in general as follows from the following theorems.

THEOREM 5. Let $(X_n, || \cdot ||_n)$ be a sequence of finite-dimensional Banach spaces. Let $X = (X_1 \times X_2 \times ...)_{p}$, 1 , be the space of all sequences $x = \{x_n\}, x_n \in X_n, \text{ such that }$

(35)
$$||x|| = \left(\sum_{n=1}^{\infty} ||x_n||^p\right)^{1/p} < +\infty.$$

Then the norm $\| \|$ is Δ -uniformly convex.

Proof. Let f be an arbitrary continuous linear functional on X of norm one and let ε be an arbitrary number such that $0 < \varepsilon < \frac{1}{2}$.

By the construction of the space we can find an index N such that the restriction of f to the space

$$Z = X_{N+1} \times X_{N+2} \times \dots$$

has norm smaller than ε :

$$(36) ||f|_{\mathbf{Z}}|| < \varepsilon.$$

Let

$$Y = X_1 \times \ldots \times X_N$$

In this way we obtain a decomposition of the space X into the direct sum of two spaces Y and Z, X = Y + Z, such that (36) holds, Y is finite-dimensional and for $y \in Y$, $z \in Z$ and x = y + z

(37)
$$||x||^p = ||y+z||^p = ||y||^p + ||z||^p.$$

Let as before $S(f, \varepsilon) = \{x \in X : ||x|| \le 1, f(x) \ge 1 - \varepsilon\}$. Let $x \in S(f, \varepsilon)$. We represent x as the sum x = y + z, $y \in Y$, $z \in Z$. By (36) and (37), $|f(z)| < \varepsilon$ and

(38)
$$f(y) = f(x-z) \ge f(x) - |f(z)| > 1 - \varepsilon - \varepsilon = 1 - 2\varepsilon.$$

The functional f has norm one. Thus (38) implies

$$||v|| \ge 1 - 2\varepsilon.$$

By (37) and (39),

(40)
$$||z||^p = ||x||^p - ||y||^p \le 1 - (1 - 2\varepsilon)^p < 2p\varepsilon,$$

and so

$$(41) ||z|| < \sqrt[p]{2p\varepsilon}.$$

Thus by (37), (38), (41),

$$S(f, \varepsilon) \subset (S(f, 2\varepsilon) \cap Y) + \{z \in Z : ||z|| \leq \sqrt[p]{2p\varepsilon} \}.$$

The set $S(f, 2\varepsilon) \cap Y$ is compact since Y is finite-dimensional. Thus by properties (a) and (d) of the Kuratowski measure of noncompactness

$$\alpha(S(f, \varepsilon)) = \alpha(\{z \in Z : ||z|| \leqslant \sqrt[p]{2p\varepsilon}\}) = 2\sqrt[p]{2p\varepsilon}.$$

Corollary 2. There is a Δ -uniformly convexifiable space which is not superreflexive.

Proof. Taking for X_n n-dimensional spaces either with the c_0 norm, i.e.

$$||x||_n = \sup_{1 \le i \le n} |\xi_i|, \quad x = (\xi_1, ..., \xi_n),$$

or with the l^{p_n} norm, i.e.

$$||x||_n = \left(\sum_{i=1}^n |\xi_i|^{p_n}\right)^{1/p_n},$$

with $p_n \to \infty$, we obtain the classical examples of Day [5] of nonsuperreflexive spaces. By Theorem 5, those spaces are Δ -uniformly convexifiable.

Theorem 6. Let $X_n = l^{p_n}$ with the standard norm. Assume that $p_n \to \infty$. Then the space

$$X = (X_1 \times X_2 \times \ldots)_{p}, \quad 1$$

is not A-uniformly convexifiable.

Proof. We shall denote the standard norm by || ||. Suppose that there is a Δ -uniformly convex norm || || in X equivalent to || ||. This means that there are two positive numbers m, M such that $||x|| \le m|x| \le M||x||$. Replacing || || by m|| || we may assume without loss of generality that

$$||x|| \le ||x|| \le M ||x||.$$

This means that the unit ball in the standard norm contains the unit ball in the new norm 1 1 and that the unit ball in the new norm contains the ball of radius $\alpha = 1/M$ in the standard norm.

We shall denote by the same symbols $\| \|$ and $\| \|$ the restrictions of the norms $\| \| \|$ and $\| \| \|$ to each component $X_n = l^{p_n}$. The calculation will be done

in one space $X_n = l^{p_n}$ with p_n sufficiently large. The choice of p_n will follow from the construction. For brevity we put

$$p_n = \bar{p}, \quad X_n = \bar{X}.$$

We decompose \bar{X} into two infinite-dimensional subspaces by decomposing the set of natural numbers into two disjoint infinite sets $N_1,\,N_2$ and putting

$$Y = \{x \in X: x_i = 0, i \in N_2\}, Z = \{x \in X: x_i = 0, i \in N_1\}.$$

Of course, $\tilde{X} = Y + Z$ and for $v \in Y$, $z \in Z$

$$||v+z||^{\bar{p}} = ||v||^{\bar{p}} + ||z||^{\bar{p}}.$$

Now let $\varepsilon = \frac{1}{2}\alpha$. Since we have assumed that the norm \mathbf{l} \mathbf{l} is Δ -uniformly convex there is $\delta > 0$ such that for each convex set $E \subset \{x: \|x\| \leq 1\}$ such that $\alpha(E) < \varepsilon$ we have

$$\inf\{|\mathbf{x}|: \ \mathbf{x} \in E\} < 1 - \delta.$$

Let y be an arbitrary element of Y such that

$$||y|| \leq \alpha (1 - 1/2^{\bar{p}})^{1/\bar{p}}.$$

Then, of course, for an arbitrary $z \in Z$ such that $||z|| \le \frac{1}{2}\alpha$

$$(46) ||y+z|| \leq \alpha.$$

Thus

$$y + \frac{1}{2}\alpha \left\{ z \in Z \colon ||z|| \le 1 \right\} \subset \left\{ x \in \overline{X} \colon ||x|| \le \alpha \right\} \subset \left\{ x \in \overline{X} \colon |x| \le 1 \right\}.$$

The set $y+\frac{1}{2}\alpha$ $\{z\in Z: \|z\|\leq 1\}$ has the Kuratowski measure of noncompactness in the standard norm not smaller than $\varepsilon=\frac{1}{2}\alpha$. By (43) the same is true in the new norm. Thus there is $z\in Z$, $\|z\|<\frac{1}{2}\alpha$, such that $|y+z|<1-\delta$. Of course $|y-z|\leq 1$ and finally

$$|y| \le \frac{1}{2}(|y+z|+|y-z|) < 1-\frac{1}{2}\delta.$$

Thus $|y/(1-\frac{1}{2}\delta)| < 1$ and we have shown that for each $y \in Y$ such that

$$||y|| \le \alpha \frac{(1 - 1/2^p)^{1/p}}{1 - \frac{1}{2}\delta}$$

we have $|y| \le 1$.

Now, \bar{p} ought to be chosen so that

$$\frac{(1-1/2^p)^{1/p}}{1-\frac{1}{2}\delta} > 1.$$

This is possible since $p_n \to \infty$. Now repeating the decomposition procedure n times we deduce that there is an infinite-dimensional space Y_n such that for

all $y \in Y_n$ such that

(48)
$$||y|| \leqslant \alpha \left[\frac{(1 - 1/2^{\bar{p}})^{1/\bar{p}}}{1 - \frac{1}{2}\delta} \right]^{\bar{p}}$$

we have

$$|y| \leq 1$$
.

By (47) this contradicts (43).

COROLLARY 3. There are reflexive spaces which are not Δ -uniformly convexifiable.

Proof. The space X described in Theorem 6 is reflexive [5].

Now we shall distinguish a property lying between uniform convexity and Δ -uniform convexity. The starting point is the following.

PROPOSITION 5 [10]. Let $(X, || \cdot ||)$ be a Banach space. Let x not to belong to the unit ball. Let

(50)
$$R(x) = D(x, B) \backslash B.$$

The norm $\|\ \|$ is uniformly convex if and only if for each $\epsilon>0$ there is a $\delta>0$ such that

$$(51) ||x|| < 1 + \delta$$

implies

(52)
$$\operatorname{diam}(R(x)) < \varepsilon.$$

Proposition 5 suggests the investigation of the following condition on the norm:

(β) For each $\varepsilon > 0$ there is a $\delta > 0$ such that $||x|| < 1 + \delta$ implies

(53)
$$\alpha(R(x)) < \varepsilon.$$

Proposition 6. If a norm $\| \|$ satisfies condition (β) then it is Δ -uniformly convex.

Proof. Suppose that the norm is not Δ -uniformly convex. Then by Theorem 3 it does not satisfy condition (α). This means that there is an $\varepsilon_0 > 0$ and sequences of continuous linear functionals of norm one $\{f_n\}$ and positive numbers $\delta_n > 0$ such that

(54)
$$\alpha(S(f_n, \delta_n)) \geqslant \varepsilon_0.$$

Let x_n be an element such that $1+2\delta_n \le ||x_n|| \le 1+3\delta_n$ and

$$(55) f_n(x_n) = 1 + 2\delta_n.$$

By (55) for each element of the form $\frac{1}{2}(x_n+y)$, $y \in S(f_n, \delta_n)$, we have

$$f\left(\frac{1}{2}(x_n+y)\right) > 1$$

and $\frac{1}{2}(x_n+y)\notin B$. On the other hand, $\frac{1}{2}(x_n+y)\in D(x_n,B)$. Thus $\frac{1}{2}(x_n+y)\in R(x_n)$. Observe that the set $\{\frac{1}{2}(x_n+y): y\in S(f_n,\delta_n)\}$ is homothetic to the set $S(f_n,\delta_n)$ with coefficient 1/2. Thus, by (54) and property (e) of the Kuratowski measure of noncompactness

$$\alpha(R(x_n)) \geqslant \varepsilon_0/2,$$

which completes the proof.

Observe that Δ -uniform convexity does not imply condition (β). Indeed, in Proposition 4 we have constructed a Δ -uniformly convex space which is the l^1 -product of a Δ -uniformly convex space (X, || ||) by R. It is easy to see that for $x_{\delta} = (0, 1 + \delta)$ the closure of $R(x_{\delta}) = D(x_{\delta}, B) \setminus B$ contains the unit sphere in X, thus $\alpha(R(x_{\delta})) \ge 1$ independently of $\delta > 0$.

We shall say that a Banach space (X, || ||) is a (β) -space if there is a norm $|| ||_1$ equivalent to || || such that $|| ||_1$ satisfies condition (β) .

We have shown that every superreflexive space is a (β) -space and every (β) -space is Δ -uniformly convexifiable. We do not know anything about the converse implications.

References

- J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, Basel 1980.
- [2] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [3] J. Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369-372.
- [4] -, Equivalence of some geometric and related results of nonlinear functional analysis, Comm. Math. Univ. Carolinae 26 (1985), 443-454.
- [5] M. M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317.
- [6] -, Some more uniformly convex spaces, ibid. 47 (1941), 504-507.
- [7] -, Normed Linear Spaces, Springer, Berlin-Göttingen-Heidelberg 1958.
- [8] K. Goebel and T. Sekowski, The modulus of noncompact convexity, Ann. Univ. Mariae Curic-Skłodowska, to appear.
- [9] V. Montesinos, Drop property equals reflexivity, this volume, 93-100.
- [10] S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES Śniadeckich 8, 00-950 Warszawa, Poland

Received June 9, 1986 Revised version July 9, 1986 (2178)