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A SOLVABLE CASE
OF THE SET-PARTITIONING PROBLEM

Abstract. We show in this pape: hat the travelling salesman problem on Halin graphs,
t]_‘a( can be solved by a polynomial-time algorithm due to Cornuéjols, Naddef, and Pulleyblank,
8ives rise to a solvable case of another NP-hard problem, the set-partitioning problem. This
Special case of the latter problem is defined by a family ‘of vertex sets of certain paths in a plane
tree, We present also a complete characterization of such set families that can be implemented in
Polynomial time.

L. Introduction. Halin graphs constitute a family of minimally 3-
Connected planar graphs and have many interesting properties related to
their cycles. A Halin graph H can be defined by taking a plane tree T that

no vertices of degree two and adding a new edge between every pair of
Consecutive leaves of T to form a cycle C containing all the leaves of T (the
Order of leaves of T is induced by the embedding of T). Thus, we can write
.1 =T uC (see also Fig. 1), and in the sequel we assume that a Halin graph
8.2 plane graph. Alternatively, Halin graphs can be introduced as a family of
Plane graphs whose intersection graphs of the interior faces over the set of
Cdges, called cycle graphs, are outerplanar (see [7]). Precisely, if G = (V, E) is
8 plane graph and % = {C;}; denotes the set of the interior faces (cycles) of
G, then the cycle graph B(G, %) of G with’ respect to % has the vertex set
;°°l‘responding to ¢ and two vertices are adjacent in B(G, %) if and only if
& corresponding cycles share an edge. It is evident that the cycle graph of a
“8lin graph .is 'a 2-connected outerplanar graph, although the converse
does not hold in general. o |

Much of the research devoted to Halin graphs has been focused on the
Sructure of their cycles. In particular, we know that Halin graphs are

Amiltonian, 1-Hamiltonian (ie, H and H—v are Hamiltonian for every
Vertex ), and almost pancyclic (see [4] for details). Moreover, Cornuéjols et

a [1] (see also [2]) proved that the travelling salesman (TS) problem on

—
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Halin graphs can be solved by a polynomial-time algorithm. This result
follows from a general theory of the TS problem on graphs which contain 2
3-edge cut. The algorithm proposed in [1] is a recursive procedure which
transforms a given instance of the TS problem to another instance of the
problem in a reduced Halin graph. The reduction depends on shrinking 2
certain subgraph, called a fan, to a vertex. A fan in a Halin graph H = TuC
is induced by a non-leaf vertex v of 7, which is adjacent to exactly oné
other non-leaf of T, and the leaves adjacent to v. For example, the graph in
Fig. 1 has three fans. The reduction process redefines also the weight
function. A sequence of ,reductions leads to a. wheel for. which the TS
problem can be easily solved.

Fig. 1. A Halin graph and its intersection graph (in dashed lines)

The purpose of this paper is: (1).to provide transformations between 1%
special-case of the TS problem on Halin graphs and a special case -of the s6®
partitioning (SP) problem and (2) to show that these-special instances :of the
'latter problem-can be.recognized by a polynomial:time -algorithm. This wil
‘prove that the special case of the set-partitioning problem.can be solved bY®
polynomial-time algorithm.

-+~ In-what follows, an instancg of the TS problem is defined by specifying #
pair {G; x), where G is a graph and x'is a weight function described on t
edge set of G. The. problem is to find a minimum-weight Hamiltonian c

of G. Similarly, an instance of the SP problem is defined by (S, ¢, y);, W

¥ is a set family on the ground set §, and y is a welght function dcscnbai
on . A partition of S is a collection {S,, S,, ..., S,,;} = .% such that

SmS,-.-—~»@ (i#j) and _U S, =8

The problem is to find a minimum-weight partlnon of 8.

Hamiltonian cycles in Halin graphs. can.be also characterized by certasl
vertex covers in their intersection graphs. This leads to a new vertex-coverioé
problem on planar graphs (see [6]). The results of this paper have
announced in.a preliminary fornm in [6],

Graph-theoretic ‘terms not defined here can be found in [3]-
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2. The TS problem on Halin graphs as an SP problem. In this section we
rdeﬁne a class of instances of the. SP-.problem generated by the TS problem
on’Halin .graphs and demonstrate the équivalence ‘of both problems.

Let H =-T U C = (V, E) be a Hilin graph and'let x-be a weight function
defined on the edge set ‘of H. Let us pit C = (e, e ..., e,), where e;c E, i
=1,2,..., m. By the MacLane characterization of planar graphs, the set 7,

= {C,, Cz, cees Comb =7 C}:, of the ‘intérior faces of H constitutes a cycle
basns of H. Therefore every cycle of H can be expressed as a combination of
‘basic cycles Let ¢ be a cycle of H and let I(c) denote the subset of I
=11, 2, . .,.m} such that. ¢ is geperated by the. cycles in I—I(c). Hence
c=Co & C,

ief(c)

since C = P C;. In"6ther words, a cycle ¢ of H can-be cut out of C by using
iel

‘the basic cycles which are in I(c). Our first proposition identifies those
Subsets J of I which generate cycles in H.

ProposiTion: 1. Let J 1. Then 6—) C; is a cycle in H rj and only if the

Subqraph of (he mtersect:on qraph B(H %) of H qenerated by J is connecred

Proof. It is clear that if J generates a disconnected graph in B(H, v,
then ("B C; is a union of edge-disjoint cycles. On the other hand, let F denote

‘the subgraph of B(H, %) induced by J. The graph 'F is outerptane and
Moreover, it follows from the telation between H and B(H, %) that the
Vertices of F can be ordered in such’ a way (vl, Dy, - , ) that the subgraph
Foof F generated by v, v,,...; v (i=1,2,...,)is connected and the basnc
Cycle C; corresponding to has exactly one pafh in common with F,_
Hence F generates a-cycle.

Some general results about the relations between cycles in planar graphs
and their intersection graphs are discussed ‘in [5]. Hamiltonian cycles are

aracterized as follows (see Flg 2 for |Ilustratlon)

Proposrion 2. Let J < 1. Then c=C® (—D C is a Hamzltoman cycle of

"tf i and only if no two cycles in-J -have a vertex in common and |C;}; cover
all interior vertices of H.

Proof. Let c be a Hamiltonian’ cycle in H and let C, and C, be two
YERS in J which ‘'share at least a vertex. In the former case, if (g, h)'is an
interjor edge, then I—J induces a disconnectéd subgraph contradicting

Oposition 1. If (g, h) is an exterior edge, then the exterior vertex of H
Shared by C, and C, does not belong to c, so ¢ is not a Hamiltonian cycle.
1the Iatter case, I—J induces also..a:disconnected subgraph since g and h
tlong to the same face of the outerplane graph B(H, %). This shows that no
WO cycles of J share a vertex in H. Moreover, if there is an interior vertex of
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H which is not covered by a cycle of J; then ¢ does not pass through this
vertex: therefore ¢ is not a Hamiltonian cycle.

On the other hand, if the cycles in J are vertex-disjoint and cover all
interior vertices of H, then c is a cycle (by Proposition 1) and every vertex of
H'is covered by c. Hence ¢ is a Hamiltonian cycle.

‘Fig. 2. A Halin graph, one of its Hamiltonian cycles (in heavy lines), and the corresponding cyck
cover

By Proposition 2, there exists a correspondence between Hamiltonian
cycles of a Halin graph H and certain cycle partitions of the interior vertices
of H. This leads to the following special case of the SP problem.

‘Let H = (V, E) be a Halin graph and let § < V denote the set of interiof
“vertices of H. We now define the set family & = 1S,},, where S; consists of
the interior vertices of the basic cycle C;. Note that the sets in & correspoﬂd
to maximal sections of non-leaves of the plane tree T in the cyclic order of
all vertices of T generated by the embedding of 7. A set family which can be
constructed in such a way is referred to as an interior plane-tree family-
Proposition 2 can be now reformulated as follows:

CoroLLARY 1. There exists a one-to-one  correspondence betweeh
Hanmiltonian cycles of a Halin graph H = T U C and the set partitions of the
interior plane-tree family (S, &) of T.

Let us now consider the weighted problems. Let (S, SV y) be an instanc®
of the SP problem defined on the interior plane-tree family (S, %) of a Halin
graph H. The solution to (S, .%, y) can be found by solving the TS problem
(H, x), where x(e) = 0 if e is an interior edge of ‘H, and x(e) = y(S,) if ¢ is &"
exterior edge and §; corresponds to the face containing e.

On the other hand, let (H, x} be an instance of the. TS problem and let
& be the interior plane-tree family generated by H. The corresponding
instance (S,..%, y) of the SP problem is defined by

y(8) = Z z(f)—2x(e),

JeCi
where & is' the exterior edge of C;. Let us consider the objective function

z=x(0+Y y(s),

JjedJ
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where 18;}; is a partition of .%. The first term in z, the length of the exterior
Cycle C of H, is a constant. The corresponding SP problem is to minimize z
over all partitions |S;!, of <. We have

z=Y x(e)+X yS) =Y xe)+ X [T x()-2x(e)]

el el e Jel JeCj
= 3 xe+Y [ x()-x].
iel -J jel  feCj

T.herefore, z is the weight of the Hamiltonian cycle ¢ which is generated by a
8iven partition {S;}, of #. Now the first term in z is the weight of that
Portion of ¢ which belongs to the cycle C and the second term is the weight
of the interior portion of C. Thus, we proved the following theorem:

. THEorem 1. The TS problem on a Halin graph can be transformed to an
Mstance of the SP problem on the corresponding interior plane-tree family, and
converse transformation also exists.

In the next section, we present a characterization of interior plane-tree
l‘f‘milies that can be easily implemented in polynomial time. Thus, the total
lime spent on recognizing and solving the special case of the SP problein
defined above is bounded by a polynomial function in the problem size.

3. Characterizations of plane-tree set families. The purpose of this
Section is to present a characterization of intetior plane-tree families and
discuss the complexity of its implementation. The characterization is derived
Tom a characterization of plane-tree families which are also defined on plane
trees, however the sets are taken over the whole vertex sets. Let H=TuC

3 Halin graph and let {C;}, denote the set of its interior faces. Then the
Plane-tree family 7 of H (or of T) is defined as = {T;},, . where T, is the
Vertex set of C,. We remind the reader that for the sake of applications of
Our results to Halin graphs we assuime*that trees have no vertices of degree
two, although the results of this section can be easily extended to arbitrary
Plane trees, o |

The following theorem gives necessary and sufficient conditions for a set
Amily 5 — {T) of subsets of V to be reprezentable by thé vertex sets of the
terior faces of a Halin graph.

 Tueorem 2. A family T = {T;}, of subsets of V is a plane-tree family if
“d only if 7 and V satisfy the following conditions:
L V|23, 11123, and |T| > 3 for every icl.
2. U T =V '

. el : . .
3L~ < 2 for every k, lel, k #1.
4. Let us define the following edge set:

E = {{u,v}: u,veV, u,ve T NT, for certain k, lel, k#1}.
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@) {E| =|V|—1.
(it) For every {u, v} in E there exist exactly two sets T, and T, (k # )
such that {u, v} « T, T,.
(i) T; has |T|—1 pairs in E that form a path whose vertices belong to
exactly two- sets of 7.
Let s; and t; denote the endvertices of T;, let W = {s;, t,;: iel), and let us
define the following edge ser on W-

— (5, s 3
C—' 'e" o= ',S,-, I,‘}. IEI}.

(tv) C is a eycle.

Before proving the theorem, we first illustrate that all the conditions are
necessary and independent. Conditions 1 and 2 are evident. Condition 3
follows from the assumption that we consider set families on trees with no-
vertices of. degree two..

Figure 3(a) shows a set family-on, a unicyclic graph which satisfies all the
conditions except 4(i). In this case we define

) _ . g X
V = uy, uy, us, ug, vy, 03, U3, 04}

and
Ti = {ul-a.vl’ Uz, Us, u3}s TZ,K= {u3s vSal D4, Uy, ul}s

- ; —
L= {uZa,_'LZs U3, Uay Usj, Ty = tuy, vy, Uy,.V2, Uz}
A family which'satisfies all the conditions except 4(ii) can be defined as
follows:
fay- T A
V="u,v:1=1,2,3,4,5
and
= iz —f 2. :
Tl - lul"uS’ Us, Ul}a ’TZ = Uz, Us, Vs, 02}” Ts = {ulb'uﬂs uZ}’
P = —
T, = Wi, vs, 025, Ts = |us, us, vs, va},  To = {uy, s, Us, Va},
ie . —
T = tu, us, ug}, Ty = {03, vs, U4}

A family which satisfies ali the conditions except 4(iii) is illustrated in
Fig. 3(b) and is defined as follows:

V= {uj:j= l, ieay 7},

. - | 2 S | : _ : 1
T, = \uy, uy, "3}, Ty = (uy, us, u4-}, T = {us, Uy, Uy, Ugy Ur >

'I:t = {"4’ u6, u5}s Té = {us’ Ug, u'}}- .
Finally, let us consider the family 7 on V = {v;:j =1, ..., 7} defined bY
— - —
'Tl = Uy, Vg, Uz}a T'Z == .{029 U4, "7,3':'5 'TS - '{v3r U4, vl}"'

— 1 | " - 1
’.I:i- - l057 Vg, U6ja TS = Ve, Uy, 07}, T:S - {.U-,V,-U4, 05)‘
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Fig. 3. Non plane-tree families

7 satisfies Conditions 1-3 and 4(i)(iii). However,
— ‘
W = vy, vs, Us, U7, Ug},
— s f (
C= T U4}a Va, Us}, WUs, Ul}': '{07, Us}s {DS: 07}}

and C consists of two cycles. It-is easy to check that 4 has no realization
On' a plane tree.
Proof of Theorem 2. The necessity follows by the examples above.
To prove the sufficiency, we construct a Halin graph such that 7
=1 ; is the family of vertex sets of its interior faces. By Conditions 1 and
4, every set T, is a path over E with the ends contained in exactly two such
Paths. Let us considet the graph F = (V, E’) on the set V at its vertex set and
With the edge set E' = E L C. The elements of each set T; can be arranged in
3 cycle C; of F and every such cycle contains an edge ¢; which does not
belong to any other cycle in % = {C;},. By Condition 4(iii), é&very vertex of W
bcl(}ngs to exactly two paths of .7. Hence C induces a 2-regular graph on W
and, by Condition 4(iv), C is a cycle. Thus, F is a connected graph. The
%Yclomatic number of F is equal to u(F)=|E|—|V|+1. Moreover, by
Condition 4(i) and the definition of E’, we have u(F) = |E|+|I|—|V|+1 = [I|.
herefore, the set of cycles % constitutes a cycle basis of F, which is a
fundamenta] cycle set, since every cycle in % contains the edge that does not
elong to any other cycle of -%. Let us consider the set of cycles %'
:(‘?U'{C}, which. consists of u(F)+1 cycles, u(F) of which form a cycle
as1s, and every edge of F belongs to exactly two cycles in %’. Hence, by the
acLane theorem, F is a planar graph, % is the set of interior faces of F,
And C is the exterior cycle of F corresponding to %. Since % is a
“ndamental cycle set, removal of the edges of C from F results in a spanning
free T of F. By Condition 3, T has no vertices of degree two. Thus, we may
c(’llc'lude that F can be expressed as T C, where T is a plane, tree with no
Vertices of degree two and C is a cycle going through pendant vertices of T.
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Therefore, F is a Halin graph and J is the family of vertex sets of
interior faces of F.

It is easy to show that Condition 4(iv) can be replaced by the following
one:

4iv’) T is a minimal family satisfying the other conditions, that is, there is
no proper subset U < V such that the family 7' = |T,e 7: T, < U} satisfies
Conditions 1-3 .and 4(i)—iii).

However, for the sake of effectiveness we choose the former as easier for
testing. Note also that the Conditions 1, 2, and 4 characterize set families on
plane trees which may contain vertices of degree two.

We now proceed to characterization of the set families which define the
special cases of the SP problem on Halin graphs. Let H = T U C be a Halin
graph and let S be the set of its interior vertices. The interior plane-tree
family & = {S;}; of T (or of H) may be considered as the set family on the
tree T' obtained from T by removing all the leaves of T. In this case, every
set §; which is not a singleton also forms a path (over the set of pairs of
elements which belong to exactly two sets), however its endvertices may
belong to more than two sets. A characterization of & must guarantee the
possibility of extending the sets {S;}, to the family {T;}, which satisfies the
copditions. of Theorem 2,

Let; us discuss necessary modifications of the conditions of Theorem 2.
The set of interior vertices of a. Halin graph may consist of one element;
hence.|S|-> 1 and, therefore, |S;| > 1 for every iel. Conditions 2, 3, and 4(i>
(i1) remain u.nchanged for.#. Let us define D as the set of pairs which.belong
to at least two.sets of &. We refer to the elements of D as to edges:
Condmon 4(iii) has to be modnﬁed since. ¥ may contain one-element sets
and sets-in % may tetmmate wnth vertices whlch belong to several other sets:
Thus, we require only that if S; has at least two elements, then it has lS‘I- ;
(patrs): edges in.D. which form a. path Endvertices of paths in % are closely, .
related to the one-element  sets of &, Let us first define the following sets:

S' = {ueS: S; = {u} for certain iel},
U= 1P it pi» @ are the endvertices of S; (iel), where |S;| > 2},
U'= {ueU: u belongs to exactly two sets of ).

Figure 4 lllustrates all possible c(mﬁguranons of pendant edges (up t0
their number in fans) in a plane treé¢. An elemént of S’ corrésponds to a pﬁlf
of pendant edges in 7'incident with a common vertex. Let u denote a vertex i
T’ adjacent 16 a pendant Vertex of T. Then eithet T" = {u} or T" is a tree 0
at least two vertmes In the former case, Ti$ a star; lience S = §' = [u} and
S is the famﬂy of one-elemeént subsets of S. If 7" has at least two vertices,
then U consists of' nelghbours of pendant vertices of T and every vertex’ ues
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corresponds to a bunch of at least two pendant edges of T, therefore, u
tf:l‘mmates some paths of & in T'. Hence ' = U. Moreover, if u is pendant
in T", then ue U’ and u has at least two pendant neighbours in T, since T has
no vertices of degree two. Hence U’ = §'.

If u is non-pendant in T', then it may or may not belong to §’ (see Figs.
4(b) and (c)). Observe that if we remove all pendant edges of T incident with
a common vertex u and T’ # {u}, then u becomes an endvertex of an even
Number of sets in %. However, if u is not an endvertex of a set in &, then &
must contain at least-a pair of sets which terminate at # and have no other
Vertices in common (see Fig. 4(b)).

P
4
/"\\u ‘ /
/ \
4 b

bl ugu,ues! v ¢ ugustuey

a) ¢
ueg 'U” Sl' U

Fig. 4. Configurations of pendant edges (dashed lines) in plane trecs

The properties . of & discussed so far guarantee that & ecan be
Tepresented on a tree. Addmonally, we have to assure that & corresponds to
4 certain embedding of the tree in the plane. In the terms of the trge, T, we
Would like to augment & on T’ to.7 on T in such a way. that ‘the
endvertices of sets in .7 combined mto pairs form exactly one. cycle (see
Condition 4(iv) in Theorem 2). Since the elements of this cycle are not
Present in &, we formulate a corresponding condition (Condition 6 in

heorem 3) using subfamilies of ¥ which would correspond to subcycles
When & js extended to 7. Note here that we must prevent decomposition
Only at a non-endvertex of some subfamily since, otherwise, using pendant
g8 of T we can - always combine the trees of subfamilies :sharing an
*dvertex into T.
Thus; we have demonstrated the necessity of the: following conditions.

THeOREM 3. A family & = {8;}; of subsetsiof -S:is an interior plane-tree
Mily. if and only if & and S satisfy the following conditions:
1 IS} = 1, |I| > 3, and |S)|'= 1 for every iel.

U §; =

3' IS, ~ 5, <2 for every k, lel, k #.
4. Let ‘us define the following edge ser:

D= {{u, v}: u, veS, u,veS NS, for certain k; lel, -k #1}.
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@) -1D| = |8} —1.

(i) For every \u, v} D there exist exactly two sets S, and S, (k-# 1) such
that {u, v} =8, nS,.

(i) If S; has at least two elements, then it has |S;|— 1 pairs in D which
form a path.

SA)Af|S| > 1, théen U = §8 <= U.

() If ueU and u is-a non-endvertex of some set in &, then there are
two sets Sy, S,€ % for which u is an endvertex and |S, N S| = 1.

6. .The family 7 is a minimal family satisfying Conditions 1-5, that is, S
cannot be expressed as a union of non-empty subsets S =W, uW, U ... UW,
(t 2 2) such that the subfamily ¥; = {S;e &: S, = W,! satisfies Conditions 1-5
Jor every j=1,2,...,t, and two subfamilies have at most one common vertex
which is a non-endvertex in at least one of them.

Proof. The necessity has been demonstrated before stating the theorem.

For the proof of the sufficiency, let & = (S;}, be a family of subsets of S
satisfying the theorem conditions. We construct a family .7 = T}, which is
a plane-tree family on the tree that generates % as an interior plane-tree
family. At the beginning we assume 7 = & (ie, T, =S, icl), V =S, and
then we proceed with regard to the status of the elements of S. Let ueS

If [S] =1, then S =S and ¥ consists only of one-element sets. In this
case we augment V with ,r,, r2, .-es I'm), Where |I} =m, and every set S;
= u} for iel is augumented to 'r;, u, ri+1., where addition is modulo m.

Assume that S has at Iéast two elements. Then, by Conditions 4(i)}-(iii),
D#Q and U # Q.

If u¢U that is, u is not an endvertex of ‘any set in %, then we do not
alter .7 and V. Let now ueU. Let us put

'(‘u z,,;.sj'e:‘(/: ue:Sja I I 2:
and
g =/1§;e & u is an endvertex of ;).

We ﬁrst show that | ¥’ is even. To this end, let us consider the set D, of
those edges in D which contain u. Every edge in D, is a subset of exactly two'
sets of .%,. Since a set which has u as an interior vertex contains two edges
of -D,, the number of sets which-have u as an endvertex:is even. Next, W€
claim that the family ¢, can. be decomposed into non-empty .and disjoint
subfamilies each of which contains -exactly two. sets of ... First we match
every two sets §;, S, e ¢}, that share a pair, that is, |S; N S,| = 2. Then, let Ro
be a member of ¢ (if there is any) which has no mate assigned yet. There 15
R, e &, such that IROmR,I = 2. Since R, ¢ &, there is R,e %,, R, # R1»
such that [R; N R,| = 2. If Ry, then R, is assigned to R,. Otherwise, we
continue and find R;, Ry, ... in .¥, such that |R, " R,,| = 2. Since ¥, 15
finite, there must exist a set R, which terminates this sequence, that is
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Rie #,. The set R, becomes the mate of Ry. Thus, we can exhaust the family
#. and combine its members into pairs.

We claim that this process exhausts also the subfamily .%,. Otherwise,
Starting with a set which is left in %, and using Condition 4(ii), we could
dugment it first to a subfamily of &, and then to a subfamily of .% which
Satisfies Conditions 1-5. Moreover, the vertex u would not terminate any set
of this subfamily; hence the subfamily would geners*- 1 partition of ¥
described in Condition 6, a contradiction.

Therefore, we can assume that there exists a partition

Fu=FruLi0.. VS,

nto non-empty and disjoint subfamilies such that every subfamily &%
Contains exactly two sets of &,. It is clear from the construction of the
Subfamilies that all sets of Y, (or, equivalently, all edges of D,) can be
Ordered around u as Ry, R,, ..., R, in such a way that if |R, A R/ = 2, then
k=14 1 (mod ). We augment now the sets of ¥, and one-clement sets {u}
Of & to the form they should have in 7. 1f u¢ S’ (i.e. ¥ has no one-clement
%t of the form {u}), then for every j such that |R;AR;44| =1 we add a new
€lément v, to ¥ and augrhent R; and R,,; with v;. If ue$’ and there are p
One-clement sets {u} in &, then, additionally, instead ‘of ohe of the v;’s, say
U we add ‘wo, wy, ..., w, to ¥, augment R, with w, and R,,, with w,
(Instead of auigmenting both with v,) and add to 7 new sets {w,_;, u, w,!
for k=1,2,..., p. | |

Now, we show that, ‘aftér considéring all elements of S, the set family .7
Over the ground set ¥ satisfies the conditions of Theorem 2. First, if || = 1,
thén || > 3, and hence |V|>'3.'If |§| > 1, then U #@ and again [V| > 3.
M{_dreOver,"if’ IS =1, them, by Condition"5(i), S; <U and |T| =3 in' .7 .’If
1> 2, then ; is ‘extended in 7~ from both its ends, and hence |T}| >4 in
7. Conditions 2-3 and 4(i)iii) of Theorem 2 follow easily from fthe
‘orresponding conditions of Theorem 3 and from the construction of 7.
Finally, we have to show that the airs of endvertices of sets in 7 form
®xactly one cycle. To this end, it suffices to observe that for every set T,
tonsidered as a path (over, E, the. augmepted set of edges) it is always
Possible to order the edges-around. its- vertices in the -plane in such a. way
that its two endedges. (pendant) are adjacent to the rest-of 7; (or to.itself) in
Clockwise and counterclockwise orders ‘of all the e¢dges adjacent to them
(see Fig, ),

Such an qrdering of all edges of E can. be done iteratively by fixing an
0.rdelr at one of the vertices of S. ‘Therefore, the pairs of endvertices .of: the
&5 in.7 form exactly one cycle in the plane embedding of the sets of 7.

. Thus, the family .7 satisfies the conditions of Theorem 2. Hence 7 is a
Plﬁne-tree family on ¥ and" % is an intefior plane-ttee family on . This
Proves ‘the theorem, |
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Fig. 5. Embedding of a path T,

1t is easy to see that the conditions of Thcorem 2 can be tested in time
that is; bounded by a polynom1a1 L'unctlon in the size of the grOund set V and
the famlly Slmnlarly, all condmons of Theorem 3, except Condmon 6, can
be easnly venﬁed by a polynom:al-nme algorithm. Condltlon 6 can be tested
in a way descrlbed in' the proof of the Theorem Namely, for every ue U, we,
form the partition ¥ U S2U ... U S of Sf’ such that every subfamily %4
contams exactly two’ sets of V’ If such a partition does not exist for some,
ue U, the family % can be decomposed 4s described in ‘Condition 6, so & is.
not an mterlor plane-tree famnly Once .all vertices ueU are successfuﬂ)’
tested, we can construct a plane represen{atlon of the augmented family 4 as
described' in the last paragraph of the proof. This shows that T satisfies the
condmon of Theorem 2, and therefore f}’ is an interior plane—tree famlly The

total amount of wo_rk is clearly bounded by a polynomaal function in the
size of Sand 7.
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