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On thé reproducing kernel for harmeonic
functions and the space of Bloch harmonic functions .
on the unit ball in R

by
EWA LIGOCKA (Warszawa)

Abstract. An explicit formula for the orthogonal projection P from the space of square-
integrable functions on the unit ball in R" onto the space of square-integrable harmonic
functions is used to the study of the properties of the space of Bloch harmonic functions.
We prove that this space is dual to the space L' Harm(B) of integrable harmonic functions on
the ball and is the “ vertex " of the double interpolation scale formed by the L?, Sobolev and
Holder spaces of harmonic functions. We use the interpolation property of the space of Bloch
harmonic functions to the study of weighted Sobolev spaces of harmonic functions.

1. The reproducing kernel for harmonic functions. Let D be a bounded
domain in R". We shall denote by P the orthogonal projection from L?*(D)
onto the space L?*Harm(D) of square-integrable harmonic-functions. The
projection P is an integral operator with kernel K(x,)) equal to the
reproducing kernel of the space L*Harm(D). If the boundary of D is
sufficiently smooth then P can be written in the form Pu =u—A4G, 4u (see
[2]), where G, is the operator solving the Dirichlet problem Arg=f,g
vanishes on D up to order 1. Let G,(x, y) denote the Green function of the
above problem. Then K (x, y) = —4,4, G,(x, ). More exactly, G,(x, y).can
be written in the form G,(x,y)=1v ]x — ) -G, (x, y), where v(x—y) is a
fundamental solution of the equation 42 g = f (this solution is ¢|x—y|™"** if
n>4is even and c|x—y|* "Injx—y| if n< 4 or if n is odd) and G,(x, y) is
the symmetric biharmonic function such that for every y, Gy (x, yy—v(x—yl)
vanishes on @D up to order 1. We have

K(x,y) = 44,6, (x, y).

This formula, however elegant, is impractical, since it is not easy to find an
explicit formula for G, (x, y) even if D is the unit ball B in R". Fortunately, in
that case we can use another approach.

Let G be the operator solving the Dirichlet problem Ag =f,g=0on
0B. We can write

Pu = 4(Gu—G, 4% Gu).
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The function in brackets is the biharmonic function h on B such that h=0
on 0B and 0h/dn = 0Gu/dn on OB. Since B is the unit ball, we have

d/on =Y x; 8/0x;. The function h can be written as
i=1

h=3(x*-1) (ﬁGu—GA ﬁau),
: on on

since the function in the right brackets is harmonic, A=0 and 0h/on
= 0Gu/0n on 8D. Hence .

0 0
(¥ Pu=441 (x?-1) (= Gu—Gd =
=1 [(lxl 1)(&nGu G4 anGu)].
Now,
i Ou
GAaGu-G%JrZGu.
We have

Gu = [G(x, y)u(y)dV,,

i 0
G§“= N NuNh=n[Glx, yu(y)ay,

where G(x, y) is the Green function of the ball B:

1 1
G = - .
(x, ») c(n (lx_yln—z DX—yIZ+(1—lez)(l—lylz)]"/z“‘) if n>2,

G(x, y) = c(m)(infx—y|—41In (X = y|>+(1 - [x?) (1| yY) if n=2.

Substituting - this in () we have after elementary calculations

_ . (=2 ()
Pu c(”)"{“"'z ”;[[rx-y|2+(1~|x12)<1—|y|2>]"/2dVyJ

and finally
2= (- 3 x,7)
= i=1
h “‘"’ﬁ(nx—va'-1:;:2)<1—1y|2)1"/”*

~ 41x* |y :
Dbe~y12 (1 = [x]?) (1 =] y| &)= u(y)ldy,.
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Hence the reproducing kernel for the space I? Harm(B) is

n

2n(L=x Iy (1~ x:3)

i=1

Ox— P+ =[x (1~ [y *1
' 3 41x%|y? )
e~y + (L =P (L= ]y217 )

K(x, y)“—"dﬂ)(

2. The space of Bloch harmonic functions. Let D be a bounded domain
in R". A harmonic function u on D is called a Bloch harmonic function iff

supdist (z, D) |grad u(z)| < oo.
zeD

The Bloch harmonic functions form a Banach space with norm

llulley = sup dist (z, D) (|u(2)| +lgrad u(z))).

Let D be the unit ball in R". As before, we prefer to denote it by B.
Bloch harmonic functions on B are those functions u for which

sup(l—|z/*)|grad u(z)] < oo
zeB

and the norm

llull = Sl:g(l — |21 (ju(2) +|grad u(2)])

is equivalent to the above one.
We shall denote the space of Bloch harmonic functions by Bl Harm (D).

We prove the following

TueoreM 1. The space of Bloch harmonic functions on B is the dual of
the space L' Harm(B) of integrable harmonic functions on B.

Theorem 1 is a consequence of the following

ProrosiTiON 1. The projector P maps Continuously L*(B) onto
BlHarm(B).

Proof. We shall use the explicit expression for K(x, y) given in
Section 1. Let ue L*(B). We have

d

d
;3;[1’“ = I];B;‘_K(x, Vu(y)dy,.
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Since
[x =y +(1=]xA (1 =1y = 3 [(1 =42+ = )],
L= x|y = T=|x2+ x> (1 =] y]?),

n n
1- Z X Vi = 1~[x|2+ Z X (= y1),
o)

i=1 i

we have

axi [lx_y|2+(1_|x’2)2 +(1 __lyIZ)Z]n/Z-I-Vf/Mi'
and thus, by deleting (1—|y%)? we have

G,
P«m%s

av,

< Gl cogy i[!x—ylzﬂl BN TEE S

4("_(1, Pu(x)

The last integral is less than
dv, ¢
B(x,2) [lx—y]2+(1 _|x|2)2],"/2+1/2 = 1—|x|2 ’

Thus P maps L*(B) into BlHarm(B). The closed graph theorem ensures that
P is continuous.

To prove that Pis onto we shall use the Bell operator L'u (see [2]). If u
is a harmonic function on B then

L'u(x) = u(x)—14 li(|x|2 —1)Yu(x) Z)Ig%]’

where @(x) is an arbitrarily chosen C* function equal to 1 in a
neighbourhood of {|x| =1} and to 0 in a neighbourhood of zero. It is clear
that L' maps BlHarm(B) into L®(B) and u = P(L'w).

Proof of Theorem 1. We shall follow the idea of Bell [2] and
introduce the pairing :

(v, ud, = jvde.
B

We shall show that Bl Harm (B) represents the dual space to L' Harm (B) via
the pairing <v, u),. It follows from the properties of the operator L' that
every function ue BlHarm (B) determines a continuous linear functional since

<v, wdi] = <o, LMDl < elloll . L ll o < €3 11911 oty gy

Conversely, let ¢ be a continuous linear functional on L' Harm (B). The
functional ¢ can be extended to a continuous functional ¢ on L! (D) and
represented by a function me L*(D). By Proposition 1, P(m)eBl Harm (D)
and does not depend on the choice of @ and m. The space L2 Harm (B) is
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dense in L' Harm (B) since for every ue L' Harm (B), %,(x) = u(rx) tends to u
in L' norm if r—1, r<1. Thus we get a continuous mapping F from
BlHarm (D) onto (L' Harm(D)}* such that kerF =0 and by the open
mapping theorem it must be an isomorphism.

The same method of proof was used in [6] in order to prove that
BlHol(D), the space of Bloch holomorphic functions, represents the dual of
L' Hol(D), the space of holomorphic functions from L! (D), if D is a bounded
strictly pseudoconvex domain with C* boundary.

3. The space of Bloch harmonic functions and interpolation. In [7] the
following fact was proved: Let D be a smooth bounded domain in R". Let
Ay = Harmj (D) be the subspace of the Sobolev space W, (D) consisting of
harmonic functions and let A% = A,Harm(D) be the space of Hélder
harmonic functions, s > 0. Then

s s 1
AL, AT = A5, s=(1—0)s,+06s,, 5=

Py

1-6 6
—_+__’
b D2

0<0<1,forsz01<p<ooorp=o0,s>0. Note that AJ = Harm}(D)
= [P Harm (D). .

Moreover, in [7] it was also proved that if P maps L*(D) onto
BlHarm (D) then we can put A% = BlHarm(D) and obtain

s s D1
[A . Ago][ﬂ] = Ap) 1—0

o s=(1-60)s,, p=

for 1 <p <oo, s>0, and
[4a, Ago][;] =AL,  s=(1—0)s,.

Recall that if E;, E, is an admissible pair of Banach spaces, then
[E:, E;]ig denotes the value of the interpolation functor, constructed by the
complex interpolation method, at . The symbol [E,, E,]f; denotes the
completion of [E,, E;Jj with respect to E,+E,. (If F cE are Banach
spaces then the completion of F with respect to E is the space of all xeE
for which there exists ¢ > 0 and a sequence {x,} = F converging to x in E
such that sup,||x,|[r < ¢. The norm of x is defined as the infimum of the
constants c¢.)

Further information concerning interpolation can be found in [3]
and [4].

Thus our Proposition 1 yields immediately

THEOREM 2. Let B be the unit ball in R". Let A}, = Harm}(B), s 20,
1 <p<oo, A% = A;Harm(B), A% = BlHarm(B). Then

[Apys Al = 45,

1
. §=(1—0)s;+0s,, ;=~p—+—,
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if inf(py, p;) < c0, and
[Asoé» AZ][;] = A%,
In other words, the L?, Sobolev and Holder spaces of harmonic
functions form a double interpolation scale whose vertex is the space of
Bloch harmonic functions. In [5] it was proved that for every smooth bounded
domain D, A Harm(D) is the dual space to L!Harm(D, [dist(x, 8D)T),
the closure of L*Harm(D) in L'(D, [dist(x, &D)I¥). If D = B then it is easy
to prove that L?Harm(B) is dense in L'Harm(B, [dist(x, 3B)J¥) by
considering again the functions u(rx), r <1, which tend to u in
L'(B, [dist(x, 8B)]*) norm.
The space L' Harm (B, [dist(x, dB)F) is equal to L' Harm (B, (1 —|x|).
It follows from the duality theorem from [7] that the spaces Harmj (B) and
I*Harm(B, (1—|x%*), q = p/p—1), are mutually dual. Thus Theorems 1
and 2 yield the following

s =(1—0)s,+0s,.

CoroLLARY. The spaces E, = IPHarm(B, (1—|x|%) form a double
interpolation scale whose vertex is L' Harm(D):
1 1-6 0 typ tap
Ex1,-Etz =F, =04, t=—l~—+————,
s Bl =B = =0
' 1< py, pa<oo,t20.

(Cf. Remark 4 of [7])

4. Weighted Sobolev spaces of harmonic functions. This part of the paper
is devoted to a generalization of one of the results of Beatrous and Burbea
from [1]. We shall denote by Harmj (B), 1 <p <o, ~1<g <0, s 20,
the weighted Sobolev space of harmonic functions defined as follows:

(@) ¥ g> —1 and s is an integer then Harm,(B) is the space of
harmonic functions whose derivatives up to order s belong to L*(B, (1
~[x}2)).

(b) If ¢> —1 and s is a real number then Harmi (B) is the space of
harmonic functions f such that D*f e L7 (B, (1 —~|x|2)“+"(f”*‘]"’)) for |of = [5]
+1 ([s] denotes the integer part of s).

(c) If ¢ = —1 then Harmj (B) is the space of harmonic functions whose
traces on 0B belong to W;(dB).

We prove the following

TueoreM 3. () If (¢1—q2)/p=s,—5, and q,, g, > —1 then

Harm;fql (B) = Harm}%, ,B) = Harm:}"’Z’P (B).
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®) If 42 = —1 and (g, +1)/p =s,~s,, gy > —1, then
Harm;?_, (B) = Harm}!, (B)

p.qy
Harm,, (B) < Harm'>_, (B)

F2<p< o,
fl<p<2,
and the inclusions are continuous.

Proof. We shall first consider the case 4y, g2 = 0.

. a) In [7] it was proved that for each s> 0, the space Harm, *(B)
is equal to L”Harm(B, (1~|x|%"). Thus we have for g =0

Dlm“heL" Harm(B, (1—-fx|2)ql +p(1 +[s']—s))

if and only if he Harm?_q‘“’ (B). The same is true for s, and g,. Hence .
Harmy!, (B) = Harm}!~""?(B), Harm;%_ (B) = Harm> ***(B),

By the assumptions, s; —q,/p =s,—q,/p and all these spaces are equal.

b) We begin with the following lemma.

Lemma. If p > 2 then Harm?(0B) = Harm( _, (B) < Harm}/?(B).

If 1 < p<2 then Harm}/”(B) = Harm?(9B) (Harm?(8B) = Harm _, (B)
is the Hardy space of harmonic functions).

Proof. Let p > 2. It is well known that Harm?(dB) = Harm}/?(B), that
Harm®(0B) = BlHarm(B) and that the last inclusion is continuous. Thus
Theorem 2 yields that

Harm?(' =% (B) = [Harm?(@B), Harm®™ (B)J,,
< Harm{; % (B)
= [Harm}/?(B), Bl Harm (B)]4
for every 0 <6 <1. By putting 6 = (p—2)/p we get the statement of the
lemma for p > 2,
Let 1 < p < 2. From the Green formula we have for harmonic u and v
alx2-1)
[ubde =3 j'ui)'——gic—l-—ldo
B B on

=4 [usd (X~ 1)dV—4 [ 4 D) (X2 — 1) dV
B B

n 00 Ou
10,5 2_ - WA :
Th[zud (Ix|*=1)dV: .-;i“axi %, (Ix|*—1)dv

I

‘ "% 8
-1 2_Np - 2
_,‘j;u A(x] 1)U+2i2=16x,- 5 (=) 4V

= Cu, $4[(x* - 1)v]).
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Note that if » is harmonic then A[(jx]?—1)v] is also harmonic. If

veHarm?(éB) and g = p/(p—1), then

Il ympiom = SUP |[ubdo| =% sup <Cu, 4[(%*~1)v]>.
ueHarm4(7B) B ueHarm4(2B)
lull <1 llull's1
Now, let veHarml/”(B). Theorem 1 of [7] vyields that (Jx

—1)oeW2**"(B) and hence 4[(|x|*—1)v]eHarm,'*"(B). The duality
theorem from [7] implies that Harm,'*'?(B) is the dual space of
Harm}(B) and
sup  |Cu, A[Ix*—1)u])] <
usHurm;/q(B)
lfull <1

ellaLix* =D ol P < ey oll

Since 1 < p < 2 we have g = p/(p—1) > 2 and thus Harm?(0B) < Harm}/“(B)
and the inclusion is continuous. Thus

oy =3 SUP [ <, 4L =1) 21|
ugHarm4(2B)
[lull €1
<c  sup  [<u, A[(x7 - 1)17]}] ey lloll.

uEHﬂrm; /‘1(8)

L flull <1
This implies that Harm}/"(B)  Harm?(0B) and the inclusion is continuous.

Having proved the lemma we can finish the proof of part (b) of Theorem
3 in the case g; = 0.
Our lemma yields immediately that

Harm,?_, (B) = Harm?" '/*(B)
Harm;! TirB) Harm;2_, (B)

We have as before

for s, >0,p=2,

for s, >0,1<p<g2.

Harm,} 4 (B) =

. ¢) Case 0 >min(qy, g,) > —1. In order to prove Theorem 3 in this case
it suffices to show that

Harm, %?(B) = L*(B, (1—|x|2)%),

Harm}' ™" (B).

0>¢g>~-1,1<p<co.
Put r = —q. If 4 is 2 bounded function from Harm(”(B) then clearly
ueL”(B, (1—-[x[)7") since r < 1. We have the following estimate

“u”LP(B,(l—IxIZ)’r) = glul"(l—lez)"dV :

= ]J;Iul"(l =) AV [Ix? P (L= %2 " av
B

=}f1|u|”(1*|x!2)‘"'dV~ — XA e dy

1 i)
e Ky
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- (1+5(1"_—r)>£|u|v(1—|x12)1'fdv

1 ou
e (1 — N2l =r -2
+2(1_r)i[zi:x, o =X " uwP2udv

- (1 +2(%5> {7 L) (1= =) 2

1 ou
+§H—:r—)3[(; ngc;(l =[x ) (JufP (1= x| ViR aY

< [(1+5(—1’-’~—r))nu(1 =X gy

L]
2(1—r

R

J(_H“V’(l —|x|3) " dV)e= e
B

LF(B)

by the Holder inequality. Since ue Harm?/? (B) we have du/dx;e Harm, ' *"/? (B)
and thus

u -
5;{(1 ~|x|%)} """ L*(B) < [t laem? ey

LP(B)

Hg—;(l—|x|2>

by Theorem 2 of [7]. Thus the above estimate implies that

P ¥ N | 7 L S

and

H’-‘||pr_(1_lx]2)—r) < C'lullﬂarm;,/p(B)

for smooth u from Harm/?(B). Since smooth harmonic functions are dense in
Harm’/?(B), our theorem is proved. Since P maps LP(B, (1—|x|)~") onto
Harm’“’(B) (see [7]) we have in fact proved that Harm}?(B) = L’ Harm(B,
(1 —IXIZ ).

Theorem 3 was proved by Beatrous and Burbea (see [1], Theorem 5.12)
for spaces of holomorphic functions on the unit ball in C" in a somewhat
more general setting, namely for 0 < p < co and not only for 1 <p < co.

Remark 1. Part (a) of Theorem 3 remains valid for every smooth
bounded domain D. This follows from the results of [7]. In particular, the
same method as in part c) of the proof of Theorem 3, and Theorem 2 of [7]
yield the following

TueoreM. If D is a smooth bounded domain, then

Harm: (D) = L Harm(D, |o|™®)  for each s <1/p.
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The symbol ¢ denotes here a defining function for D, ie. ge C*(R"),
D = {xeR" o(x) <0}, gradg # 0 on aD.

Remark 2. All results of the present paper, excluding part (b) of
Theorem 3, remain valid if the L7, Sobolev and Bloch spaces of harmonic
functions are replaced by the corresponding spaces of m-polyharmonic
functions, ie. functions u for which 4™u = 0. The details will be given in
a forthcoming paper On dudality and interpolation for spaces of polyharmonic
functions.

Added in proof (July 1987). Proposition 1 along with other results of this paper is valid
in the case where D is any smooth bounded domain. Details will be given in our next paper,
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Weighted weak type inequalities
for the ergodic maximal function
and the pointwise ergodic theorem
by
F. J. MARTIN-REYES and A. de la TORRE (M;ilaga)

Abstract. Let (X, &, u) be a o-finite measure space and let T: X — X denote an invertible
measure-preserving transformation. In this paper we characterize those pairs of positive
functions u, » for which the maximal operator

k
Mf(x) = sup(k+1)"* ¥ |f (T* )]
k20 i=0

is of weak type (1, 1) with respect to the measures v du and udu. We also get a pointwise

ergodic theorem for noninvertible T if u(X)<oco. More precisely, we prove that
k

(k+1)"1 Y f(T'x) converges ae, for every feL*(vdy) if and only if inf5o0(T?x) >0 ae.
i=0

1. Introduction. Let (X, &, y) be a o-finite measure space and let T: X
— X denote an invertible measure-preserving transformation. For each pair
of nonnegative integers, r and k, we consider the averages

k
Tuf () =(r+k+)7T Y F(TX)
where f is a measurable function. Associated to these averages we have the
following maximal operators:

f*=sup T, lfl, Mf=supTo,lfl.
rk>0 k>0

The maximal ergodic theorem asserts that f* and Mf satisfy weak type
inequalities

pfxeX: f*()>2}) <2)~'1}f{|f|d#,

p({xeX: Mf(x)>2}) <2t ;lﬂd#

A.M.S. Subject classification (1980): Primary 28D05, Secondary 47A35.
Key words and phrases: maximal functions, ergodic maximal function, weighted
inequalities, pointwise ergodic theorem.
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