4. The final norm. Let now

$$||p|| = \lim_{n \to +\infty} |p|_{(n)},$$

for any polynomial p. We have the following properties of the limit norm $\|\cdot\|$:

Proposition 5.

- (a) $||l_i q_i q'_j|| \le \varepsilon_j$, $j \ge 1$.
- (b) $||l_i p|| \le 2^{N_j} ||p||$.
- (c) $||xp|| \le 2||p||$.
- (d) The norm $\|\cdot\|$ is hilbertian.
- (e) For any $n \ge 1$ and any p with $d^{\circ} p \le n$,

$$||p|| \geqslant \prod_{k \geqslant n} (1 - 4^{-k}) |p|_{(n-1)}.$$

This last property ensures of course that the limit norm is nonzero. Therefore the completion of the polynomials for $\|\cdot\|$ is a Hilbert space on which the multiplication by x is continuous. Every polynomial q with rational coefficients is hypercyclic. Indeed, let $q' \neq 0$ in H, and let $\varepsilon > 0$. We can find in the enumeration an integer j such that

$$q_i = q$$
, $\varepsilon_i < \varepsilon/2$, $|q'_j - q|_w < \varepsilon/2$.

Then $||q_i'-q|| < \varepsilon/2$, and

$$||x^{N_j}q_i - q|| \le ||x^{N_j}q_i - q_i|| + ||q_i' - q_i|| < \varepsilon,$$

which proves our claim.

References

- B. Beauzamy, Un opérateur sans sous-espace invariant: simplification de l'example de P. Enflo, Integral Equations Operator Theory 8 (1985), 314-384.
- [2] B. Beauzamy et P. Enflo, Estimations de produits de polynômes, J. Number Theory 21 (1985), 390-412.
- [3] P. Enflo, On the invariant subspace problem in Banach spaces, Acta Math., to appear.
- [4] C. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16 (1984), 337-401.
- [5] -, A solution to the invariant subspace problem on the space l₁, ibid. 17 (1985), 305-317.
- [6] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.

27 avenue Parmentier, 75011 Paris, France

Received January 21, 1986 (2132) Revised version June 16, 1986

Some remarks on Triebel spaces

by

JÜRGEN MARSCHALL (Berlin)

Abstract. Some extensions of results in the recent monograph by Triebel [13] about Triebel spaces F_{pq}^s are given. This concerns multiplication properties, dual spaces and some remarks on the spaces $F_{\infty q}^s$.

0. Introduction. Triebel spaces are a natural generalization of Sobolev–Hardy spaces. The characterization of these spaces by decompositions of Littlewood–Paley type provides a useful tool for the study of multiplication properties, dual spaces, etc.

The plan of this paper is as follows. Chapter 1 is used to fix the notation and to recall some results on Besov and Triebel spaces. In Chapter 2 multiplication properties of Triebel spaces are studied: multiplication by functions belonging to Hölder–Zygmund spaces, multiplication algebras and multiplication by the characteristic function of an interval.

Chapter 3 is devoted to some complementary results in the determination of dual spaces. The main result can be phrased as follows. Let us denote by \mathring{F}^s_{pq} the closure of the Schwartz space $\mathscr{S}(\mathbb{R}^n)$ in F^s_{pq} . Then for $1 \leq p$, $q \leq \infty$ the dual of \mathring{F}^s_{pq} is isomorphic to $F^{-s}_{p'q'}$, 1/p + 1/p' = 1/q + 1/q' = 1. Also some extensions to weighted spaces are given. The weight may belong to the Muckenhoupt class A_m .

Finally, Chapter 4 contains some remarks on $F^s_{\infty q}$, $1 \le q \le \infty$. In particular, the trace problem is solved.

1. Besov and Triebel spaces. All functions and distributions are assumed to be defined on the *n*-dimensional Euclidean space \mathbb{R}^n . $\mathscr{S}(\mathbb{R}^n)$ is the Schwartz space of rapidly decreasing functions and $\mathscr{S}'(\mathbb{R}^n)$ its dual, the space of tempered distributions.

The Fourier transform is defined by

$$\hat{f}(\xi) := \left(e^{-ix\cdot\xi}f(x)\,dx, \quad f\in\mathscr{S}(\mathbf{R}^n),\right)$$

and extended to $\mathcal{S}'(\mathbf{R}'')$ by duality. The inverse Fourier transform is

$$f(x) := (2\pi)^{-n} \int e^{ix\cdot\xi} f(\xi) d\xi.$$

For suitable distributions f and g, let us denote by f*g the convolution of distributions.

Denote by $\phi(\mathbf{R}^n)$ the set of all partitions $\{\varphi_k\} \subset \mathcal{S}(\mathbf{R}^n)$ such that

(1)
$$\operatorname{supp} \varphi_0 \subset \{\xi \colon |\xi| \le 2\}, \quad \operatorname{supp} \varphi_k \subset \{\xi \colon 2^{k-1} \le |\xi| \le 2^{k+1}\}$$

for k = 1, 2, ...,

$$|\partial^{\alpha} \varphi_{k}(\xi)| \leq C_{\alpha} 2^{-k|\alpha|}$$

for all multi-indices α and

(3)
$$\sum_{k=0}^{\infty} \varphi_k(\xi) \equiv 1.$$

 $\phi(\mathbf{R}^n)$ is not empty; see Triebel [13], Remark 2.3.1.1.

For $0 , <math>0 < q \le \infty$ and $s \in \mathbb{R}$ we define the Triebel space F_{pq}^s to be the set of all $f \in \mathcal{S}'(\mathbf{R}^n)$ such that

(4)
$$||f||_{F_{pq}^{s}} := ||\{2^{ks} \, \check{\varphi}_{k} * f\}||_{L^{p}(l^{q})}$$

$$= ||(\sum_{k=0}^{\infty} 2^{ksq} \, |\check{\varphi}_{k} * f(x)|^{q})^{1/q}||_{L^{p}} < \infty$$

(modification for $q = \infty$).

Similarly for 0 < p, $q \le \infty$ and $s \in \mathbf{R}$ the Besov space B_{pq}^s is the set of all $f \in \mathcal{S}'(\mathbf{R}^n)$ such that

(5)
$$||f||_{B_{pq}^{s}} := ||\{2^{ks} \check{\phi}_{k} * f\}||_{l^{q}(L^{p})}$$

$$= \left(\sum_{k=0}^{\infty} 2^{ksq} ||\check{\phi}_{k} * f||_{L^{p}}^{q}\right)^{1/q} < \infty$$

(modification for $q = \infty$).

These spaces are independent of the choice of the partition $\{\varphi_k\} \in \phi(\mathbb{R}^n)$. Elementary properties are:

$$(6) B_{p,\min\{p,q\}}^s \hookrightarrow F_{pq}^s \hookrightarrow B_{p,\max\{p,q\}}^s$$

(7)
$$B_{pq_1}^{s_1} \subset B_{pq_2}^{s_2},$$
 (8) $F_{pq_1}^{s_1} \subset F_{pq_2}^{s_2},$

$$F_{pq_1}^{s_1} \hookrightarrow F_{pq_2}^{s_2},$$

if $q_1 \le q_2$ and $s_1 = s_2$, or $s_1 > s_2$.

An essential tool in Triebel [13] is the Peetre maximal function. It has the disadvantage of not giving optimal results. Therefore we will not use it. Note, however, that there exists a new maximal technique, which avoids this drawback in many situations; see Marschall [8], Chapter 4.

In this paper we use the following results.

Lemma 1. Let $f_k \in \mathcal{S}'(\mathbf{R}^n)$ and suppose that for some constants $0 < c_1$

for
$$k = 1, 2, ...$$
 Then for $0 < p, q \le \infty$ and $s \in \mathbb{R}$

$$\left\| \sum_{k=0}^{\infty} f_k \right\|_{F_{pq}^s} \leqslant C \left\| \{ 2^{ks} f_k \} \right\|_{L^{p(l^q)}},$$

$$\left\| \sum_{k=0}^{\infty} f_k \right\|_{B_{pq}^s} \leqslant C \left\| \{ 2^{ks} f_k \} \right\|_{l^q(L^p)}. \quad \blacksquare$$

The lemma follows immediately using the Nikol'skii representation; see Triebel [13], Theorem 2.5.2.

LEMMA 2. Let $f_k \in \mathcal{S}'(\mathbf{R}^n)$ be distributions such that for some constant c > 0

$$\operatorname{supp} \widehat{f}_k \subset \{\xi \colon |\xi| \leqslant c2^k\}.$$

Then for any real number s with $s > n(\max\{1, 1/p\} - 1)$

$$\left\| \sum_{k=0}^{\infty} f_k \right\|_{B_{pq}^s} \leqslant C \left\| \left\{ 2^{ks} f_k \right\} \right\|_{l^q(L^p)}.$$

Proof. Let $\{\varphi_j\} \in \phi(\mathbf{R}^n)$. Then for some $l = l(c) \in \mathbb{N}$ one has

$$\check{\varphi}_j * \left(\sum_{k=0}^{\infty} f_k\right) = \sum_{k=j-1}^{\infty} \check{\varphi}_j * f_k.$$

Now for any integer k satisfying $k \ge j-l$ the following inequality holds with $p_1 := \min\{1, p\}$:

$$\begin{split} ||\check{\varphi}_{J} * f_{k}||_{L^{p}} & \leq C 2^{kn(1/p_{1}-1)} ||\check{\varphi}_{J}||_{L^{p_{1}}} ||f_{k}||_{L^{p}} \\ & \leq C 2^{(k-J)n(1/p_{1}-1)} ||f_{k}||_{L^{p}} \end{split}$$

(see Triebel [13], 1.5.3.3). Hence the lemma follows by summation.

Note that there is an analogous statement for weighted and unweighted Triebel spaces (see Marschall [8], Lemma 1.4 and 4.2).

We will need the following general Sobolev embedding theorem.

LEMMA 3. (a) If $0 and <math>0 < r \le \infty$ then

$$F_{p\infty}^{s+n(1/p-1/q)} \hookrightarrow F_{qr}^s$$
.

(b) If 0 then

$$F_{p\infty}^{s+n(1/p-1/q)} \hookrightarrow B_{qp}^s$$

(c) If $0 and <math>0 < r \le \infty$ then

$$B_{nq}^{s+n(1/p-1/q)} \hookrightarrow F_{qr}^s$$

Proof. For (a) and (b) see Jawerth [7]. The proof of (c) is similar to that of (b). If $p < q_0 < q < q_1 < \infty$ we get from (a)

$$B_{pp}^{s+n(1/p-1/q_i)} \hookrightarrow F_{q_i}^s.$$

Using real interpolation (see Bergh and Löfström [2]) it follows that

$$B_{pq}^{s+n(1/p-1/q)} \hookrightarrow (F_{q_0}^s, F_{q_1}^s)_{\theta q}$$

where $1/q = (1-\theta)/q_0 + \theta/q_1$. Now $f \to \|\{2^{ks} \check{\phi}_k * f\}\|_{l^r}$ is a quasilinear operator. Hence by the Marcinkiewicz interpolation theorem (see Bergh and Löfström [2])

$$(F_{q_0r}^s, F_{q_1r}^s)_{\theta q} \subseteq F_{qr}^s$$

which yields part (c).

Below we shall extend part (c) of the lemma to the case $q=\infty$ (see Corollary 4).

2. Multiplication properties of Triebel spaces. For abbreviation set $f_j := \check{\varphi}_j * f$ if $f \in \mathscr{S}'(R^n)$. If f and g belong to an appropriate Besov or Triebel space we make the following decomposition:

(9)
$$h = \sum_{j=4}^{\infty} \sum_{k=0}^{j-4} g_k f_j + \sum_{j=0}^{\infty} \sum_{k=j-3}^{j+3} g_k f_j + \sum_{k=4}^{\infty} \sum_{j=0}^{k-4} f_j g_k$$
$$= h_1 + h_2 + h_3.$$

If each of these sums converges in $\mathscr{S}'(R^n)$, we call h the product of f and g. The convergence is usually shown by estimating h in a suitable F^s_{pq} -quasinorm. However, we shall not stress this point here, we only give the necessary estimates.

Let $g \in L^{\infty}$. Since the spectrum of $\sum_{k=0}^{j-4} g_k f_j$ is contained in the annulus $|\xi| \sim 2^j$, Lemma 1 yields

$$||h_1||_{F_{pq}^s} \le C \left\| \left\{ 2^{js} \sum_{k=0}^{j-4} g_k f_j \right\} \right\|_{L^{p}(l^q)} \le C ||g||_{L^{\infty}} ||f||_{F_{pq}^s}$$

for $0 , <math>0 < q \le \infty$ and $s \in \mathbb{R}$.

Hence h_1 is well defined for $g \in L^{\infty}$ and arbitrary $f \in F^s_{pq}$. Since we will assume that $g \in L^{\infty}$, we only have to estimate h_2 and h_3 .

Theorem 1. Let $g \in B_{\infty \infty}^r$, r > 0. Then for $0 , <math>0 < q \le \infty$ and

$$n(\max\{1, 1/p\} - 1) - r < s < r$$

the following estimate holds:

$$||g \cdot f||_{F_{pq}^s} \le C ||g||_{B_{\infty\infty}^r} ||f||_{F_{pq}^s}.$$

Proof. The estimate for h_1 follows from (10).

Now observe that the spectrum of $\sum_{k=j-3}^{j+3} g_k f_j$ is contained in the ball $|\xi| \le 2^{j+10}$. Hence Lemma 2 yields

$$\begin{aligned} \|h_2\|_{F^s_{pq}} &\leq C \, \|h_2\|_{B^{s+r}_{p,\infty}} \leq C \sup_j 2^{j(s+r)} \| \sum_{k=j-3}^{j+3} g_k f_j \|_{L^p} \\ &\leq C \, \|g\|_{B^r_{\infty,\infty}} \|f\|_{B^s_{p,\infty}} \leq C \, \|g\|_{B^r_{\infty,\infty}} \|f\|_{F^s_{p,r}} \end{aligned}$$

provided $s > n(\max\{1, 1/p\} - 1) - r$.

Finally, the spectrum of $\sum_{j=0}^{k-4} f_j g_k$ is contained in the annulus $|\xi| \sim 2^k$. Therefore by Lemma 1 if s < r

$$\begin{split} \|h_3\|_{F_{pq}^s} & \leq C \left\| \left\{ 2^{ks} \sum_{j=0}^{k-4} f_j g_k \right\} \right\|_{L^p(I^q)} \leq C \|g\|_{B_{\infty,\infty}^r} \left\| \left\{ 2^{k(s-r)} \sum_{j=0}^{k-4} f_j \right\} \right\|_{L^p(I^q)} \\ & \leq C \|g\|_{B_{\infty,\infty,\infty}^r} \|f\|_{F_{pq}^{s-r}}. \end{split}$$

Now the theorem follows.

This theorem improves Corollary 2.8.2 in Triebel [13]. For its generalization to weighted Triebel spaces see Marschall [8], Chapter 4. There pseudodifferential estimates can also be found. Another improvement concerns the case s=r and q=2; see Marschall [8], Chapter 11. There it is shown that for these values of the parameters the theorem remains true provided that $g \in F_{\alpha,2}^r$ (for the definition of $F_{\infty q}^s$ see Chapter 3 below). Moreover, one has the following

THEOREM 2. Let $0 , <math>0 < r \le \infty$ and

$$s > \frac{n}{2} \left(\frac{1}{p} + \frac{1}{q} - 1 \right).$$

Then for s > n/q or s = n/q and $0 < q \le 1$ the following estimate holds:

$$||g \cdot f||_{F_{pr}^s} \leq C ||g||_{F_{qr}^s} ||f||_{F_{pr}^s}.$$

Before we prove the theorem, let us state an immediate consequence.

Corollary 1. If s > n/p or s = n/p and $0 , then for <math>0 < r \le \infty$, F^s_{pr} is a multiplication algebra.

Proof of the theorem. Note that by Lemma 3(b) we have $g \in L^{\infty}$. Hence in view of (10) it remains to provide the necessary estimates for h_2 and h_3 .

Estimate for h_3 . If p = q then $f \in L^{\infty}$ and hence by (10)

$$||h_3||_{F_{pr}^s} \leq C ||f||_{L^\infty} ||g||_{F_{pr}^s}$$

If p < q let $1/p = 1/p_1 + 1/q$. Then by Hölder's inequality and Lemma 3(a) we obtain

$$||h_3||_{F^s_{pr}} \leq C \, ||g||_{F^s_{qr}} \, ||f||_{F^0_{p_1} \mathbf{1}} \leq C \, ||g||_{F^s_{qr}} \, ||f||_{F^{n/q}_{pr}}.$$

Estimate for h_2 . Let $\varrho=s-n/q$. Note that $s>\frac{1}{2}\,n\,(1/p+1/q-1)$ and $s\geqslant n/q$ imply

(11)
$$s+\varrho > n(\max\{1, 1/p\}-1).$$

If s > n/q then $g \in B_{\infty \infty}^q$ and Lemma 2 yields

$$||h_2||_{F_{pr}^s} \le C ||h_2||_{B_{p\infty}^{s+\varrho}} \le C ||g||_{F_{qr}^s} ||f||_{F_{pr}^s}.$$

If s = n/q choose $p_1 such that <math>1/p_1 = 1/p_2 + 1/q$ and $n/q > n(1/p_1 - 1)$. Because of (11) this is possible. Then by Lemmas 3(c) and 2

$$\begin{split} \|h_2\|_{F_{pr}^{n/q}} &\leq C \|h_2\|_{B_{p_1p}^{n(1/q+1/p_1-1/p)}} \\ &\leq C \sum_{l=-3}^3 \|\{2^{jn(1/q+1/p_1-1/p)} g_{j+l}f_j\}\|_{l^p(L^{p_1})} \\ &\leq C \|g\|_{B_{q\infty}^{n/q}} \|f\|_{B_{p_2p}^{n(1/p_1-1/p)}}. \end{split}$$

Hence Lemma 3(b) yields

$$||h_2||_{F_{pr}^{n/q}} \leqslant C ||g||_{F_{qr}^{n/q}} ||f||_{F_{pr}^{n/q}}.$$

This completes the proof of the theorem.

Let us also mention the following result.

Theorem 3. Let $q \le p$ if $0 and <math>q \le p/(p-1)$ if $2 \le p < \infty$. Then for $0 < r \le \infty$ and

$$n(1/p-1) < s < n/p$$

one has the following estimate:

$$||g \cdot f||_{F^s_{pr}} \leqslant C(||g||_{L^\infty} + ||g||_{B^{n/q}_{q^\infty}}) ||f||_{F^s_{pr}}.$$

Proof. The estimate for h_1 follows from (10). For the estimation of h_3 choose $p_1 such that <math>1/p_1 = 1/p + 1/p_2$ and $s < n(1/p - 1/p_2)$. Then by Lemma 3 and Hölder's inequality

$$\begin{split} \|h_3\|_{F_{pr}^s} &\leq C \|h_3\|_{B_{p_1p}^{s+n/p_2}} \\ &\leq C \|g\|_{B_{p_\infty}^{n/p}} \|\{2^{k(s+n(1/p_2-1/p))} \sum_{j=0}^{k-4} f_j\}\|_{l^p(L^{p_2})} \\ &\leq C \|g\|_{B_{p_\infty}^{n/p}} \|f\|_{B_{p_2p}^{s+n(1/p_2-1/p)}} \\ &\leq C \|g\|_{B_{p_\infty}^{n/q}} \|f\|_{F_{p_\infty}^s}. \end{split}$$

Next choose $p_1 such that <math>1/p_1 = 1/q + 1/p_2$ and

$$s+n\left(\frac{1}{p_1}-\frac{1}{p}\right)>n\left(\max\left\{1,\ 1/p_1\right\}-1\right).$$

Then by Lemmas 2 and 3 we get

$$\begin{split} \|h_2\|_{F^s_{pr}} & \leq C \, \|h_2\|_{B^{s+n(1/p_1-1/p)}_{p_1p}} \leq C \, \|g\|_{B^{n/q}_{q\infty}} \, \|f\|_{B^{s-n(1/p-1/p_2)}_{p_2p}} \\ & \leq C \, \|g\|_{B^{n/q}_{q\infty}} \, \|f\|_{F^s_{p\infty}}. \end{split}$$

This proves the theorem.

This theorem is the counterpart for Triebel spaces of Remark 2.6.4.5 in Triebel [12]. Let us give two applications.

First, Proposition 3.4.1.2 in Triebel [13] can be improved as follows.

COROLLARY 2. Let $a \in C^{\infty}$ be a function such that $|\partial^{\alpha} a(x)| \leq C_{\alpha}$ for all multi-indices α . Further, let $\varphi \in C^{\infty}(\mathbb{R}^n)$ be supported in the unit ball and set $\varphi_{\tau}(x) := \varphi((x-x_0)/\tau)$. Then for $0 , <math>0 < q \leq \infty$ and

$$n(1/p-1) < s < n/p$$

there exists a constant C > 0 such that for $0 < \tau \le 1$

$$\left\| \left(a(\cdot) - a(x_0) \right) \varphi_{\tau} \cdot f \right\|_{F^s_{pq}} \leqslant C \tau \left\| f \right\|_{F^s_{pq}}.$$

Proof. It is shown in the aforementioned proposition of Triebel that for $0 < r < \infty$

$$\|(a(\cdot)-a(x_0))\varphi_{\tau}\|_{B^{n/r}_{r,\infty}} \leq C\tau.$$

Since obviously

$$||(a(\cdot)-a(x_0))\varphi_{\tau}||_{\tau,\infty} \leq C\tau,$$

the corollary follows from Theorem 3.

Denote by $\varkappa_{[a,b]}$ the characteristic function of a bounded or unbounded interval $[a,b] \subset \mathbb{R}$.

Corollary 3. For
$$0 , $0 < q \le \infty$ and $1/p-1 < s < 1/p$$$

$$\|\mathbf{x}_{[a,b]}f\|_{F_{na}^{s}(\mathbb{R})} \leqslant C\|f\|_{F_{na}^{s}(\mathbb{R})}.$$

Proof. It is shown in Proposition 2.8.4, Triebel [13], that $\varkappa_{[a,b]} = g_1 + g_2$ with $g_1 \in B_{r\infty}^{l,p}$, $0 < r < \infty$, and $|\partial^k g_2(x)| \le C_k$ for $k = 0, 1, 2, \ldots$ Again the corollary follows from the theorem.

Note that this corollary solves the extension problem for $F_{pq}^s(\mathbf{R}^+)$. For details see Triebel [13], Chapter 2.9.

3. Dual spaces. Let $1 \le p$, $q \le \infty$ and $\{\varphi_j\} \in \phi(\mathbf{R}^n)$ be a partition. Denote by L^s_{pq} the space of all $f \in \mathscr{S}'(\mathbf{R}^n)$ represented by

$$f = \sum_{j=0}^{\infty} \tilde{\varphi}_j * f_j$$

such that .

(13)
$$||f||_{L^{s}_{pq}} := \inf ||\{2^{js}f_{j}\}||_{L^{p}(l^{q})} < \infty$$

where the infimum is taken over all representations (12). These spaces have been introduced in Triebel [12] for the study of the duals of Triebel spaces.

For $1 \le p$, $q < \infty$ the Schwartz space $\mathscr{S}(\mathbf{R}^n)$ is dense in L^s_{pq} and if 1 < p, $q < \infty$ then $L^s_{pq} \approx F^s_{pq}$; see Triebel [12], Proposition 2.5.1.2, Triebel [13], Proposition 2.3.4.1.

Actually the last statement is true for $1 \le q \le \infty$.

Proposition 1. If $1 , <math>1 \le q \le \infty$ and $s \in \mathbb{R}$ then $L_{pq}^s \approx F_{pq}^s$.

Proof. The inclusion $F^s_{pq} \hookrightarrow L^s_{pq}$ is obvious. For the other direction we use the Hardy-Littlewood maximal function

$$Mf(x) := \sup_{r>0} \frac{1}{mB(x, r)} \int_{B(x, r)} |f(y)| dy.$$

One has (see Stein [10], Theorem 3.2.2)

$$|\check{\varphi}_j * f_j(x)| \leq CMf_j(x).$$

Then the boundedness of the maximal function on $L^p(l^q)$ for $1 and <math>1 < q \le \infty$ (see Fefferman and Stein [5]) implies the assertion for $1 < q \le \infty$. If q = 1 we use

LEMMA 4. For $1 \le p < \infty$ and 1/p + 1/p' = 1 we have

$$L^{p}(c_{0})' \approx L^{p'}(l^{1}).$$

Here c_0 is the Banach space of all sequences converging to zero. For a proof see Edwards [5], Theorems 8.18.2 and 8.20.3.

Proof of the proposition, the case q=1. Let $f=\sum_{j=0}^{\infty}\check{\phi}_j*f_j$ be such that $\{2^{js}f_j\}\in L^p(l^1)$. We show that

$$\{2^{ks} \check{\varphi}_k * \sum_j \check{\varphi}_j * f_j\} \in L^{p'}(c_0)'.$$

By the lemma this implies $f \in F_{n_1}^s$.

Since for $\{g_k\} \in L^{p'}(c_0)$

$$\begin{split} \left\langle \check{\phi}_{k} * \sum_{j} \check{\phi}_{j} * f_{j}, \, g_{k} \right\rangle &= \left\langle f_{j}, \, \sum_{|j-k| \leqslant 3} \check{\phi}_{j} * \check{\phi}_{k} * g_{k} \right\rangle, \\ \left| \sum_{|k-j| \leqslant 3} \check{\phi}_{j} * \check{\phi}_{k} * g_{k}(x) \right| \leqslant C \sum_{|k-j| \leqslant 3} M g_{k}(x), \end{split}$$

we get

$$\begin{split} \left| \left\langle \left\{ 2^{ks} \, \check{\phi}_k * \sum_j \check{\phi}_j * f_j \right\}, \, \left\{ g_k \right\} \right\rangle \right| &\leq C \left\| \left\{ 2^{js} f_j \right\} \right\|_{L^p(l^1)} \left\| \left\{ M g_k \right\} \right\|_{L^{p'}(l^\infty)} \\ &\leq C \left\| f \right\|_{L^8_{p_1}} \left\| \left\{ g_k \right\} \right\|_{L^{p'}(l^\infty)}. \end{split}$$

This yields the conclusion.

It turns out that the right choice for $F_{\infty q}^s$, $1 \leq q \leq \infty$, is

$$F^{s}_{\infty q} := L^{s}_{\infty q}.$$

In particular, $F^s_{\alpha,\infty} \approx B^s_{\infty,\infty}$. Denote by \mathring{F}^s_{pq} the closure of the Schwartz space $\mathscr{S}(\mathbf{R}^n)$ in F^s_{pq} . Now the main result in this chapter is

THEOREM 4. If $1 \le p$, $q \le \infty$ and $s \in \mathbf{R}$ then

$$\mathring{F}_{pq}^{s} \approx F_{p'q'}^{-s}$$

where 1/p + 1/p' = 1/q + 1/q' = 1.

Proof. (a) First take $1 \le p < \infty$.

Then for $1 \le q < \infty$ one has $F_{pq}^s \approx L_{p'q'}^s$ (see Triebel [12], Theorem 2.5.1). Now for $q = \infty$ the mapping

$$f \to \{2^{ks} \check{\varphi}_k * f\} \colon \mathring{F}_{p\infty}^s \to L^p(c_0)$$

is an isometric embedding. Then by Lemma 4, Triebel's proof yields $\hat{F}^s_{p\infty'} \approx L_{p'1}^{-s}$. Hence Proposition 1 and the definition of $F^s_{\omega q}$ imply the assertion for $1 \leq p < \infty$.

- (b) Let $p=\infty$. Here we show that the norm topology on $\mathring{F}_{\infty q}^s$ is compatible with the duality $(\mathring{F}_{\infty q}^s, F_{1q}^{-s})$, i.e. we show that the norm topology is finer than the weak topology $\sigma(\mathring{F}_{\infty q}^s, F_{1q}^{-s})$ and weaker than the Mackey topology $\tau(\mathring{F}_{\infty q}^s, F_{1q}^{-s})$. Then the Mackey theorem (see Edwards [5], 8.3.3) yields $\mathring{F}_{\infty q}^s \approx F_{1q}^{-s}$.
- (c) The norm topology on $\hat{F}_{\infty q}^s$ is the topology of uniform convergence on the closed unit ball B of F_{1q}^s (observe that $\hat{F}_{1q}^{sv} \approx F_{\infty q}^s$!). Consequently, the norm topology is finer than $\sigma(\hat{F}_{\infty q}^s, F_{1q}^{-s})$. That it is weaker than $\tau(\hat{F}_{\infty q}^s, F_{1q}^{-s})$ is a consequence of the following assertion:

B is
$$\sigma(F_{1a'}^{-s}, \mathring{F}_{ma}^{s})$$
-compact.

Proof. (i) Let us first show that B is $\sigma(F_{1q}^{-s}, \mathring{F}_{oq}^{s})$ -sequentially compact. In fact, let $f_j \in B$ be a sequence. Then $f_{j_k} \to f$ in $\mathscr{S}'(\mathbf{R}'')$ for some subsequence. Now if $\{\varphi_i\} \in \phi(\mathbf{R}'')$ then for fixed i

$$\check{\varphi}_i * f_{j_k} \to \check{\varphi}_i * f$$
 pointwise.

Hence Fatou's lemma yields

$$||f||_{F_{1a'}^{-s}} \leq \liminf ||f_{j_k}||_{F_{1a'}^{-s}} \leq 1$$

and therefore $f \in B$. Obviously we have $f_{j_k} \to f$ in $\sigma(F_{1q'}^{-s}, \mathring{F}_{\infty q}^s)$.

(ii) \hat{F}^s_{coq} is separable because $\mathscr{S}(\mathbf{R}^n)$ is dense in it. Let $\{g_j\}\subset\mathscr{S}(\mathbf{R}^n)$ be dense in \hat{F}^s_{coq} . Then

$$d(f, h) := \sum_{j=1}^{n} 2^{-j} \min\{1, |\langle f - h, g_j \rangle|\}$$

defines a metric on B, which induces a weaker topology than $\sigma(F_{1q'}^{-s}, \mathring{F}_{\infty q}^{s})$.

Now recall that any sequentially compact space with a weaker metrizable topology is actually compact, because both topologies are identical. Consequently, B is $\sigma(F_{1s}^{-s}, \hat{F}_{\infty a}^{s})$ -compact.

This completes the proof of the theorem.

Remark. If 0 then

(15)
$$\mathring{F}_{p\,\infty}^{s\, \prime} \approx B_{\infty\,\infty}^{-\, s\, +\, n(1/p\, -\, 1)} \approx F_{\infty\,\infty}^{-\, s\, +\, n(1/p\, -\, 1)}.$$

This is a consequence of

$$B_{pp}^s \hookrightarrow \mathring{F}_{p\infty}^s \hookrightarrow B_{11}^{s-n(1/p-1)}$$

and the known duality theory for B_{pq}^s ; see Triebel [13], Chapter 2.11. The determination of the dual of F_{pq}^s for 1 and <math>0 < q < 1 remains open. It is known that

$$F_{p'\infty}^{-s} \hookrightarrow F_{pq'}^{s} \hookrightarrow B_{p'\infty}^{-s}$$

The conjecture is of course $F_{pq}^{s} \approx F_{p'\infty}^{-s}$.

Let us state some consequences of Theorem 4.

Corollary 4. For 0

$$B_{p\infty}^{s+n/p} \hookrightarrow F_{\infty 1}^s$$
.

Proof. We may suppose $1 . But then the statement follows by duality from <math>\mathring{F}_{1\infty}^{s} \subseteq B_{p'1}^{s-n/p}$.

We can also extend the Fourier multiplier result, Theorem 2.4.8 in Triebel [13], to the case $q = \infty$. Let φ , $\psi \in \mathcal{S}(\mathbf{R}^n)$ be such that

$$\begin{split} \sup \psi &\subset \big\{\xi\colon |\xi|\leqslant 4\big\}, \quad \psi(\xi)=1 \ \text{if} \ |\xi|\leqslant 2, \\ \sup \varphi &\subset \big\{\xi\colon \frac{1}{4}\leqslant |\xi|\leqslant 4\big\}, \quad \varphi(\xi)=1 \ \text{if} \ \frac{1}{2}\leqslant |\xi|\leqslant 2. \end{split}$$

For abbreviation set

(16)
$$||m||_{h^{\times 2}} := ||m\psi||_{F_{22}^{\times}} + \sup_{j=1,2,\dots} ||m(2^{j} \cdot) \varphi||_{F_{22}^{\times}}.$$

Corollary 5. Let $0 , <math>s \in \mathbb{R}$ and

$$\varkappa > n(\max\{1, 1/p\} - \frac{1}{2}).$$

Then

$$||\check{m} * f||_{F_{n\infty}^s} \le C ||m||_{h^{\times 2}} ||f||_{F_{n\infty}^s}.$$

Proof. For 1 the result follows by duality from the case <math>q = 1. For 0 one uses complex interpolation. For details see the aforementioned reference.

The preceding results can be extended to weighted Triebel spaces. Let

(17)
$$\sup \frac{1}{mQ} \int_{Q} w \, dx \left(\frac{1}{mQ} \int_{Q} w^{-1/(p-1)} \, dx \right)^{p-1} < \infty$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$. Then w is said to satisfy Muckenhoupt's A_v -condition.

Let $w \in A_{\infty} := \bigcup_{1 . Define <math>F_{pq}^s(w)$ by

(18)
$$||f||_{F_{pq(w)}^{s}} := ||\{2^{js} \check{\varphi}_{j} * f\}||_{L^{p(w), l^{q})}}$$

$$= ||(\sum_{l=0}^{\infty} 2^{jsq} |\check{\varphi}_{j} * f(x)|^{q})^{1/q}||_{L^{p(w)}} < \infty$$

(modification for $q = \infty$).

Similarly define $L^s_{pq}(w)$ as the space of all $f \in \mathcal{S}'(\mathbb{R}^n)$ which can be represented by $f = \sum \check{\phi}_k * f_k$ in such a way that

(19)
$$||f||_{L_{pq}^{s}(w)} := \inf ||\{2^{ks} f_k\}||_{L^{p}(w, |q|)} < \infty.$$

Analogously to Proposition 1 one may prove

PROPOSITION 2. If $1 , <math>1 \le q \le \infty$ and $w \in A_p$ then $L^s_{pq}(w) \approx F^s_{pq}(w)$.

Here one has to use the weighted Hardy-Littlewood maximal theorem; see Andersen and John [1]. Now using the results of Bui Huy Qui [4], we can show similarly to Theorem 4

Theorem 5. Let $1 , <math>1 \le q \le \infty$, w, $w^{-1/(p-1)} \in A_{\infty}$ and 1/p + 1/p' = 1/q + 1/q' = 1. Then

$$\mathring{F}_{pq}^{s}(w)' \approx L_{p'q'}^{-s}(w^{-1/(p-1)}), \quad \mathring{L}_{pq}^{s}(w)' \approx F_{p'q'}^{-s}(w^{-1/(p-1)}).$$

Obviously, $\mathring{F}^s_{pq}(w)$ resp. $\mathring{L}^s_{pq}(w)$ denotes the closure of $\mathscr{S}(\mathbf{R}^n)$ in $F^s_{pq}(w)$ resp. $L^s_{pq}(w)$. Since $\mathscr{S}(\mathbf{R}^n)$ is dense in $F^s_{pq}(w)$ and $L^s_{pq}(w)$ for $p, q < \infty$, we obtain

COROLLARY 6. For 1 < p, $q < \infty$ and w, $w^{-1/(p-1)} \in A_{\infty}$ the spaces $F_{pq}^{s}(w)$ and $L_{pq}^{s}(w)$ are reflexive.

Now let $w \in A_1$, i.e. let $Mw(x) \le Cw(x)$ a.e. Define bmo(w) by

$$(20) \quad ||f||_{\text{hmo}(w)} := \sup_{mQ \ge 1} \frac{1}{wQ} \int_{Q} |f(x)| \, dx + \sup_{mQ \le 1} \frac{1}{wQ} \int_{Q} \left| f - \frac{1}{wQ} \int_{Q} f \, dy \right| dx < \infty.$$

Here we have set $wQ = \int_{Q} w dx$.

Let $\psi \in C_0^{\infty}$ be a cut-off function such that $\psi(\xi) = 0$ for $|\xi| \leq \frac{1}{2}$ and $\psi(\xi) = 1$ for $|\xi| \geq 1$. Let for j = 1, ..., n

(21)
$$r_{j}(D) f(x) := (2\pi)^{-n} \int e^{ix\cdot\xi} \psi(\xi) \frac{\xi_{j}}{|\xi|} \hat{f}(\xi) d\xi$$

be the inhomogeneous Riesz transform.

Triebel spaces

The Hardy space $h^1(w)$ is defined by

(22)
$$||f||_{h^{1}(w)} := ||f||_{L^{1}(w)} + \sum_{j=1}^{n} ||r_{j}(D)f||_{L^{1}(w)} < \infty.$$

Let cmo(w) be the closure of $\mathcal{S}(R^n)$ in bmo(w). Since $h^1(w)' \approx bmo(w)$ (Bui Huy Qui [3]) and $h^1(w) \approx F_{12}^0(w)$ (Bui Huy Qui [4]), the method described above yields

COROLLARY 7. For $w \in A_1$ the dual of cmo(w) is isomorphic to $h^1(w)$. \blacksquare The case $w \equiv 1$ of this corollary has been shown by Neri [9].

4. Remarks on $F^s_{\infty q}$. By Theorem 4, many results for F^s_{pq} extend to the case $p=\infty$. For example, one can make the following statement about Fourier multipliers. If $\varkappa>n/2$ then

(23)
$$||\check{m} * f||_{F^{s}_{\infty q}} \leq C ||m||_{h^{\times 2}} ||f||_{F^{s}_{\infty q}}.$$

This follows by duality from Theorem 2.4.8, Triebel [13], if $1 < q \le \infty$ and from Corollary 5 if q = 1. More generally, let us consider pseudodifferential operators. Define $S_{1\delta}^m(r, N)$ to consist of symbols $a(\cdot, \cdot)$ such that for all $|\alpha| \le N$

$$(24) \quad |\partial_{\varepsilon}^{\alpha} a(x, \xi)| \leq C_{\alpha} (1 + |\xi|)^{m - |\alpha|}, \quad ||\partial_{\varepsilon}^{\alpha} a(\cdot, \xi)||_{B_{\alpha, m}^{r}} \leq C_{\alpha} (1 + |\xi|)^{m + \delta r - |\alpha|}.$$

We associate pseudodifferential operators to these symbols by

(25)
$$\operatorname{Op}(a) f(x) := (2\pi)^{-n} \int e^{ix \cdot \xi} a(x, \xi) \hat{f}(\xi) d\xi$$

for $f \in \mathcal{S}(\mathbf{R}^n)$.

Let us take $N > \frac{3}{2}n$ and $0 \le \delta \le 1$. Then for $1 \le q \le \infty$ we have

(26)
$$\operatorname{Op}(a): F_{\alpha a}^{s+m} \to F_{\alpha a}^{s}$$

provided that $-(1-\delta)r < s < r$ and

(27)
$${}^{t}\operatorname{Op}(a) \colon F^{s}_{\infty a} \to F^{s-m}_{\infty a}$$

provided that $-r < s < (1-\delta)r$. Here 'Op(a) is the transpose of Op(a) defined by $\langle \text{Op}(a)f, g \rangle = \langle f, \text{'Op}(a)g \rangle$ for $f, g \in \mathcal{L}(R^n)$. (26) and (27) follow by duality from the results in Chapter 3 of Marschall [8]. Then (26) can be used to show that for s > 0 F_{xg}^s is a multiplication algebra. More precisely,

(28)
$$||g \cdot f||_{F_{\infty q}^{s}} \leq C(||g||_{L^{\infty}} ||f||_{F_{\infty q}^{s}} + ||g||_{F_{\infty q}^{s}} ||f||_{L^{\infty}}).$$

The proof is identical to the one given for q = 2 in Marschall [8], Chapter 11.

One topic which cannot be treated by duality is the trace operator. Decompose $\mathbf{R}^n = \mathbf{R}^{n-1} \times \mathbf{R}$ and $x = (x', x_n)$. On continuous functions the trace operator is defined by $\operatorname{Tr} f(x') := f(x', 0)$.

THEOREM 6. For s > 0 and $1 \le q \le \infty$

Tr:
$$F^s_{\infty q}(\mathbf{R}^n) \to B^s_{\infty \infty}(\mathbf{R}^{n-1})$$

is a retraction.

Proof. That Tr: $F^s_{\infty q}(\mathbf{R}^n) \to B^s_{\infty \infty}(\mathbf{R}^{n-1})$ follows from $F^s_{\infty q} \subset B^s_{\infty \infty}$. Now as a coretraction we use the operator constructed in Triebel [13], 2.7.2. Let $\{\varphi^l_k\} \in \phi(\mathbf{R}^l)$ be a partition of \mathbf{R}^l . We take ψ , $\psi_0 \in \mathscr{S}(\mathbf{R})$ to be such that

(29)
$$\operatorname{supp} \psi \subset (1, 2), \quad \operatorname{supp} \psi_0 \subset (-1, 1), \quad \check{\psi}(0) = \check{\psi}_0(0) = 1.$$

For k = 1, 2, ... we set $\psi_k(\xi_n) := \psi(2^{-k}\xi_n)$. Finally, we define

(30)
$$Rf(x) := \sum_{k=0}^{\infty} 2^{-k} \check{\psi}_k(x_n) (\varphi_k^{n-1}) *f(x'). \qquad -$$

Then, by (29), $Tr \circ R = Id$. Hence it remains to prove that

(31)
$$R: B^s_{\infty\infty}(\mathbf{R}^{n-1}) \to F^s_{\infty1}(\mathbf{R}^n).$$

Let δ_1 be the Dirac measure on R. The point is that by Corollary 4 $\delta_1 \in F_{\infty 1}^{-1}(R)$, i.e. there exists a representation

$$\delta_1 = \sum_{j=0}^{\infty} (\varphi_j^1) * g_j \quad \text{with} \quad \sum_{j=0}^{\infty} 2^{-j} |g_j| \in L^{\infty}(\mathbf{R}).$$

Now inserting this into (30) we obtain

$$Rf(x) = \sum_{l=-3}^{3} \sum_{k=0}^{\infty} (\varphi_{k}^{n-1} \otimes \psi_{k} \varphi_{k+l}^{1} * (f \otimes 2^{-k} g_{k+l})(x).$$

Let $\psi_k^{n-1} \in C_0^\infty(\mathbb{R}^{n-1})$ be equal to one in a neighbourhood of supp φ_k^{n-1} and chosen appropriately. Then we get

$$||Rf||_{F^{s}_{\infty_{1}(\mathbb{R}^{n})}} \leq C \sum_{l=-3}^{3} \left\| \sum_{k=0}^{\infty} 2^{ks} | ((\psi_{k}^{n-1})^{\check{}} * f) \otimes 2^{-k} g_{k+l} ||_{L^{\infty}} \right\|_{L^{\infty}}$$

$$\leq C ||f||_{B^{s}_{\infty,\infty}} (\mathbb{R}^{n-1})$$

since $\sum_{k=0}^{\infty} 2^{-k} |g_k| \in L^{\infty}$. Hence we obtain (31).

For q=2 the theorem is proved in Strichartz [11]. Let us also remark that the theorem is true for higher order traces as well (see Triebel [13], 2.7.2).

References

- K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980), 19-31.
- [2] J. Bergh and J. Lösström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York 1976.

- [3] Bui Huy Qui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45-65.
- [4] -, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), 581-605.
- [5] R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York 1965.
- [6] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
- [7] B. Jawerth, Some observations on Besov and Triebel-Lizorkin spaces, Math. Scand. 40 (1977), 94-104.
- [8] J. Marschall, Pseudo-differential operators with nonregular symbols, Thesis, Freie Universität Berlin, 1985.
- [9] U. Neri, Fractional integration on the space H¹ and its dual, Studia Math. 53 (1975), 175– 189.
- [10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [11] R. S. Strichartz, Traces of BMO-Sobolev spaces, Proc. Amer. Math. Soc. 83 (1981), 509–513.
- [12] H. Triebel, Spaces of Besov-Hardy-Sobolev Type, Teubner-Texte zur Math. 15, Leipzig 1978.
- [13] -, Theory of Function Spaces, Birkhäuser, Basel 1983.

FACHBEREICH MATHEMATIK DER FREIEN UNIVERSITÄT BERLIN Arnimallee 3, 1000 Berlin 33, West Berlin

Received March 10, 1986 (2147)

Drop property equals reflexivity

by

V. MONTESINOS* (Valencia)

Abstract. We prove that in a reflexive Banach space $(X, \|\cdot\|)$ property (H) of Radon-Riesz (if $(x_n)_{n=1}^{\infty}$ is a sequence of elements in X converging weakly to an element x in X such that $\|x_n\| \to \|x\|$, then $(x_n)_{n=1}^{\infty}$ is norm-convergent to x) is equivalent to a geometric condition (the "drop property") introduced by Rolewicz: $\|\cdot\|$ has the drop property if for every closed set S disjoint with B_X (the closed unit ball of X) there exists an element $x \in S$ such that the "drop" defined by X (the convex hull of X and X intersects X only at X. We also prove that a Banach space is reflexive if and only if it has an equivalent norm with drop property.

§ 1. Introduction. Let $(X, ||\cdot||)$ be a Banach space and B_X its closed unit ball. By the $drop\ D(x,\ B_X)$ defined by an element $x\in X,\ x\notin B_X$, we shall mean the convex hull of the set $\{x\}\cup B_X$, $\operatorname{conv}(\{x\}\cup B_X)$. In [4], Danes proved ("Drop Theorem") that, for any Banach space $(X, ||\cdot||)$ and every closed set $S\subset X$ at positive distance from B_X , there exists a point $x\in S$ such that $D(x,\ B_X)\cap S=\{x\}$.

This result, as its author points out, allows to prove in a simple way certain theorems of Browder [2] and Zabreiko-Krasnosel'skii [17] which are very important in the theory of nonlinear operator equations. In [14], Rolewicz mentions a number of papers where the Danes' result is used. Recently, Danes' has discussed the relationship between his Drop Theorem and several other results [5].

Motivated by Danes' theorem, Rolewicz introduced in the aforesaid paper the notion of drop property for the norm in a Banach space: $\|\cdot\|$ in X has the drop property if for every closed set S disjoint with B_X there exists an element $x \in S$ such that $D(x, B_X) \cap S = \{x\}$. He proved that if X is a uniformly convex Banach space then its norm has the drop property, and also

^{*} Supported in part by the "Consellería de Cultura, Educación y Ciencia. Generalidad de Valencia".

This paper was written during the author's visit to the Institute of Mathematics of the Polish Academy of Sciences, Warsaw, 1985.

AMS Subject classification: 46B20, 46B10.

Key words and phrases: reflexive Banach spaces, geometry of Banach spaces, convexity, drop property.