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E. KOWALSKA (Wmdaw) :

ON LOCALLY TREE-LIKE GRAPHS

Abstract. We deal with locally tree-like graphs and provide an upper bound to the number
of edges in such graphs. .

1. Introduction. In this paper we present an upper bound to the number

E; edges in locally tree-like graphs. For basic terminology and notation, see
1.

Let G =(V(G), E(G)) be a graph, where V(G) is a finite set of vertices
and E(G) is a set of edges, ie., two-clement subsets of V(G). By the
‘heighbourhood N (x, G) of vertex x in G we mean the subgraph of G induced
by all vertices adjacent to x in G. A graph G is a locally tree-like graph if the
neighbourhood of every vertex x of G is a tree. An essential role in the
c311~’=ll‘acter1zatlon of locally tree-like graphs is played by 2-trees, the general-
izations of trees. The class of 2-trees is defined recursively in the following
way:

(1) K5 is a 2-tree.

(2) Let H be a 2-tree and let G be a graph obtained from H by addmg
one new vertex and two edges connecting it to two adjacent vertices in H.
Then G is a 2-tree.

" (3) The class of 2-trees contains no graphs except those described in (1)
and (2), ' :

The underlymg theorem characterizing locally tree-like graphs with the
Mminimal number of edges is a simple corollary to Theorem 9 in [3].

THEOREM 1. The class of 2-trees consists of all connected locally tree-like
graphs with the minimal number of edqes equal to 2n—3, where n is the number
of vertices in the graph.
| A connected locally tree-like graph which is not a 2-tree and has more
than 2p—3 edges is presented in Fig. 1.

Since locally tree-like graphs cannot be too dense Zehnka asked in [3]
for determlmng an upper bound to the number of edges in such graphs. He
Proved in [3] the following
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THEOREM 2 ([3]). For any positive integer q there exists a connected
locally tree-like graph in which the minimal degree of a vertex is greater than q.

Fig. 1

The proof of Theorem 2 in [3] is based on the existence of a finite
projective geometry PG (p) in which each line is incident with p+1 points
and each point is incident with p+1 lines. We present here another proof of
this theorem based only on the following proposition:

ProposITION 1. For any integer p > 1 there exist an integer n and a
family B, of (p+ 1)-element subsets of S = {1, 2, ..., n} such that

(1) the cardinality |#,| of #, is n,

(2) every element of S belongs to exactly p+1 members of this famtly

Proof of Propos1t10n 1. For p=1, we have n=3 and
={1,2,3}, @ ={{1,2, {23} {1,3}};
similarly for p=2, n=7 and " |
| s={1,2,..,7,
@, =1{{1,2,3},{2,3,4), 3,4,5}, 4,56}, {5,6,7}, {1,2, 7}, {1, 6, T}}-
The families £, and %, satisfy the conditions of Proposition 1. Let p be att
arbitrary integer, p > 3. Then let n=p*+p+1 and S=1{1,2,...,n}. The
family
B,={{i,i+1,...,i+ph:i=1,2, ...,p’-+1}u
u{{1,2,...,p‘+1—i, P+p+2—i, pP+p+1—i,... p2+p+1‘}-
- i=1,2,...,p}
satisfies the assumptlons of the proposition.

Proof of Theorem 2. The family #, may be used to construct the
graph desired in Theorem 2 in a similar manner as projective geometry
PG (p) is_ used in [3]. The rest of the proof is the same as in [3].
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From Theorem 2 it follows that for fixed g and n the number of edges in
4 connected locally tree-like graph G may be greater than gn/2, n = |V (G)|.
Therefore, there exists no upper bound to the number of edges in G, which is
a linear function of n.

2. Main results. We present now some properties of 2-trees and locally
tree-like graphs useful in further considerations.

ProrosiTionN 2. If T is a 2-tree, then the graph T,,

T, =(V(T), E(T)u {e}),

Where e = {u, v}, u, ve V(T) and dr(u, v) =2, is not a locally tree-like graph.

Proof. It is sufficient to notice that the addition of such an edge
€= u, v}, u, ve V(T), dr(u, v) = 2, to the 2-tree T causes the appearing of a
Cycle in the neighbourhood of some vertex of the new graph T;. Let w be the
vertex adjacent to u and v. By the definition of 2-trees, the vertices u and w
as well as w and v belong to some 3-clique in 7. Let us assume that the
vertices u, w, ' induce a 3-clique in T. If w,u’, v also induce a 3-clique, then
the vertex v has K in its neighbourhood in the graph T, (see Fig. 2). Hence
T is not a locally tree-like graph.

Now, if w, ¥, v do not induce a 3-clique in T}, then v and w cannot
belong to the same clique as u and w. This situation is presented in Fig. 3.

u v

Fig. 2 - Fig. 3

Let us consider the neighbourhood of the vertex w in T and in T;. The
Connectivity of the graph N(w, T) implies the existence of a path between u
and v in T; hence N(w, T;) contains a cycle. Therefore, again T, is not a
locally tree-like graph. -

The next property of connected locally tree-like graphs indicates that 2-
trees are, in some sense, minimal graphs in the class of locally tree-like
&raphs, :

Tueorem 3. Every connected locally tree-like graph G contains a spanning
s“bgraph isomorphic to a 2-tree. ' .

> Proof. Let v be a vertex of G. Then the subgraph G, of G, induced by v
nd aj] jts neighbours, is a 2-tree. If G is isomorphic to G,, then we obtain
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our assertion. In the opposite case, G, may be extended to a 2-tree defined
on the whole set of vertices of the graph G. For this purpose it suffices to
show that if the 2-tree R is a subgraph of G and V(G)2 V(R), and u is
adjacent to R (i.e, u is adjacent to we V(R)), then there exists a 2-tree R’
which is a subgraph of G and

V(R) > V(R)U {u}.

Essentially, the fact that w has a nonempty neighbourhood in R and N(w, G)
is connected implies the existence of a path P between vertices
wieV(N(w, R)) and u, not containing the vertex w. We have then the
situation illustrated in Fig. 4. The graph R’ is obtained in such a way that we
add to R the vertex u, all vertices of the path P not belonging to V(R), the
elements of E(P)\E(R) and edges connecting the vertex w with V(P)\V(R)-
Our assertion follows from the connectivity of G and the finiteness of the set
V(G).

~ Fig. 4

Proposition 2 and Theorem 3 imply the following corollary:
CoroLLARY 1. If G is a connected locally tree-like graph, and a 2-tree T

is its spanning subgraph, then dr(u, v) > 2 for every x = {u, v}e E(G\T)-
Hence we obtain

THEOREM 4. Let G be a connected locally tree-like graph with n vertices.
Then .

1 - |EG) < (Z)— max |{{u, v}: u, ve. V(G), dy(u, v) =2,

T a‘spanm‘ng 2-tree subgraph of G}|.
Inequahty (1) gives- the best possible upper bound to the number of
edges in a locally tree-like graph in the following sense:

- THEOREM S. There exists an infinite class of connected locally tree-hke
graphs for which (1) holds with equality. -
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Proof. Let us consider a graph G defined in the following way:
V(G)=1{a,b,c,d,e,f, g, h,hs,....,h,), nx=0,
EG)={{a, b}, {a,d}, {a, g}, (b, c}, b, g}, {b, ¢}, {c, d}, {c, [}, {a, e},

{e. g}, {d.f}, {d, e}, {e. £}, {1, g} o {{h, g}, s, 1)
i=1,2,..., n}
(see Fig. 5). |

Fig. 5. The graph G,

It is easy to check that G is a connected locally tree-like graph.
Simultaneously, G has a spanning 2-tree T with diameter equal to 3 and G
arises from 7T by adding all edges between the vertices remaining at distance
3 from each other. Hence the equality in (1) holds. '

The following question remains. Let G be a connected locally tree-like
8raph with n vertices and let a 2-tree T be its spanning subgraph. Is it
Possible to express the number of pairs of vertices which are at distance 2
Tom each other in T as the function of n?

_ We now present another form of estimation (1) in which the right-hand
S‘_de of the inequality is a function of n, n = |V(G)|. Let us first define a special
Ind of 2-trees. : |

A 2-tree on n vertices is called a 2-chain if its degree sequence is of the

f(*"llowing form: '

(2,3,4,4,...,4,3,2).
AR
n—4
ThFSe special 2-trees are “extremal” graphs with respect to the number of
8 of vertices remaining at distance 2 from each other.

. TueoRreM 6. The 2-chain on n vertices has the smallest possible number of
Pairs of vertices which are at distance 2 from each other among all 2-trees on n
Yertices, n > 4. This number is equal to 2n—1. EE

. Proof. (A) First we show that the 2-chain G has 2n—7 pairs of vertices

ich are at distance 2 from each other. It is easy to check the above
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formula for 2-chains with 4, 5, 6 or 7 vertices. For n >7 we have (see Fig. 6)
de(i,i+3)=dg(i,i+4) =2, i=1,2,3,
dg(d, 1) = ds(4,7) = dg (4, 8) = 2,
de(i,i—3)=dg(i,i+3)=dg(i,i—4)=dg(i, i+4) =2,
i=5,6,...,n—4,
dg(n—=3,n—T=dg(n-3,n—6)=dg(n—-3,n =2,
dgli,i—4) =dg(i,i~3)=2, i=n-2,n-1,n

1 3 5 7 9 " ns a3 aH

Fig. 6. The 2chain on n vertices

From the above formulas it follows that the total number of pairs of
vertices which are at distance 2 from each other is equal to

(6+3+4(m—4—5+1)+3+6)2=2n-7.

(B) We prove now that 2n—7 is the smallest number of pairs of vertices
in a 2-tree G, n = |V (G)|, whose mutual distance is equal to 2. The proof is
by induction on n.

(a) (b)

Fig. 7. The 5-vertex 2-trees

1. The 2-chain is a unique 2-tree with 4 vertices; hence our assertion is
true for n = 4. For n = 5 the situation is shown in Fig. 7. We have 10—7 =3
pairs of vertices with the desired properties in subcase a, and 3 such pairs in
subcase b. This fact confirms our assertion for n = 5. For n = 6 there existd
only one 2-tree with n vertices, containing 12—7 = 5 pairs of vertices which
are at distance 2 from each other; it is the 2-chain. The other 6-vertex 2-trees
(see Fig. 8) have 6 such pairs.

2. Let G be a 2-tree with k vertices. Choose in G a vertex v of degree 2
(the existence of such a vertex follows from the definition of a 2-tree). The
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e

Fig. 8. The 6-vertex 2-trees

inductive assumption implies that the number of pairs of vertices remaining
at distance 2 from each other in the 2-tree G—v is greater than or equal to
2(k—1)—7. The addition of the vertex v to the graph G—v to obtain the
graph G causes the increase of the number of pairs of vertices with the above
Froperty by at least 2; hence this number for the graph G amounts to at
Cast

2k—-1)—-T7+2=2k-17.

.Hence we may conclude the theorem for all k >

Remark. An immediate consequence of the above statements is the fact
hat a connected locally tree-like graph G contains at most n%/2—5n/2+7
edges n = |V(G)|. It turns out [4] that Erdés and Simonovits have proved a
stl'onger result for graphs without wheels (the class of these graphs includes
the class of locally tree-like graphs). Their bound is equal to n?/4+n/4 and is
§maller than that mentioned above for almost all positive integers.
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