COLLOQUIUM MATHEMATICUM

VOL. LIV 1987 FASC. 2

SOME BANACH TECHNIQUES
IN VECTOR-VALUED FOURIER ANALYSIS

BY

JOSE L. RUBIO DE FRANCIA anp JOSE L. TORREA (MADRID)

1. Introduction and basic facts. Given a linear operator in some LP-space,
the question of extending it in a natural way to L%, where E is a Banach
space, appears quite often in probability theory and in the study of geometri-
cal properties of Banach spaces. In this paper, we define and study a relation
“E < F” between Banach spaces E and F which express their better or worse
behaviour with respect to this type of extensions.

We shall write L? = LP(R, dx), 1 <p < o, and denote by Z(L?) the
space of all bounded linear operators in L?. Given a Banach space E, we put
(as in [23])

Ze(LP) = {Se L(L"): Sg =S ®Id; is bounded in L§}.

We shall need the notions of (Rademacher) type and cotype of a Banach
space (see [14]) and adopt the usual notation:

p(E) =sup{p: E is of type p},
q(E) =inf{q: E is of cotype q}.
DEeFINITION. Given Banach spaces E and F we say that F extends better
than E, and write E < F, if % (L") c L (LP) for all p (1 <p < ).
In some cases, the (seemingly weaker) condition #;(L?) < ¢ (L?) will

also be considered instead of E < F. By the closed graph theorem, E < F is
equivalent to the existence of constants C,, 1 <p < oo, such that

sup {IISrfIIL;: fel’®F, IIfIILE <1}
< C,sup {IISz-:gIlLE: ge L’ ®E, |jgll
for all Se £ (L”). The following remarks are either obvious or easy conse-
quences of known facts:
Remarks. 0. For 0 <r < oo, I' < L"(p) for any measure space (2, A, u).
1. If F is isomorphic to a subspace of a quotient of F, then E <F.

<1
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2. If F is finitely representable in E, then E < F.

3. E<F<E* <F*

In fact, = consists in a simple duality argument, and < follows from
Remark 2 because F** is finitely representable in F (principle of local
reflexivity).

4. I' <F for every Banach space F.

This is easy to verify (see [22] or [23]).

5. Given p> 1, we have [P <|%<p<qg<2or 2<q<p(see [7).

Finally, we remark that the choice of the measure space (R, dx) is rather
immaterial, and nothing is changed if we take in our definition an interval or
R" with a measure w(x)dx equivalent to Lebesgue measure.

2. Type and cotype results.
THEOREM 1. Let E be a Banach space of type p > 1 and cotype q. If

Ze(LY) = ZLe(LY),

then F is also of type p and cotype q.
Before proving this theorem, let us point out several consequences.
CoroLLARY 1. If p(E) > 1 (ie., if E is B-convex), then E < F implies

p(E) < p(F) < q(F) < q(E).

The restriction p(E) > 1 cannot be removed, but the case p(E) =1 is
actually the easiest to handle, since we have

CoroLLARY 2. For a Banach space E, the following statements are
equivalent

(@) p(E)=1 (i.e, E is not B-convex).

(b) Ze(L?) < Lx(L?) for every Banach space F.

(c) E <F for every Banach space F.

Proof. If p(E) > 1, Theorem 1 tells us that statement (b) is false for the
Banach space F =", 1 <r < p(E). On the other hand, (a) implies that /! is
finitely representable in E (see [16]), and then by Remarks 2 and 4 we have
E <! <F for every F.

CoroLLARY 3. For a Banach space F, the following statements are
equivalent

(a) F is isomorphic.to a Hilbert space.

(b) LE(L?) = Zr(L? for every Banach space E.

(c) E <F for every Banach space E.

Proof. If (a) holds, then Zr(L?)= L(LP), 1 <p < o (see, eg., [7]),
and, consequently, (c) holds. On the other hand, (b) applied to E = I? implies
(by Theorem 1) that F is of type 2 and cotype 2, which by a well-known
theorem of Kwapien [9] is equivalent to (a).
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Proof of Theorem 1. Let (r;(t));=, be the sequence of Rademacher
functions in [0, 1] and extend them to all of R by letting r;(t) = 0 when
t¢[0, 1]. Assume that E is of type p with constant T,(E) and define s by 1/p
= 1/s+1/2. For every a = (a;)j2;€l} (i€, a; >0 for all j) we denote by S*
the following operator:

m S10=Tu( | Hno  (FeLd,

For functions felL? ® E, S% f is formally defined by the same formula (1),
and we have

j
nﬁm%<mm@MmeW<nmmmm%
i

Since we are assuming that %;(L?) < £ (L?), there exists a constant C > 0
such that

(2) IISi‘vfII,_‘zr < C’I;(E)”a”s”f”L’% (feL? ® F).
Now, given b,, b,, ..., b,e F, we apply (2) to the function

S = Zl o " Xy 1,n(0) by

J
and we obtain

) 1 bjrj”l_}_ < CT,(E)llalls( 3 aj 2IIbAIZ)"2.
j=1 j=1
But the infimum for all aelj of the expression on the right of (3) equals

CTE(E Ibjg),

and this proves that F is of type p with constant T,(F) < CT,(E).

Assume now that E is of cotype gq. Since p(E) > 1, Pisier’s characteriza-
tion of K-convexity (see [17]) implies that E* is of type q’ (where 1/q+1/q
= 1). By Remark 3 and the part already proved, it follows that F* is of type
q’, and then F is of cotype gq.

As we shall see later, the converse of Corollary 1 is not true in general,
but the following partial converse does hold:

THEOREM 2. Let E be a Banach space with p(E) > 1 and let 1 <r < o0.
The following statements are equivalent:

(a) E<I.

(b) ZLe(L?) = Lp(L3).

© p(E)<r<q(E).
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Proof. It is clear that (a) implies (b), and (b) implies (c) by Theorem 1,
since p(I") =inf(r, 2) and q(l") =sup(2, r). Assume now that p(E)<r <2
By the Maurey—Pisier theorem (see [14]), /”P is finitely representable in E,
and we use Remarks 2 and 5 to obtain E <[?® < |, Similarly, if
2<r<q(E), then P js finitely representable in E and E < 9B < ",

We denote by SQ, the class of all Banach spaces which are isomorphic
to a subspace of a quotient of some gpace L'(u).

THEOREM 3. Given a Banach space F and 1 <r < o, we have I" < F if
and only if FeSQ,.

Proof. If FeSQ,, then L' (u) < F for some measure u (by Remark 1),
and since L’ (u) is finitely representable in I’, it follows that I” < F. Converse-
ly, since every operator Se £ (L") has a bounded ["-valued extension, I" < F
implies Zr (L) = £ (L"), and this is a characterization (due to Kwapien [10])
of the spaces FeSOQ,.

A consequence of Theorem 3 is the following: If I < F for some r (1 <r
< o0), then F must be superreflexive. One can now give several counter-
examples showing that the converse of Corollary 1 may fail

ExampLE 1. Let F be the space defined in [8], which is of type 2
(therefore q(F) < +o0) but not superreflexive. If we take E=1", q(F)<r
< o0, we have

p(E) = p(F) < q(F) < q(E),

but E £F.

ExaMpLE 2. The Schatten ideal €, (1 <r < 2) is of type r and cotype 2
(exactly the same as I"), but it is known that €,¢SQ,, and therefore I" £ &,.

3. Further remarks and comments. If we define in the class of all Banach
spaces the equivalence relation

E~F iff E<F and F <E,

one can order the equivalence classes in the obvious way and there exist a
first element (consisting of the worst Banach spaces)

&/, = [I'] = {Banach spaces which are not B-convex}
and a last element

g, =[1*]= {spaces isomorphic to some Hilbert space}.
Some intermediate classes are

{E: Ec5Q, and p(E)=r} if 1<r<2,
{E: E€SQ, and q(E)=r} if2<r <.

If Eeo/, and Fe o,, then for all p (1 <p < o) we have
Ze(LP) = {Se £ (L) which are regular}, %(LP)= Z(L7),

ﬂ’,=[l']={
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where S regular means |Sf| < A(|f]) for some positive operator Ae Z(L?).
The first assertion is proved for instance in [4] and [23]. Each one of the
extreme classes is characterized by a single operator in the following way.
Let R denote the orthogonal projection of L? onto the span of (r;(t))2, and
let Tf =f be the Fourier transform in L2. Then

(i) Ee o, if and only if R ® Idg is not bounded in LZ (see [17]);

(i) Fe o, if and only if T ® Id; is bounded in L2 (see [9]).

Finally, we make the following conjecture suggested by Theorems 1 and
2 and Corollaries 2 and 3:

ConiecTurk (P 1337). For arbitrary Banach spaces E and F one has E
< F if and only if Zg(L? < Lr(L?).

If the conjecture is true, one has in particular

4) E <1} for every Banach space E.

Conversely, if case (4) were proved, one could prove the conjecture by
using Maurey’s theory of the factorization of operators. However, (4) may
not be easy to- obtain, since it would automatically imply a positive answer
to Problem 2 in [10].

4. Applications.

I. Let G be an infinite compact abelian group and let I' be its dual
(discrete) group. Let us denote by # the mapping from L?(G) into I*(I)
given by f — # f = f, where

fy= gf(x)(v, —x)dx, yer.

Plancherel’s theorem states that & is an isometry.
If F is a Banach space and f € L};(G), we can define for each yerl

fo= gf(x)(?, —x)dx.

The mapping f — f is denoted by #.

Now, given F=L(G) with 1<r<2 we select a function
@e L'(G)\L*(G). Then the function f: G- F defined by f(t) = ¢,, with
¢, (x) = @(xt), belongs to L%(G) and has a Fourier transform

fOO=600,), yerl,
so f¢I3(I), since [|f (llr = |6 ).

Therefore, # does not have a bounded extension from L2(G) into I (I).
Indeed, for F =1"(I), 2 <r' < oo, we take the function g: G — I"(I)
given by g = #of. Then
gm)=()o,() and |G =120

Therefore, §g¢l?(I. So the Fourier transform is not bounded from
LZ(G) into I3(I).
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We state the following

THEOREM 4. For a Banach space F, the following statements are equiv-
alent:

(a) & has a bounded extension from L%(G) into I3(I).
(b) F is isomorphic to a Hilbert space.

Proof. The part (b) = (a) follows by a simple computation.

On the other hand, by the examples above and Remark 0 we see that &
fails to have a bounded extension from Lf,(G) into l,f (I for r # 2. Theorem
2 states that the type of F has to be greater than r if r <2, and the cotype
less than r if r > 2; that is, F has type and cotype 2. Now Kwapien’s
theorem [9] gives (b).

Remarks. 1. Kwapien [9] showed that given a Banach space F, if &
maps L%(R) into LZ(R), then f is isomorphic to a Hilbert space. Therefore,
standard arguments give the same statement in the case

F: LH(T) - 13(2),
T being the torus.

2. By Pisier’s work (see [18]) it is easy to deduce that if F is a Banach
space and & maps LZ(G) into IZ(I'), then F has type 2.

On the other hand, it is a trivial fact that if # maps LZ(G) into 12(I),
then it maps L%(G) into lA(I'); in other words, F* has type 2 and,
consequently, F has cotype 2. Then Kwapien’s theorem states that F is
isomorphic to a Hilbert space.

3. Using the same argument as in Theorem 4, we can infer that if G is
infinite compact and &# maps L§(G) into If (I'), then the type of F is at least
p and the cotype at most p’. Some kind of converse can be obtained (see [3]).

On the other hand, it can be proved that, for a locally compact abelian
group G, the natural operator which extends the Fourier transform
F: LP(G)— L7 (I, 1 <p <2, is the operator & mapping L§(G) into V¥ (I,
where V¥ (I) is the set #(LP(I), F), and % is defined by #f = fo #*
(#* denotes the adjoint of %)

It can be shown that with the last definition % is an isometry from
V#(G) into V(') (see [20]).

The way of proving Theorem 4 suggests a general method for which we
give the following example of application:

IL. It is a well-known fact that the bounded operators S from L?(G) into
itself (G being an infinite compact group) that are translation invariant are
exactly the operators such that

SN =mf(, yel, fel*G),
where mel®(I). Such sequences are called multipliers in L?(G) (see [11]).
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Given a Banach space F it is easy to verify (considering functions f(x)
=(x, y)b, beF, yeI) that for a bounded translation invariant operator S
from L%(G) into itself there exists a sequence m(y) el such that

(SN = me), M),  vel, feL}(G).

Now, to reproduce the method of Theorem 4 take F = L'(G),
1 <r < oo, with r 3 2. It is well known that there exists a sequence mel® (I
such that the operator defined in L2 n L'(G) by

SHW=mfG), yerl,

does not have a bounded extension to L'(G) (see [11]).
For a trigonometric polynomial

() =3 ¢, (7, %),
yeJ
c,eC, J a finite subset of I', consider the L"(G)-valued functions
SO =Y ¢,(r, xt), gO(x) =Y m(c,(y, xt)
yeJ yeJ

(i.e. f(t) = ¢, and g(t) = (S¢),). It is obvious that
”f”L;(G) = |l¢lirg and ||9||L§(G) = IS¢l r)-
Now, if {m(y)If} 15 (I were a multiplier in LZ(G), we would have

and then ||S¢||, < C|l¢l|,, which is a contradiction.

In other words, for each r # 2 there exists a sequence mel®(I') (an
operator Se % (L?) such that the sequence ml;re %, () is not a multiplier

for L2(G) (the operator S¢ %;r(L*(G)).
This suggests the following theorem whose proof goes as in Theorem 4
and we omit it.

THEOREM 5. For a Banach space F the following statements are equiv-
alent:

(a) The bounded translation invariant operators from L%(G) into itself are
exactly the operators given by

(TN ) = m), f), vel,
for m any sequence in 15y ().
(b) F is isomorphic to. a Hilbert space.

5. Singular integral operators. For some operators, the property of
having a bounded extension to Lf depends on the Banach space, but not on
p. Let T be the singular integral operator in R" defined by convolution with

8 — Colloquium Mathematicum t. 54, z. 2
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the distribution p.v. (2(x)|x| "), where Q is homogeneous of degree zero, has
mean value zero on the unit sphere and verifies the integral Dini condition
(see [21]).

THEOREM 6. For a Banach space E, the following statements are equiv-
alent:

(@) Tg is bounded in LE(R") for all p, 1 < p < 0.

(b) Tg is bounded on LE(R") for some p, 1 < p < 0.

(c) Tg satisfies an inequality of weak type (1, 1).

(d) T; is bounded from LL(R") to L2(R") (with the topology of local
convergence in measure).

Proof. A repetition of the usual argument for scalarly-valued functions
shows that (b) implies (c), and on the other hand, from (b) and (c) together
one obtains (a) by interpolation and duality (see [1] for details). Thus, it only
remains to prove that (d) implies (b). Suppose that (d) holds. This implies
first of all that p(E) > 1, since T is not regular (i.e, it is not- dominated by
a positive continuous operator). Take 1 < p < p(E) and v(x) > 0 such that

veLl. (R) and v 'eLY®~D(R".

Then L§(v) = LE(R", v(x)dx) imbeds continuously into Lg(R"), and Ty is
well defined on Lg(v) and continuous in measure. Since L§(v) is of type p, it

follows from Nikishim’s theorem (see [13]) that there exists u(x) > 0,
ue L} (R"), such that

) ) u(x)dx <A™ [lIf (llgv(x)dx, feLg().

TS E> A

By using the translation and dilation invariance of 7, we can replace u(x) and
v(x) in (5) by u(éx+h) and v(éx+ h), respectively, for arbitrary é > 0 and
he R". Then we integrate with respect to h over the unit ball

B={heR" |h <1}
and let 6 — 0 to obtain

(6) [{x: 1 Te f (Olle > A} < C, 77 fIIf (g dx.

Inequality (6) holds for all p (1 < p < p(E)), and interpolation gives (b).

Theorem 4 was essentially known, but the form given here is somewhat
sharper. A different proof has been given by Virot [24] in the case of the
Hilbert transform, based on “good A inequalities”. The proof presented here
is different in spirit and essentially taken from [22]. It can be applied to
operators for which no “good A inequality” is available.

Burkholder, Bourgain and McConnell have obtained the exact geometri-
cal condition for a Banach space E in order to verify some of the conditions
in Theorem 6.
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The geometrical condition is the existence of a real function { on E xE
having the following properties:

(i) {(x, ) is convex for each xeE;

(i) {(x, y) =Ly, x);

@ii)) {(x, y) < |lx+yllg if |Ixllg <1< |Iyllgs

@iv) £(0, 0) > 0.

This condition was introduced by Burkholder [5], and it is called (-
convexity.

6. Dyadic decomposition. Let 4 be the dyadic decomposition of R, i.e.,
the family of intervals [—2**1, —2%] [2* 2**1], — 0 <k < .

Let f be an E-valued function, and I be a dyadic interval. The function
S, f such that

SN Q) =@, EeR,

is well defined for good f.

Very recently McConnell [15]: has proved the following multiplier
theorem:

THeEOREM 7. Let E be a {-convex Banach space and m a C>-function on R.
Assume there is a constant c,, such that

&m(l)

<"l’ =”'
= c xa=0,1,2

1€ |

Then the operator T,, defined, for good functions, as the function T,, f such that

(T ) O =m@f(©&), ¢EeR,

has an extension to LE(R), 1 < p < oo, which satisfies
1Tl < 11y

In the case where E is a Banach lattice one can consider the Littlewood-
—Paley operator

S () = (X I1S1f ()1%)"72,

Iea

where || is the absolute value in E. Then we have the following

Tueorem 8. Let E be a Banach lattice. The Jfollowing conditions are
equivalent:

(@) There exists a constant c, such that

"IIfII:.E < IS, g S < 6lIfl
(b) E is {-convex.

LE'



282 J.L. RUBIO DE FRANCIA AND J. L. TORREA

Proof. (a) = (b) is obvious, since by the properties of lattices we have
S, f(x)<Sf(x) (xeR, I dyadic)

and
< G lIfl

“SI f”LE ‘ LE'
Conversely, let ¢ be a Schwartz function such that

X120 S @S Yp-1 4
Write @,k(x) = @ (27*x), ke Z. It is a well-known fact that if T, f is the
operator defined by
(LN Q) =09 f(©), EeR,
and I, = [2*, 2¢*1], then

Slk 'I;f =Slkf‘

Now, as usual in the Littlewood-Paley decomposition (see [21]), we
consider for each te[0, 1] the multiplier

'nl(é) = Z Ty (t) (pZt(é)’ éGR,
keZ
r, being the Rademacher functions.
By the choice of ¢ we see that m, satisfies the hypothesis of McConnell’s
theorem, and then

1o flly < 1Sl O, 11,
with ¢, independent of ¢. Hence
1
1T fllpdt < il 1<p<co.
0

Now E is a {-convex Banach lattice, and then the same is true for L§. Then
LE is of type r for some r > 1, and therefore (see [12]) the Khintchine’s
inequality for the absolute value is valid. This means that

1
11T 122, < C [ X re® TS|, dt <GS,
k E 0 k E E
On the other hand, by a direct application of Krivine’s theorem (cf. [12]) we
see that for E a {-convex Banach lattice and 1 <p < o

I 11 S17) 2 < Ap I 1A
X E P £

The standard truncation argument gives, for 1 < p < oo,

I 185, 7)), < BylISll -
G £ B
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To obtain the left-hand side of the inequality take feE ® S(R) and
geE* ® S(R). Then

> ‘I‘ Sp, [ (%), S1,9(x)>dx = { Sf(x), g(x)>dx.
k
Therefore, by the properties of lattices (see [12]) we obtain
J<f(x), g)>dx < ‘I. <(§Isz,f (x)%)"2, (;lS:,y(x)Iz)‘”)dL
R

As E is {convex, we have

11y < CIIE 11 O 2

Remarks. 1. If we consider the Littlewood-Paley operator

Gf (%) = (X IS¢ f ()IIZ)*2,

Iea

then any inequality of the form
A,llfIILE <GS ller < B,IIfIILE

implies that E is isomorphic to a Hilbert space. This can be seen using the
general method described in Section 4, and also it comes from Pisier’s work
(see [18]).

2. In the case where E is a {-convex lattice with an unconditional basis,
Theorems 7 and 8 are essentially contained in [19] since

S =2 8ha,

where (a;) is the unconditional basis.
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