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PATH SYSTEMS IN ACYCLIC DIRECTED GRAPHS

Abstract, In this paper we prove a general result for directed acyclic graphs with fixed
Peaks and valleys, relating the number of vertex disjoint path systems between peaks and valleys
to the number of paths between individual peaks and valleys. Furthermore, we show that our

basic theorem generalizes a result of John and Sachs (see [3]) concerning generalized hexagonal
Systems, '

1. Introduction. Let G =(V(G), E(G)) be an acyclic directed graph,
4={a,, ..., a,) be a certain fixed set of sources (vertices with indegree 0),
and B = {b,, ..., b,} be a fixed set of sinks (vertices with outdegree 0). The
Flements of A are called peaks, and the elements of B valleys. A path system
In G is a set W= {w,, ..., w,} of paths such that there exists a permutation
o(W)eS§, so that w; leads from g; to b,;. We say that W is disjoint if for
Cvery i and j (1 <i <j<n) w, and w; have disjoint sets of vertices.

Let p; be the number of paths leading from g; to b;. There is a stmple
algorithm counting p; ; in O(n|E(G)|) steps (see Appendix). As suggested by
S‘f1<=hS, we investigate the relation between the numbers p;; and the number of
d}S.iOint path systems. We prove a general theorem concerning this relation,
Bive a sufficient condition for its application, and prove that every general-
1zed hexagonal system satisfies this condition.

2. Basic theorem. Let
p* =|{W: Wis a disjoint path system such that sgn(s(W)) = +1}|
‘and _ ‘ :
p~ =|{W: W is a disjoint path system such that sgn(o(W))= —1}|.
TrEOREM 1. det(p;)) =p* —p~.
Proof. Let E(w) be the set of arcs used by a path w and let

EW)= [ E)
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for a path system W. Let
P(E,o0)= W: E(W)=E and ¢(W)=o¢)
and |
P(E, 0) = |P(E, o)|
for any E < E(G) and g€ S,. We count

p=1) ) sgn(o)p(E, o)

oS, E SE(G)

using both orders of summation:

p=1Y Y sgn(@)p(E,0)= ) sgn(e) Y p(E, o)

aeS, E<E@G) ; ¢S, . ECE(@G)
= Z sgn(0)|\W: a(W) = o}l = Z sgn (o) H Diatiy
aeS, oS, i=1

It remains to show that p=p* —p~. Clearly,
p= )Y Y sgn(o)p(E, o).

E SE(G) aeS,

Let us fix E < E(G). If E = E(W), where W is disjoint, then W is the
unique path system such that E = E(W). Hence in this case

Y. sgn(o) p(E, 6) = sgn(a (W)).

aeSy,
To complete the proof we have to show that for any other E
o > sgn(a)p(E, 0) =
ocSy

There are two cases possible:
(a) E # E(W) for every path systeh W in G,
(b) E = E(W) for some W which is not disjoint.
Obviously, (a) implies (1), so assume E satisfies (b). In this case (1) is 8
consequence of the following
LemMa 1. Let E < E(G) satisfy (b) and let
P(E)= \J P(E, o) = {W: E(W) = E}.

acS,
Then there exists a bijection f: P(E)— P(E) such that
sgn(o(f (W) = —sgn(o(W)) for all We P(E).

Proof of Lemma 1. A vertex ve V(G) is called a fork vertex with
regard to E if it is the common head of (at least) two arcs e,, e, E (v 15
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Called the head of the arc e = (u, v)); and v is called a good fork vertex if
there are two arcs ey, e2€ E with a common head v and two peaks g, g;
Satisfying the following condition: for any W = {w,, ..., w,} such that E(W)
=E the path w; contains e, and w; contains e,.

Assume that v is a fixed good fork vertex of G with regard to E and e,
€2, a;, a; are as above. Then the following function is well defined:

fW)y=W =iw,,...,w)) for WeP(E),

Where w, =w, for k¢li,j} and w, w; are obtained from w; and w; by
€xchanging the segments leading from v to bewy@y and from v to b,
Since fof =id, f is a bijection. Obviously,

sgn(a(f () = —sgn(a(W)).

. It remains to prove that there exists a good fork vertex with regard to E
In G. Let G’ = (V(G'), E(G')) be the digraph such that V(G') is the set of fork
Vertices in G and (u, v)e E(G") iff there is a path w leading from u to v in G
Such that E(w) < E. Evidently, V(G’) is nonempty and G’ is acyclic. We show
Fhat every source v of G’ is a good fork vertex in G. Since v is a fork vertex
In G, there exist two arcs e,, e, E with a common head v. Let W be a path
System such that E(W) = E. Let w, contain e; and w; contain e,. Take the
Peaks g, and a;. Assume that there is another path system W’ such that
,E (W) = E and w; does not contain e,. Then there is wje W’ which contains
€. This situation is shown in Fig. 1.

Fig. 1

. Let v be the first common vertex of w; and w;. Since v’ is a fork vertex
™ G, we have v'e V(G') and (v', v)e E(G’), so v is not a source in G'. This
®ontradiction proves that v is a good fork vertex, completing the proof of
~“mma 1 and also of Theorem 1.

~ Remark 1. The assumption that G is a directed and acyclic graph is
®SSential, as illustrated in Fig. 2.

3. Applications. We are interested in counting the number p of disjoint
Path systems in G. Clearly, p=p*+p~. The basic theorem implies
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CoroLrLARY 1. Let G be such that
(2 sgn (o (W)) = sgn (o (W")

for every two disjoint path systems W, W' in G. Then p = |det(p;))l.

a a a a
b, b, by b,
Fig. 2

ExampLe 1. There are graphs which satisfy not only (2) but also
3) o(W)=0o(W’) for every two disjoint path systems W, W"’.

For instance, this occurs when G is planar with the peaks and valleys lying
on the exterior face of G so that we may walk around its boundary in such 2
way that we ascend exactly once from a valley to a peak. Then any path
from a peak to a valley divides G into two components, and so we have (3}

Another class of graphs satisfying (3) is investigated in [1]; for the
definition of a generalized hexagonal system (GHS) see Example 2 (below}

Tueorem 2 ([1]). If G is a GHS and all peaks and valleys lie on the
boundary of the exterior face, then G satisfies (3).
 There is an interesting connection to the DISJOINT CONNECTING
PATHS problem for the class of graphs with property (3). The DISJOINT
CONNECTING PATHS problem is defined as follows:

~ Instance: G = (V(G), E(G)) (515 t1), ---» (n» 1) With s;, ;€ V(G).
Question: Is there a disjoint path system {w,, ..., w,} in G such that Wi

leads from s; to ¢; for all i (1 <i<n)?

- This problem is known to be NP-complete for undirected as well as fof.
directed graphs (see [2]). However, consider G satisfying (3) and assume that
the peaks and valleys are numbered in such a way that ¢(W) =id for all
disjoint path systems. Clearly, for these graphs the answer to the DISJOINT
CONNECTING PATHS problem is “yes” if and only if det(p,;) # 0. Sinc®
we can verify the latter property in polynomial time, it is not hard to s4¢
that, for the class of graphs described at the beginning of Example L
Theorem 1 yields a solution to the DISJOINT CONNECTING PATHS
problem which can be found in polynomial time. It would be interesting t0
find other classes of graphs with property (3) because the NP-complet?
problem restricted to those classes has a polynomial time solution method:
provided we can decide in polynomial time which permutation is the only
possible one. '
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- Notice | that Theorem 2 does not characterize the class of all GHS
Satisfying (3), as illustrated in Fig. 3.

b,

 Fig. 3

ExampLE 2. A hexagonal system (HS) is a 2-connected plane graph G in
Which every finite face is a regular hexagon of side length 1. We assume that
G is drawn in the plane in such a way that one of its sides is vertical and
Colour the vertices of G black and white in such a way that the top vertex in
Cvery hexagon is white and the colours alternate on every path.

A generalized hexagonal system (GHS) is a connected subgraph G of a

Cxagonal system such that the length of the walk around the boundary of
any finite face of G is equal to 4k+2 for some k. For an example see Fig. 4.

Fig. 4

‘We may consider G as an acyclic digraph whose every arc runs
downwards. Our set of peaks will consist of all sources coloured white, and
Valleys are the black sinks.

Chemists are interested in counting the number of perfect matchings in

S. It has been shown that this number is equal to the number of disjoint
Bath systems (see [3]). Evidently, if the number of peaks is not equal to the
-Bumber of valleys, then there is no disjoint path system, so there is no perfect
Matching as well. Thus we are only interested in the case where the number
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of peaks is equal to the number of valleys. In the sequel, G is called a
GHSPn if it is a GHS with n peaks and n valleys, and a GHSP if it is a
GHSPn for some n. The letter P stands here for parity. It has been shown
that the number of perfect matchings in any GHSPn is equal to |det(p;;)| (se€
[3]). So it follows that the number of disjoint path systems in GHSPn is
equal to |det(p;)]. The authors of [3] asked for a simple combinatorial proof
of Theorem 2 which avoids the concept of a perfect matching, not appearing
in its statement. We have found such a proof for HS, since by Theorem 2
condition (3) is satisfied. Now we prove that (2) holds for every GHSP,
completing the solution of the problem stated above.

In the sequel, it will be more convenient not to restrict considerations to
connected graphs. A graph G is called a DGHS if each component of G is a
GHS, and a DGHSP if every component of G is a GHSP. If G, ..., G, ar¢

the components of G, and G; is a GHSPn;, then G is a DGHSP ¥ n;; see
i=1
an example of a DGHSP4 in Fig. 5.

K\/\

Y

\\/ /

I\/\/

Fig. §

Our aim is to prove the following
THeOREM 3. If G is a GHSP, then (2) holds for G.

Before proving Theorem 3, we show some lemmas. In the sequel 2
vertex which is either a peak or a valley is called an extremal point.

LemMma 2. Let G be a GHS. Then the length of the boundary of the
exterior face of G is equal to 4k + 2 for some k iff G contains an even number 0
extremal points. Otherwise, the length is 4k.

Proof. First assume that G is a tree. During a walk around ifS
boundary every edge is visited twice, so we have to show that .

|E(G)| = (mod2) 1

iff the number of extremal points of G is even. This is of course true if |E(G}
= 1. By adding a new edge to G, cither we eliminate one extremal point Of
we create a new one. By induction we see that the number of extremal pointé
of G is even iff the number of edges of G is odd.
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Now assume that G = TuC, where T is a spanning tree of G and
E(T)nE(C) = Q.

We prove the lemma by induction on |E(C). For |[E(C)] = 0 we have just
Proved it.

Now observe that if |E(C)| > 0, then there is an edge ec C separatmg the
€xterior face from an interior one, say F. The length of its boundary is 4/+2
for some I, since G is a GHS. By deleting e we get a new GHS G’ such that
the numbers of extremal points in G and G’ have the same parity. Let m and
m be the lengths of the boundaries of the exterior faces of G and G,
respectively. Then

m=(m+1)—@l+2—1) = m —4l.

By induction hypothesis the lemma holds for G’, so it holds also for G.

CoroLLARY 2. The length of the boundary of the exterior face of a GHSP
Is equal to 4k+2 for some k.

Now we sketch a proof of Theorem 3. If we ﬁx a GHSP G and disjoint
Path systems W and W' in G we obtain three kinds of edges:

(1) edges not used by W and W',

(2) edges used by exactly one of W and W',

(3) edges used by both W and W'. :
Let us call these edges empty, single and double in (G, W, W'), respectively.
The triple (G, W, W’) defines a permutation

o(G, W, W) =0(W')" 1oa(W)
Our godl is to prove that
sgn{o (G, W, W) = +1.

In order to achieve this we prove two lemmas: first that the subgraph H of
G induced by the single edges is a DGHSP, and second that there are
disjoint path systems W, and Wy in H such that all edges of H are single in
b, w,, w)) and |

sgn(a (G, W, W) = sgn (o (H, Wy, Wy)).

Theorem 3 follows by observing that
sgn(o(H, Wy, W) = +1

for any such (H, W, W}).

: It will be convenient to formulate our lemmas more generally. Let an
SHS be any connected subgraph of an HS. The notions of SHSP, DSHS,
DSHSP are defined analogously. We denote by T the set of all triples
._(H s W, W’) such that H is an arbitrary DSHSP, W and W’ are disjoint path
8Y¥stems in H, and there are no empty edges in (H, W, W').
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LemMma 3. For every (H, W, W)e T there exists (H,, W, W))e T such
that H, is the subgraph of H induced by the single edges in (H, W, W") and

sgn(o(Hy, Wy, Wy)) = sgn(a(H W, W’)).

Proof. Let d be a number of double edges in H. If d = 0, then there is
nothing to prove, so assume that d > 0. Let = be a maximal path in H
consisting of double edges. Obviously, the end points of z have degree 1 or 3
in H and all other vertices of = have degree 2. Let H, be the subgraph of H
obtained by deleting all edges of = and all its vertices of degree 1 or 2.:

CLAIM. There exist W, and W, such that (H,, W,, W;)e T and
o(H, W, W) =a(H,, W,, W)). |

Since H, contains less double edges than H does, the lemma follow$
from the Claim by induction. It remains to prove the Clalm We distinguish
three cases.

Case 1. Both ends of = have degree 1.

Then = is one component of H, one of its end points is a peak the other
is a valley. Thus = is one of the paths in both path systems. We get W, and
W, by deleting this path. Obviously, W, and W, are as required.

Case 2. One end pomt say q;, of = has degree 1, the other, v, has
degree 3.

Let the vertex of degree 1 be a peak (the case of a valley can be proved
similarly).

Clearly, v is a peak in H,. Exchangmg the peak ¢; by v in both W and
W' and deleting the edges contained in = we obtain W, and W as requirefi;

Case 3. Both end points of = have degree 3.

Deleting n creates exactly one new peak a,,, and one new valley b,+1-
Let

W={wy,...,w,} and W ={w},...,w,}.

Assume w is a part of the path w; and wj. Deleting = breaks w; into parts Wi
leading from g to b,, ,, and W, leading from a,., to the end of w;; and Wi
into parts w; leading from a; to b, ,, and w,,, leading from a,,, to the end
of w;. We put

“,2 = {Wl, ey Wi, ooy w,,...l}
and

Wi = (Wi oons Wy ooy By}
Evndently, (Hy, Wy, We T

Now we show that

sgn (o (Hy, Wy, W;) = sgn(o(H, W, W),
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To this end we decompose the permutation
o(H, W, W)=c,0...0¢,

Into cycles and consider two cases:
(@) i and j are in the same cycle, say c,.

Let
cp=(,m,my, ....omg,j,ng, ..., n).
Then
o(H;, W, W3) = ¢, 0...0C,0Cp44,
Where '

c’p=(i’j’ Byy -eny nr) and c;,+1=(n+l, ml""sms)'

If ¢, is an even ¢ cle, then exactly one of ¢}, and ¢, is even. If ¢, is an odd
en cy y P P P _
Cycle, then either both ¢, and ¢, are even or both are odd. So we are done.

(b) i and j are in different cycles, say c,—, and c,.

Let
cp—1=(is mp,... ms) and Cp=(j,‘n1,..., n,).
‘Then '
6(Hy, Wy, W) =1 0...0Cp—30Cp—1,
Where

c;’"l = (isj, Nyy ooy By, n+1s m, ..., ms)‘

n ¢p and c,,; , have the same parity, then ¢, is an odd cycle. If one of them
18Odd and the other is even, then c,_; is even. This completes the proof of
the Claim, and hence of the lemma. :

'+ Lemma 4. Let G be an SHS, each vertex of which 'has degree 2. Then G

;Zan SHSP. Moreover, the number of peaks in G is odd iff |E(G)| = 4k +2 for

- Proof. Observe that walking around G we always ascend from a valley
_t° 4 peak and then descend to the next valley. Thus the numbers of peaks
ad valleys in G are equal. For the proof of the second part of the lemma we
Observe two facts: Every peak is separated from the neighbouring valley by
A odd number of edges. Moreover, walking around G we pass as many
_°d8€s ascending from a valley to the neighbouring peak as edges descending
Tom a peak to the neighbouring valley.
-+ LEMMA 5. Let G be a GHSP, W and W' be two disjoint path systems in
' Gwmd H be the subgraph of G induced by the single edges in (G, W, W’). Then
s o pGHSP. |
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Proof. Each component of H is a cycle, thus H is a DSHSP by Lemma
4. We show that each cycle of H has length 4k + 2 for some k. Let H, be one
of the cycles and let G, be the subgraph of G induced by all vertices
belonging to H, or lying inside H,. We denote by H, and F, the subgraphs
of G, induced, respectively, by the single and nonempty edges.

CLar . G, is a GHSP.

Obviously, H, is a union of pairwise disjoint cycles, and hence it is a
DSHSP. Moreover, H, is obtained from F, by deleting successively maximal
paths of double edges. This operation preserves the difference between the
number of peaks and the number of valleys; hence F, is also a DSHSP.

We show that G, and F, have the same set of peaks. Let v be a peak of
G,. If veH,, then veF, since H, = F,. If v¢H,, then v is a peak in G,
hence incident to some edges in W and W’, so veF,. Since peaks remain
peaks while passing to subgraphs, we have shown that v is a peak in F,.
Now assume that v* is a peak in F,. If it were not a peak in G,, it would be
incident with some vertical edge ec E(G,) as shown in Fig. 6. But e, or e;
must belong to W or W', and since v* is not a peak in G, e cannot be an’
.empty edge, contradicting the assumption that v* is a peak in F,.

Fig. 6

The same holds for valleys, so G, is a DSHSP.

Every interior face of G, is an interior face in G, and G, is obviously
connected, so G, is a GHS. Consequently, G, is a GHSP and the Claim is
proved.

By Lemma 2 the length of the boundary of the exterior face of G, is
equal to 4k+ 2 for some k. This is exactly the length of the cycle H,, so W¢

are done.
Proof of Theorem 3. Let W and W’ be disjoint parth systems in ¢

and let H be the subgraph of G induced by the single edges in (G, W, W’). BY
Lemma 3,

sgn(a (G, W, W) =sgn(o(H, Wy, W)))

for certain W, and W, such that (H, Wy, W))eT. By Lemma 5, H is 2
DGHSP and, by Lemma 4, every component of H contains an odd numbéf
of peaks. So o (H, Wy, W)) is a composition of odd cycles. For the exampl®
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‘in Fig. 7 we have
o(H, W, W)=(1,4,5,3, 2)o(6, 8, 7).
In general, o(H, W,, W) is even, so a(G, W, W’) is even, ie.
sgn(o(W)) = sgn(o(W").

Qg ar

Fig. 7. — indicates W, = indicates W’

Hence Theorem 3 holds.

| Remark 2. The assumption that evefy component of the boundary of
2n interior face has length 4k+ 2 is essential; see Fig. 8 where o (G, W, W)
=(1,2).

a; a;

b,
Fig. 8

. Remark 3. Example 2 can be generaﬁzed as follows: Let G be a
1's“bgl'aph of an HS, A = {a,, ..., a,} a set of vertices of G coloured white,
and B = {by, ..., b,} a set of vertices of G coloured black. As before we can
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investigate disjoint path systems W = {w,, ..., w,} with the corresponding
permutation ¢ (W) such that w; leads from g, 'to bog)-

Notice that none of the edges (v, ) and (b;, v') (where g€ A4, bjeB
v, v'e V) is contained in a disjoint path system W. Moreover, a source s of G
is contained in a d1s30mt path system if and only if s€ A. Similarly, a sink ¢
of G which is not in B does not appear in any disjoint path system. This
means that in order to investigate the disjoint path systems of G we may
consider the subgraph G’ of G obtained by repeating the following procedure
as long as possible: .

(1) Delete all edges (v, a)) for a;e A.

(2) Delete all edges (b;, v) for byeB.

(3) Delete all sources s with s¢ A.

(4) Delete all sinks t with t¢B. _

(5) Delete all isolated vertices v such that v¢ AU B.

The set of sources of the resulting graph G’ is A, and its set of sinks is B.
Since every disjoint path system in G is a disjoint path system in G’ and
conversely, we obtain the following ‘

CoRrOLLARY 3. If G'.is a DGHSP, then the number of disjoint path systems
in G between A and B is equal to |det(p,)|.

Appendlx Here we describe an algorithm for counting (p,) for acychG
, graphs in O(n|E(G)|) steps, thus generalizing the algonthm for GHS given.
in [3].

Let the graph G be given by the set of adjacency lists, i.e., for ever¥
vertex v we have a list of its successors:

S@) = {v': (v, v)eE(G)}.

First we determlne the indegree In(v) for all vertices v. This can be doné
gomg through the adjacency lists in O(IV(G)I+IE(G)|) steps. Then we definé
as in [3] a path vector
ﬁ(v) (pl (IJ), Lo pn(v)) fOl' every ve V(G):
where p;(v) is the number of paths leadmg from g, to v. We are interested i#
counting p;; = p;(b). The algorithm proceeds as follows:
1. for each g;e 4 and each j (1 <j < n) do pi(a;):=if j=1 then 1 elseﬂ
endfor
2. for each veV(G)\A do p(v):=0 endfor
3. put all vertices with In(v) = 0 into list I
4. wlnle I+ @ do remove a vertex v from I
5. for weS(v) do p(w):= p(w)+p(v)
In(w):=In(w)—1.
if In(w) =0 then
7 put w into I endif
endwhile endfor



Path systems 411

Steps 1 and 2 need O(n|V(G)|) operations, step 3 needs O(|V(G)|) ones.
The while-loop is executed for each vertex of G exactly once, whereby steps
5-7 are executed once for each edge of G. Step 5 needs O(n) operations, the
Other steps need O(1). Together we get time complexity O (n(|E(G)|+|V(G)))),
Which is O(n]E(G))) for graphs without isolated vertices. For graphs with
bounded degree (In(v), Out(v) < d for every ve V(G)), the execution time of
the algorithm is O(n|V(G)|). This applies to GHS, where d = 2.
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