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4. The final norm. Let now
' lpl = Lim |pls
p—+ o

for any polynomial p. We have the following properties of the limit norm
(-1

PrOPOSITION 3.

@ Ilquj—q}||N< g, Jj=z1l.

() N pll <27 ]pll.

© llxpll < 2|lpll

(d) The norm ||-|| is hilbertian.

(¢) For any n> 1 and any p with &p <n,

lpll = T (1 =479 [Pli-1)-
kzn

This last property ensures of course that the limit norm is nonzero.
Therefore the completion of the polynomials for ||-]| is a Hilber‘t space on
which the multiplication by x is continuous. Every polynomial ¢ with
rational coefficients is hypercyclic. Indeed, let ¢' % 0 in H, and let £ > 0. We
can find in the enumeration an integer j such that

g=q, &<¢2, |g—4ql<e/2
Then ||gj—ql| < &/2, and
Ix™ g;—gll < IIx" g;— gl +llgj—gq,ll <o

which proves our claim.
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Some remarks on Triebel spaces
by
JURGEN MARSCHALL (Berlin)

Abstract. Some extensions of results in the recent monograph by Triebel [13] about

Triebel spaces Fy, are given. This concerns multiplication properties, dual spaces and some
remarks on the spaces Ff,.

0. Introduction. Triebel spaces are a natural generalization of Sobolev—
Hardy spaces. The characterization of these spaces by decompositions of
Littlewood-Paley type provides a useful tool for the study of multiplication
properties, dual spaces, etc.

The plan of this paper is as follows. Chapter 1 is used to fix the notation
and to recall some results on Besov and Triebel spaces. In Chapter 2
multiplication properties of Triebel spaces are studied: multiplication by
functions belonging to Holder~Zygmund spaces, multiplication algebras and
multiplication by the characteristic function of an interval.

Chapter 3 is devoted to some complementary results in the
determination of dual spaces. The main result can be phrased as follows. Let
us denote by ﬁ'},q the closure of the Schwartz space %(R") in F5,. Then for
1< p, ¢ < o the dual of F5, is isomorphic to F;, 1/p+1/p' = 1/q+1/q' =1.
Also some extensions to weighted spaces are given. The weight may belong
to the Muckenhoupt class 4. '

Finally, Chapter 4 contains some remarks on Fi,, 1<g<o. In
particular, the trace problem is solved.

1. Besov and Triebel spaces. All functions and distributions are assumed
to be defined on the n-dimensional Euclidean space R". %(R") is the
Schwartz space of rapidly decreasing functions and &' (R") its dual, the space
of tempered distributions.

The Fourier transform is defined by

F@:=[e ™ (dx, feF (R
and extended to % (R" by duality. The inverse Fourier transform is
Jx):=@m)~" e f()dE.


GUEST


80 J. Marschall -

For suitable distributions f and g, let us denote by f*g the convolution
of distributions.
Denote by ¢(R") the set of all partitions {¢,} = %(R") such that

) supppo = {§: 18] <2}, suppgy = (¢ 27N < g < 2 Y
fork=1,2,...,
@ | g () < €, 27%e

for all multi-indices o and

0

(©) Y a@)=1
k=0
@(R" is not empty; see Triebel [13], Remark 2.3.1.1.
For 0 <p<ow, 0<g< o and seR we define the Thiebel space F%, to
be the set of all f<.% (R") such that

) W1l = 12 B Yl

= (X 251 @xf (o)), < oo

k=0
(modification for g = o).
Similarly for 0 <p, g < o0 and se R the Besov Space By, is the set of all
fe& (R such that

©) gy = 12 Bnf Y

= (kgo 2511 Gex f112,) < 0
(modification for g = oo).
" These spaces are independent ‘of the choice of the partition {¢,}e ¢ (R").
Elementary properties are: :

6) . ‘B;,minmq) C'F;q S B;,mnx(p»tﬂ’
%) B, & :

' ' " s
(8) F ,,},1 S F Pﬁz’

if g <gq; and s, =s5,, or 5, >35,.

An essential tool in Triebel [13] is the Peetre maximal function. It has
the disadvantage of not giving optimal results, Therefore we will not use it.
Note, however, that there exists a new maximal technique, which avoids this
drawback in many situations; see Marschall [8], Chapter 4,

In this paper we use the following results.
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Lemma 1. Let fie #'(RY) and suppose that for some constants 0 <y
<y

suppfo = {&: A< o}, suppfy = {&: ¢, 2% < ¢ <, %
Jor k=1,2 ... Then for 0 <p, g < o and seR '

IZ e, < CIHZ Ay,

| Z Allsg, < CI2 R, m
The lemma follows immediately using the Nikol'skii representation; see
Triebel [13], Theorem 2.5.2.

LemMma 2. Let fie & (R") be distributions such that for some constant
¢c>0

suppf} < {¢: 1¢] < 2.
Then for any real number s with s > n(max {1, p}-1)

X Allsz, < CIH2= Al

m
Proof. Let {¢;}e¢(R"). Then for some I=1(c)e N one. has
G (X )= Y &
k=0 k=J~1

Now for any integer k satisfying k > Jj—1 the following inequality holds with
pii=min {1, p}:

1By fllp < C2" 200 1A,
< Cz(k'-ﬁn(l/pl*l.)“ﬁ””

(see Triebel [13], 1.5.3.3). Hence the lemma follows by summation. w
Note that there is an analogous statement for weighted and unweighted
Triebel spaces (see Marschall [8], Lemma 1.4 and 4.2). ]
We will need the following general Soboley embedding theorem.
LemMa 3. () If O <p<qg<oo and 0 <r < oo then

Ftie=ta o F,.
(b) If 0<p<g< oo then

F;:Onu/wl/q) S Bj,.
© If0<p<g<oo and 0<r< oo then

B;;rn(i/r g = F;r'

6 - Studin Mathemutica t. 87 z. 1
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Proof. For (a) and (b) see Jawerth [7]. The proof of (c) is similar to
that of (b). If p < gy <gq <g; <oo we get from (a)
s+n(1/p—1/g)

Bpp
Using real interpolation (see Bergh and Lofstrom [2]) it follows that
By ne=10 <, (Fy s Fiydeg
where 1/q = (1—0)/go+0/q,. Now [ —|[{2%F«f}ll, is a quasilincar
operator. Hence by the Marcinkiewicz interpolation theorem (see Bergh and
Lofstrom [2])

'S
S Fe

(Fior Fayrog = Fiy

ao"
which yields part (c). =

Below we shall extend part (c) of the lemma to the case ¢ = oo (sce
Corollary 4).

2. Mliltiplication properties of Triebel spaces. For abbreviation set
fii=gpxfif fe S (R). If f and g belong to an appropriate Besov or Triebel
space we make the following decomposition:

i— o

o 4 Jjt+3
h=fl Loty X ait

k=0 J=0 k=j—3
=hy+hy+hs.

o k—4

9) DI
k=4 j=0

If each of these sums converges in %' (R"), we call h the product of f and g.
The convergence is usually shown by estimating h in a suitable F},-
quasinorm. However, we shall not stress this point here, we only give the
necessary estimates.

Let ge L. Since the spectrum of Y {Z% g, f; is contained in the annulus
|€] ~ 2, Lemma 1 yields

. i-a

10) Illes, < €12 5 a1 Sl < €l o1,
for 0<p<oo, 0<g< o and seR.

Hence hy is well defined for ge L™ and arbitrary feFy,. Since we will
assume that ge®, we only have to estimate h, and hj;.

THEOREM 1. Let ge By, ¥ >0. Then for 0 <p < o0, 0 < g < o0 and

n(max{l, I/p}—1)~r <s <r
the following estimate holds: '

lg“flles, < Cllglhsr , 11,
Proof. The estimate for h, follows from (10).
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Now observe that the s

: pectrum of 3713 g 1 is contained i
[¢] < 27*19 Hence Lemma o Fnedin the bal

2 yields
_ ., - - j+3
Il < Clllsr < Cwp2esn 'S o,

< Clgl,,, W1, < Clalr,, 11,
provided s > n(max {1, 1/p}~1)—r.

Finally, the spectrum of 2428 fr9 is contained in the

annul ~ 2k
Therefore by Lemma 1 if s < r s Il ~ 2

, vk“*' k=4
umm%<Hmh§wmmmmsmw%mewgymmm

< Clgllae, 11 Npsr.

Now the theorem follows. =

Th.is theorem improves Corollary 28.2 in Triebel [13]. For its
generalization to weighted Triebel spaces see Marschall [8], Chapter 4. There
pseudodifferential estimates can also be found, Another improvement
concerns the case s = r and ¢ = 2; see Marschall [8], Chapter 11. There it is
shown that for these values of the parameters the theorem remains true

provided that geF?,, (for the definition of Fig see Chapter 3 below).
Moreover, one has the [ollowing

TheoREM 2. Let 0 <p<gq <o, 0<r< o0 and

n(l 1 )
§>z(=+==1).
2\p ¢

Then for s > nlq or s =njq and 0 < q <1 the following estimate holds:
lg fles, < Clglles /1,

Before we prove the theorem, let us state an immediate consequence,

CoroLLARY 1. If s > n/p or s=nfp and 0 < p < 1, then Jor 0 <r< oo,
Fy is a multiplication algebra. w

Proof of the theorem. Note that by Lemma 3(b) we have ge L™

Hence in view of (10) it remains to provide the necessary estimates for h,
and hy.

Estimate for hy. If p=q then feL® and hence by {10)
sltes, < C AN e lglles, -

e
Il p<qlet 1/p=1/p,-+1/q. Then by Holder’s inequality and Lemma
3(a) we obtain

Mhsles, < C gl If 110, , < C s, 1.
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Estimate for hy. Let ¢ =s—n/qg. Note that s>3%n(l/p+1/q—1) and
s > nfq imply
(11) s+g > n(max {1, 1/p}—1).
If s > n/q then geB%,, and Lemma 2 yields
hlles, < Cllhalsste < Clglls 111,

If s=n/q choose p; <p<p, such that 1/p; =1/p,+1/g and njy
> n(1/p;—1). Because of (11) this is possible. Then by Lemmas 3(c) and 2

< C||hy|| mtia+1ipg~1ip)
halge < C el o

3
g+ 1/py ~1/p) .
<C Y RTHRTIR

pLPL
1=-3 1P

" 1p1-1p),
< Cllgllsqgllfll,,:;;m I
Hence Lemma 3(b) yields
hallesa < C ligilesll e

This completes the proof of the theorem. m

Let us also mention the following result.

THEOREM 3. Let g <pif0<p<2and g<pflp—1)if 2< p < oo, Then
Jor 0 <r<oo and

n(l/p—1) <s <nfp
one has the following estimate:

lg flles, < Clgllyeo+lgllage) 111,

Proof. The estimate for A, follows from (10). For the estimation of h,
choose p; < p < p, such that 1/p, = 1/p+1/p, and s < n(1/p—1/p,). Then by
Lemma 3 and Holder’s inequality

< +nf
”h3||F;, < C“h3”s:1: P2
k(s+n(1/p 1/,;))"""
n(1/pg~ ;
< Cllgllays |12 I Gl
< +n(1/pg~1
< Cliglsz IS IIB:”;N Ir2=1ip)

< CllglsgalfNles,-

Next choose p; < p < p, such that 1/p; =1/g+1/p, and

P1

stn (i..lp) > n(max {1, 1/p;}—1).
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For q= p‘if 0<p<2 resp.g=plp-1)if2< p < ¢, this choice is possible
since in either case s+n(1/p, —1/p) > n(1/p, —1).
Then by Lemmas 2 and 3 we get

Ihallps, < C thllﬂi’f "ip1 =10 < Cligligna || f1] gs=ntts= 1705
1P g pap
< C gl 11,
This proves the theorem. m

This theorem is the counterpart for Triebel spaces of Remark 2.64.5 in
Triebel [12]. Let us give two applications.

First, Proposition 3.4.1.2 in Triebel [13] can be improved as follows.

COROLLARY 2. Let ag C® be a function such that [6*a(x) < C, for all
multi-indices a. Further, let pe C®(R") be supported in the unit ball and set
@.(x) 1= @ ((x~Xo)/x). Then for 0 <p < o0, 0<gq< o0 and

n(l/p—1)y<s<n/p
there exists a constant C >0 such that for 0 <t < 1
()= atea) o flles, < Collflles

Proof. It is shown in the aforementioned proposition of Triebel that for
0<r<oo

a(-)=a(xo)) @flanr < Ce.
Since obviously
l(a()~a(xo) ol < Cr.

the corollary follows from Theorem 3. m ‘
Denote by s, the characteristic function of a bounded or unbounded
interval [a, b] = R.
CoroLLary 3. For 0 <p <o, 0<g< oo and 1/p—~1<s<1jp
[1%g,87 f”F;q(m < C”f”F;qm-

Proof. It is shown in Proposition 2.8.4, Triebel [13], that Hiap) =01+92
with g, B}, 0 <r < oo, and |#g,(x) S C, for k=0,1, 2,... Again the

corollary follows from the theorem. w

Note that this corollary solves the extension problem for F3,(R*). For
details see Triebel [13], Chapter 2.9.

3. Dual spaces. Let 1 < p, g < oo and {p;}e$(R") be a partition. Denote
by L, the space of all fe & (R") represented by

(12) f= f Fy* i
Jj=0
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such that
(13) 111, = 0 125y < 0

where the infimum is taken over all representations (12). These spaces have
been introduced in Triebel [12] for the study of the duals of Triebel spaces.
For 1<p, g <o the Schwartz space #(R") is dense in L and if

1
1 <p,q <oo then L}, = F;;; see Triebel [12], Proposition 2.5.1.2, Triebel
[13], Proposition 2.3.4.1.

Actually the last statement is true for 1< ¢ < co.
Proposirion 1. If 1 <p <o, 1< g< o and seR then L, ~ F5,.

Proof. The inclusion F}, < L}, is obvious. For the other direction we
use the Hardy-Littlewood maximal function

1
Mf (x): = sup———— (»ldy.
f (x) D, r)y(;[,,)lf Yl dy
One has (see Stein [10], Theorem 3.2.2)
11, (9] < CMF ().
Then the boundedness of the maximal function on L?(¥) for 1 < p < oo and

1 < g < oo (see Fefferman and Stein [5]) implies the assertion for £ <¢g < o0.
Ifg=1 we use

Lemma 4. For 1 <p<oo and 1/p+1/p' =1 we have
LP(co) = L7 (I'). w

Here ¢, is the Banach spabe of all sequences converging to zero. For
a proof see Edwards [5], Theorems 8.18.2 and 8.20.3.

. Proof of the proposition, the case g = 1. Let f =Y'% , ¢,f; be such that
{2f}e L (I'). We show that

{2k @, *Z Fiefite LF (co).
J

By the lemma this implies fe F3;.
Since for {g,}eL" (co)

<<7MZ ¢j*ﬁa 9k> = <fj= Z (ﬁj*dsk*gk)n
i |i~kls3

| T Gdrg(®)|<C T Mg (),
[ j| €3 lk—jl<3

we get
|<_{2'-“ P *Ej: @xfi} o} >l < C“{zjsfj}”,‘mx) lHMgk}||Lp'(,w)

< A, gl gy
This yields the conglusion.
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It turns out that the right choice for F*

wgr 1 < ¢ < o0, is

(14)

In parti.cu[ar, Flx = Bi,,. Denote by F;q the closure of the Schwartz space
#(R%) in Fj;. Now the main result in this chapter is

Tueorem 4. If 1 <p, g < o0 and seR then
B~

pqg I;;'
where 1/p+1/p = 1/q+1/¢q = 1.
Proof. (a) First take 1 < p < 0.
Then for 1< ¢ <o one has Fi' = L, (see Triebel [12], Theorem
2.5.1). Now for ¢ = co the mapping

S =20t} By = L2 (co)

is an isometric embedding. Then by Lemma 4, Triebels proof yields
P, ~ L,4. Hence Proposition 1 and the definition of Fs,, imply the
assertion for 1 < p < o0,

(b) Let p=o0. Here we show that the norm topology on ﬁ;q is
compatible with the duality (F“i,uq, Fij), ie. we show that the norm topology
is finer than the weak topology a(ﬁf,,q, Fi;) and weaker than the Mackey
topology r(}%'fx,q, Fi). Then the Mackey theorem (see Edwards [5], 8.3.3)
yields I, ~ Fi}.

(¢) The norm topology on F‘fx,,, is the topology of uniform convergence
on the closed unit ball B of Fi; (observe that 15 ® Fy,!). Consequently,
the norm topology is finer than cr(ﬁ“‘;,oq, Fi7). That it is weaker than
'r(ﬁ’{,)q, FiJ) is a consequence of the following assertion:

'S ‘e T8
Fiogi= Iy,

B is o(Fy}, FS,,)-compact.

Proof. (i) Let us first show that B is o(Fi}, ﬁ‘ioq)-sequentially compact,
In fact, let fieB be a sequence. Then fy—f in (R for some

subsequence. Now if {¢}e¢ (R then for fixed i
@Gixfy, — @ivf  pointwise,
Hence Fatouw’s lemma yields
7155 < liminf(|flle <1
and therefore feB. Obviously we have f, —f in o(F7j, B,

(i) 13“!,0,1 is separable because S(R" is dense in it. Let {g;} = £(R") be
dense in F%,,. Then

d(f, b= Y27 min {1, |{f—h, g;3]}

defines a metric on B, which induces a weaker topology than o(F}, Ff,,q).
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Now recall that any sequentially compact space with a weaker metrizable
topology is actually compact, because both topologies are identical
Consequently, B is o (Fy3, F5,,)-compact.

This completes the proof of the theorem. m

Remark. If 0 <p <1 then

(15) B o m BRiimaip= D o Fosriie=l),
This is a consequence of
s & P © By
and the known duality theory for B},; see Triebel [13], Chapter 2.11. The

determination of the dual of F}, for 1 < p < c0 and 0 < ¢ <1 remains open.
It is known that

p © S Fx ! B;‘;.
The conjecture is of course F3,/

Let us state some consequences of Theorem 4.
CoroLLARY 4. For 0 <p <0

B o Fiyy

xFp%.

Proof. We may suppose 1 < p < co. But then the statement follows by
duality from Fi3 o By{™"".

We can also extend the Fourier multiplier result, Theorem 24.8 in
Triebel [13], to the case g = 0. Let ¢, Yy F(R") be such that

suppy = {&: (1< 4}, W(O=11if ¢ <2
suppo < {&: <|E(<4}, @O =1if}<|E<2.
For abbreviation set

(16) Iz = Ibleg, + Sup im (2 ol

2,00

CoROLLARY 5. Let 0 <p < 0, seR and
x> n(max {1, 1/p} —4).
Then

i les,, < Climllya Al

Proof For 1 <p < oo the result follows by duality from the case g = 1.
For 0<p<1 one uses complex interpolation. For details see the
aforementioned reference. w

The preceding results can be extended to weighted Triebel spaces. Let
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l<p<o and w20 be such that

1 -
Q(Ewdx(»lw-jw"”"’ l’dx> 1 <o

where the supremum is taken over all cubes Q = R". Then w is said to satisfy
Muckenhoupt’s A,-condition.

Let we A= UHM“,A,,. Define Fi (w) by
(18) ' 71l om = 1427 @01}

a7 sup -

LP(w,19)

= ”(j; 2%y f (x)|q)m“mw) <o

(modification for ¢ = o).

Similarly define L%, (w) as the space of all fe V’(R") which can be
represented by f ”'Z(Pk* f in such a way that

(19) 1 Vz8g0m = 012y <

Analogously to Proposition 1 one may prove

ProposiTioN 2. If 1 <p < oo,
Ly, (W) = F, (). m

Here one has to use the weighted Hardy-Littlewood maximal theorem;

see Andersen and John [1]. Now using the results of Bui Huy Qui [4], we
can show similarly to Theorem 4

Turorem 5. Let 1 <p<oo, 1 <q<

=1/q+1/¢4" = 1. Then
Fog W) & Ly (w™Ye=0) Jo (w) m Fpg (w™Y070), o

Obviously, I"' g (W) TESD. L (W) denotes the closure of 9’(R") in Fj,(w)
resp. Li, (w). Smce F(R") is dense in Fj,(w) and L, (w) for p, g < oo, we
obtain "

COROLLARY 6. For 1 <p, g < oo and w, wY®P~Dedq
and L}, (w) are reflexive. m

Now let we Ay, i.e let Mw(x) <C

1<q< oo and wed, then

0, w, w Y Ved and 1/p+1/p

the spaces Fi, (w)
(x) ae. Define bmo(w) by

dx < 0.

Ijﬂy

0) 11/ lbmocwy * == Sup ”‘Q [If () d+ ol w0 f P

Here we have set wQ = [owdx.
JLet YyeCF be a cut-off function such that ¥ (£) =
=1 for |¢| > 1. Let for j=1,...,n
9

03] ry(D).f () 1= (2m) =" &4 (§) =

(€]
be the inhomogeneous Riesz transform.

0 for |¢[ <4 and ¥ (&)

feae
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The Hardy space h*(w) is defined by

22 Mgy = 10+ -:’:1 17 (D) fll 1y < -

Let cmo(w) be the closure of %(R") in bmo(w}). Since h'(w) = bmo(w) (Bui
Huy Qui [3]) and h'(w) = F{,(w) (Bui Huy Qui [4]), the method described
above yields
CoROLLARY 7. For we A, the dual of cmo(w) is isomorphic to ht(w). w
The case w=1 of this corollary has been shown by Neri [9].

4. Remarks on F%,,. By Theorem 4, many results for Fy, extend (o the
case p=oo. For example, one can make the following statement about
Fourier multipliers. If » > n/2 then

(23) N4 fllps,, < Climilgez 1/1les, -

This follows by duality from Theorem 2.4.8, Triebel [13], if 1 <¢ < v and
from Corollary 5 if ¢ = 1. More generally, let us consider pseudodifferential
operators. Define $7;(r, N) to consist of symbols a(+,-) such that for all
lo) KN

4 |8alx, O < CU+E™,  &al, Ellar,, < Call+1ED"

We associate pseudodifferential operators to these symbols by
25 Op(a) f (x):=(2m) ™" fe** a(x, &) [ (&) dé
for' fe &(R").
Let us take N >3n and 0 <3 < 1. Then for 1 <g < o we have
(26) Op(a): F" = Fiy,
provided that —(1-8)r <s <r and
(27) 'Op(a): Fy, — Fo"
provided that —r <s <(1—38)r. Here ‘Op(a) is the transpose of Op(a)
defined by <Op(a)f, g> = <{f,'Opla)g) for f, ge .7 (R". (26) and (27) follow

by duality from the results in Chapter 3 of Marschall [87. Then (26) can be used
to show that for s> 0 F%, is a multiplication algebra. More precisely,

(28) llg flles,, < CUlgll 0 115, +llglles,, 11l e0)

The proof is identical to the one given for ¢ =2 in Marschall [8],
Chapter 11.

One topic which cannot be treated by duality is the trace operator.

Decompose R*=R""'xR and x =(x', x,). On continuous functions the
trace operator is defined by Trf(x'):= f(x', 0).

icm°
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THEOREM 6. For § >0 and 1< g<
Tr: Fioy(R") — B, (R 1)

is a retraction.

Proof. That Tr: I*“’qu(R")——»BLw(R"“) follows from F%, < B, ..

Now flsla coretraction we use the operator constructed in Triebel [13],
27.2. Let {op}}e¢(R) be a partition of R. We take ¥, Yoe #(R) to be such
that
(29) suppy < (1, 2),
For k=1, 2,.

suppyo < (—=1,1),  Y(0) = Jo(0) = 1.
oowe set (&)= (27%&,). Finally, we define

4]

(30) RF(x):= Y 2750, (e)(op™ ) *f (x). =
k=0

Then, by (29), TroR = Id. Hence it remains to prove that
(31) R: Bigo(R"™Y) — Fio( (R7).

Let 8, be the Dirac measure on R. The point is that by Corollary 4
5,eF ;! (R), ie. there exists a representation

% =IZ)((P})V*91 with Y 27/ |gjle L*(R).
we () Jj=0
Now inserting this into (30) we obtain
3 00
Rf (x) = 1 Z” 0(‘Pk"1®'l’k ¢I%+l*(f®2—kgk+l)(x)'

Let yi~* e C¥(R"*) be equal to one in a neighbourhood of supp ¢}~ and
chosen appropriately. Then we get

3 @
Bl < € L |5, 2402182 s o

< Cllfllss, , (R

since Y02 * |yl € L™, Hence we obtain (31). m

For ¢ =2 the theorem is proved in Strichartz [11]. Let us also
remark that the theorem is true for higher order traces as well (see
Triebel [13], 2.7.2).
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Drop property equals reflexivity
by

V. MONTESINOS* (Valencia)

Abstract. We prove that in a reflexive Banach spacé (X, ||-[}) property (H) of Radon-Riesz
(if {x,)7= 1 is @ sequence of elements in X converging weakly to an element x in X such that |jx,||
—|1x]l, then (x,)i%; is norm-convergent to x) is equivalent to a geometric condition (the “drop
property”) introduced by Rolewicz: ||-|| has the drop property if for every closed set § disjoint
with By (the closed unit ball of X) there exists an element xe § such that the “drop” defined by
x (the convex hull of x and By) intersects S only at x. We also prove that a Banach space is
reflexive if and only if it has an equivalent norm with drop property.

§ 1. Introduction. Let (X, || |)) be a Banach space and By its closed unit
ball. By the drop D(x, By) defined by an element xe X, x ¢ By, we shall mean
the convex hull of the set {x}u By, conv({x} U By). In [4], Dane¥ proved
(“Drop Theorem”) that, for any Banach space (X, ||-||) and every closed set
S <X at positive distance from By, there exists a point xeS such that
D(x, By) NS = {x}.

This result, as its author points out, allows to prove in.a simple way
certain theorems of Browder [2] and Zabreiko-Krasnosel’skii [17] which are
very important in the theory of nonlinear operator equations. In [14],
Rolewicz mentions a number of papers where the Dane¥ result is used.
Recently, Dane¥ has discussed the relationship between his Drop Theorem
and several other results [5].

Motivated by Dane¥ theorem, Rolewicz introduced in the aforesaid
paper the notion of drop property for the norm in a Banach space: ||| in X
has the drop property if for every closed set S disjoint with By there exists an
element xeS such that D(x, By)nS = {x}. He proved that if X is a
uniformly convex Banach space then its norm has the drop property, and also

* Supported in part by the “Consellerfa de Cultura, Educacién y Ciencia. Generalidad de
Valencia”.

This paper was written during the author’s visit to the Institute of Mathematics of the
Polish Academy of Sciences, Warsaw, 1985.
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