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1. Introduction. The motivation for the study of (J* = 1)-structures is
twofold. First, they can be considered as a generalization of the first-class
electromagnetic (1, 1) tensor field J of Hlavaty [3] and Mishra [5]. Also, it is
a structure that combines those of almost product and almost complex
manifolds.

Let J be a (1, 1) tensor field on a differentiable manifold M". We say
that it defines a (J* = 1)-structure if there are everywhere non-zero C*-
functions p and ¢ on M" such that

J2—p)(J*+4¢) =0,
and positive integer numbers ry, r,, s (ry +r,+2s = n) such that
(x—p)* (x+p) 2 (x* +¢7

is the characteristic polynomial of J.
From the first point of view it is natural to impose the existence of a
pseudo-Riemannian metric g on M such that

gUJX, Y)+g(X,JY)=0;

then, the (0, 2) tensor field F defined by F(X, Y)=g(JX, Y) is a non-
degenerate 2-form that in the case n = 4 represents the electromagnetic field.
Due to this, we say that g is an “aem” (adapted in the electromagnetic sense
metric). The conditions for the existence of an aem for a given J are studied
in [2].-

From the other perspective, we consider a Riemannian metric g which is
Hermitian upon the almost complex subbundle and makes pairwise orthogo-
nal the three subbundles determined by J in TM. This will be called an
adapted Riemannian metric or, briefly, “arm”.

In [2] it is proved that the G-structure P defined by (J, g) (in both

cases) can also be obtained replacing J by another (1, 1) tensor field J that
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satisfies J* = 1 (this motivates the name (J* = 1)-structures). It is given by

3,3
= p-:q 2'7+ quz 3.
pa(p°+q9)  pa(p°+q°)

The new tensor field J is O-deformable and can be looked at as a tool
for the study of the G-structure P. Thus, in [2] the integrability of P in terms
of J is studied. Also, there is no linear connection parallelizing J unless p
and g were constants, and so in [7] we give the family of connections that
parallelize both J and g.

In this paper we study some special connections that are only partially
adapted to the G-structure (J, g) but have instead other nice geometrical
properties. They generalize in some sense the well-known special connections
in almost product and almost Hermitian structures.

2. The connection D. In the following we assume that J is a (1, 1) tensor
field on M" with the characteristic polynomial

(x=D)(x+1)2(x2+1y, ry+r,+2s=n,
and such that J* =1. Let
L =31+N)(1+J%), L =31-1)(1+J?,
I=3(1+J?, L=31-J?
be the projectors that define the direct sums of vector bundles
TM"=L, ®L,®L;, L=L,®L,.
Then
JX=X, JX=-X, J*X=X, J*X=-X
if, respectively,
XelL,, XelL,, XeL, XelL,.

We consider first the case of an arm. An arm is a Riemannian metric g
on M" such that

gUX,JY)=g(X,Y) for X, YeT,M" xeM".

Then L,, L,, L, are pairwise orthogonal.

There always exists an arm in a (J* = 1)-manifold, as is obvious. We
denote by D the Levi-Civitd connection of the arm g. Then we have
obviously

ProposiTION 2.1. If D induces connections in any two of the subbundles
L,, L,, Ly, then it induces a connection in the third one, and moreover the
three subbundles are integrable.
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The property of inducing connections in L,, L, and L3 can be charac-
terized according to the

PrOPOSITION 2.2. A linear connection V in TM" induces connections in
Ll, LZ, L3 w

Vxl3 = Vxl= leJ = 0.

Proof. If Vxl=Vyxly =0, we have VxlYeL and Vxl; YeL,. If also
IWyJ =0, then VylJ =0; thus Vyl, =Vyxl,=0,and so Vx|, YeL, i=1,2.
Conversely, if Vx|, YeL;,, i=1, 2, then VxlYeLfor all Y, and so

’3 Vle= l3(Vxl) Y+13 IVxY= l3(Vxl)Y=%l3(VxJ2)Y=O.

Thus l; Py J? = 0. Analogously, I[VyJ? = 0. Summing up, we have VyJ? =0,
and so Pyl = Vxl3 =0. But, since

LVyly=1Vxl, =0
and
L=31+))1, L=301-N)l, VI=0,
we have
LVx(UD)=L1WWxJ=0 and LIVyJ=0.
Summing up we have
12PyJ =1PyJ = 0.

We note that we do not conclude I3 FxJ =0. That is, the earlier
‘conditions do not guarantee VJ = 0.

3. The connection V. We suppose now that g is an arm. Then we have

ProPposITION 3.1. There is a unique linear connection V on (M", J, g) such
that
" (a) V induces connections V', V2, V® in L,, L,, L;, respectively; that is,

Vel YeL, i=1,2,3.

(b) The induced connections are Euclidean along the tangent curves to
L,, L,, L, respectively; that is,

(Vyx9)(h Y, ;Z2)=0, i=1,2,3.

© T(X,,Y)=0, where T, =T, i=1,2,3.
Proof. If we make the decomposition

VxY = Vixh Y+ Vixh Y+ Vix L Y+ Vi x b Y+ Vypx b Y+ Vi L Y
+ V,lxl3 Y+ Vlle3 Y+ Vl3x 13 ),’
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the condition (c) determines the 2nd, 3rd, 4th, 6th, 7th, 8th terms in the right-
hand side, and the condition (b) determines the 1st, Sth and 9th terms.

We have also

ProrosiTION 3.2. The connection V is torsionless iff L,, L,, L, L,
L, ®L,y, L, ® L, are integrable.

Proof. It is clear that

7;(le’ IjY)= _li[ljxs le]’ l#.’a
and
T X, LY) = —LILX, LY], k#i#j#k i,j k=123

The proposition is immediate from this.

We can now see the relation between D and V.

ProrosiTiION 3.3. V is identical to D iff D induces connections in
L, L,, L.

The proof is immediate from the properties of V.

The connection V has the following property:

ProPosITION 3.4. A geodesic of V is tangent at every point to one of the
subbundles L,, L, or L, iff it is tangent to it at one point.

This proposition is a direct consequence of the following general result:

LEMMA 3.1. Let 9 be a subbundle of TM" and V a linear connection in M.
Then every geodesic with initial condition in & maintains its tangent in 2 iff
VxXe2 for Xe 2.

Proof. Let V be a linear connection on M". Let l¢;},i=1,...,n, be a
local frame of vector fields on U = M", and let {#'} be the dual coframe. The
1forms & can be considered as functions in TU, and so we have a
trivialization

" 1(U)— U xR",
X,e T, U m(x, 6(X,)).

Thus, a vector field on TU can be locally represented as

~ Y,

X =de bl—.,

e+ P

where d', b' (i=1, ..., n) are functions and ¢ are the canonical coordinates

in R

If we have V, e; = I}, in U, then the spray of ¥ is the vector field G in

TM" that we can represent in TU as

~ .0
G =0‘e‘-—[}k0"0“ﬁ.
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G, as is well known, is the vector field in TM" whose integral curves are
projected in M" giving the geodesics of V.

Now, let 2 be a g-dimensional subbundle of TM". We can consider 2
as a regular submanifold of TM". Thus, every geodesic with initial condition
in 9 maintains its tangent in 2 iff G|, is tangent to 2.

Then, let {¢;} be such that {e¢,}, a=1, ..., g, generates 2 in U, and
consider xe U, X,e 2 and Xe Tx, TU. Then X is tangent to 9 iff there is a
curve

O'(t) = ai (t) ei(n-a)(t)

such that ¢(0) = X,, 6(t)e 2 in a neighbourhood of Oc R, and ¢(0) = X. In
order that a(t)e 2 we put

o (t) = 0°(t) egir-ape)-

Thus
6=m0+3 (i-a).
ma
If
X=de +b"—a—.
x P Xx’
we have

de,=(m0)0), b'=0,u=q+1,....n, b*=35%0).
But at X, we have
9
wi

Gy, = 0 (X) e —(I'y) 0 (X,) 0*(X,)

’

X x

and since X, e 92, we deduce
Xy = X3eu,
that is '
Gy, = X:e.,—(P;,),X:x:iL :
x o |y
Thus, in order that Gx_ should be tangent to 2 it is necessary that
ry+ry, =0, i>gq.

The condition is clearly sufficient, since X,e 2. More intrinsically, we can
give the condition as

VxXeg if Xe2.
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Indeed, if Xe 2, then X = X%¢,, and so
FxX = X V,a(X"eb) = X%,(X% e, + X X* Vea
= X(XYey+4(Mu+ M) X Xe,
and it is in 2 for every Xe 2 iff I'y+ I, =0, since X(X®)e,e 2.

4. The connection V. We consider again an arm g on M", but now we
consider the almost complex operator induced by J on L,.

PROPOSITION 4.1. There is a unique linear connection V on (M", J, g) such
that

(@) Pyl YeL, i=1,2,3;

) (Pxg) (Y, ;2) =0, i=1,2,3;

€ T(X,,Y)=0i=1,2;

d ZUX, LY)=T(X,J,Y)

(e (VI3XJ)I3Y=O' '

That is, as in the case of V, we require that by restriction we get linear
connections in the structural subbundles, and also that the parallel transport
along a tangent curve to each of the subbundles preserves the scalar product
of vectors of such a subbundle; in particular, that the length of such a vector
is preserved. The conditions on the torsion are the same as before in the case
i=1, 2, but in L; we consider the usual conditions of the almost Hermitian
case.

Proof. If we make a decomposition similar to that given in the proof of
Proposition 3.1, we obtain 9 terms; the terms 1-6 are determined as in
Proposition 3.1; the terms 7 and 8 by means of the condition (d), and the
last term in the usual way (see [9] and also Theorem 5.1 below).

Now, we see the relation between V and V.

We define the 2-form F as

F(X,Y)=g(,X,JY),
and put

NX,Y)= N,,3(13 X, ,Y).
Then as usual we have (see [4], p. 148)

@.1)
dg((Vix N Y, 13Z) = 2dF (U1 X, s Z, Tl Y)+ 2dF (J 1, X, J 13 Z, 1 Y)

+9(NUL Y, 3 X), 3Z)+g(N(, X, J,2), 15 Y),
and if we define I;dF as

(l3dF)(X’ Y; Z) = dF(I3 Xa l3 Y’ 13Z)a
we have
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ProposiTioN 4.2. (i) V=V iff ;N =0 and l,dF = 0.
(i) L, is integrable and its leaves are Kaehlerian iff N = 0 and l3dF = 0.
(iii) D = V iff D induces connections in Ly, L,, Ly and V = V.

Proof. (i) Suppose ¥ = V. Then
dF (b X, Y, 3 2) = CYCI(Vl3xF)(13 Y, 1, 2)
=cycl{l X(g9(l Y, J1; Z))—9(|713x LY, J3Z)-g(,Y, Vt3x-”32)} =0

because of (b) in Proposition 3.1 or 4.1. On the other hand, as is easily
verified,

N(X’ Y) = _I[I3Xs l3 Y]’
and thus

LN(X,Y)=

Conversely, if ;N =0 and I3dF =0, we deduce from (4.1) that
(VI3XJ) Y =0,

and since ; T(JX,3Y)=0=1,T(X, Jl;Y), we have V = v.
(i) If N=0 and Il;dF =0, then ¥V = ¥, whence

N(X,Y)=—I[l X, 1, Y] =0,

and thus L, is integrable. Also, since (V),xJ)I3 Y =0, the leaves of L, are

Kaehlerian. Conversely, if L, is integrable and its leaves are Kaehlerian, we
have

ThX,L,LY)=1bT(,X,13Y)=0,
and so V;,x13Y = Dy,x1l; Y. Since
(_Dz3x~’) LY= D13x113 Y—JDI3X LY= (Vl3x-’)13 Y=0,
we obtain ¥ = ¥, and thus
LhdF =0 and N(X,Y)=-Il[LX,13Y]=0.

(i) If D~= 7, then T, =0, and thus V satisfies the conditions of ¥,
whence V = V = D. The rest follows by direct application of Proposition 3.3.

5. The aem case: the connection V. We now suppose that g is an aem,
that is a pseudo-Riemannian metric such that

gluX,Y)=—g(X,JY)

(see [2] for the conditions of the existence of such a metric).
We require, as in the previous cases of V¥ and V, that F induces
connections in the subbundles L,, L, and L;, and so V is the sum of three
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connections V', 72 and V? or, if we consider only TM" = L @ L,, the sum of
two connections FX and F3, that we shall study separately. We adopt from
now on the following notation:

A, B, C, ... are vectors and vector fields of L;

Ay, By, C,, ... are vectors and vector fields of L,;

A,, B,, C,, ... are vectors and vector fields of L,;

X,Y, Z,... are vectors and vector fields of L,;
and we recall that L] L,, L, | L, and L, | L,.

We have a canonical partial connection F; given by
ViX =14, X],

which in the case where L were a foliation coincides with Bott’s partial
connection [1].

As for the existence and uniqueness of 3 we can apply Vaisman’s
construction (see Proposition 4.1), since both for aem and arm we have

giluX, YV)+g(X,JY)=0.
But in order to obtain an explicit expression for V3 we give another proof in

the following

THEOREM 5.1. There exists a unique partial connection V3 in the subbundle
Ly which is Hermitian in the sense that

(a) (Fxg)(Y, Z2) = 0;

(b) V3JY =JPyY;

© BUX,Y)=T(X,JY), where T,(X, Y)=V3Y-Vr X—L[X, Y].

Proof. We observe first that K = J|., is a section of End Ly such that
K? = —1 and that g|;, defines a metric such that

g(KX, Y)+g(X, KY)=0.

Let V be a partial connection in L, (that is, ¥ is defined by means of Vy Y
with the usual conditions) and let H be a (1, 2) tensor field in L,, that is,
H(X, Y)eL, and it is defined only for vector fields of L. Then FyY

+H(X, Y) defines a new L,-partial connection in L;. Following Obata [6]
we define the operators ¢, ¢, ¥, ¥ as follows:

(¢V)x Y="VFy Y—iK(VxK) Y,
(BH)(X, Y) =3H(X, Y)-3KH(X, KY),
g(WMxY, Z) =g(Px Y, 2)+3(Vx9)(¥, 2),
g(PH)(X, Y), Z) =4g(H(X, Y), Z)-4g(Y, H(X, 2Z)).

Then ¢V and YV are L,-partial connections in Ly and we have:
i If PFyY=VFyY+H(X,Y), then

¢V =9¢V+¢dH and YV =yV+yH.



CONNECTIONS PARTIALLY ADAPTED 223

(i) p¥ = v¢. i i ~

(i) An Ls-partial connection V in L, satisfies Vg =0 and VK = 0 iff
there exists another connection ¥ such that ¥V = ¢y V.

(iv) Let ¥ be an arbitrary (but fixed) L,-partial connection in Ly. Then
the following expression, for any H, gives all (and only) the Lj-partial
connections in L, such that Pg =0 and VJ = 0:

V=ydV+y¢H.
On the other hand, since the torsion of an L,-partial connection ¥ in L, is

LX,Y)=VxY-Vy X-L[X, Y]

we see, if
V=V+ydH,
that
T, (X, Y) = T,(X, )+ (@ SH)(X, Y)-(J$H)(Y, X),
and thus

1) T(KX, V)-T(X, KY) = (KX, Y)-T,(X, KY)+(W@$H) (KX, Y)
~(WSH) (Y, KX)-@$H) (X, KY)+FSH)(KY, X).
Let D be the Levi-Civitd connection in TM" corresponding to g and put
VyY =1,DyY.

Then V¥ is the L;-partial connection in L verifying Vg = 0 and T3 (X, Y) =0,
as is easily proved. _
Now, we consider

V=ydV=o¢V
(since Vg =0), and thus
VY =VyxY—3K(PxK)Y.
Then, since ‘f}(X , Y) =0, we obtain
(5.2) T(X,Y)=VyY—Vy X-1L,[X, Y]
=VyY—3K(VxK)Y—Vy X+3K(Py K) X -, [X, Y]
=3K(VyK) X —3K (VxK)Y.
We then have
(53) 49((UT)(X, Y), Z) =9 ($T)(X, V), Z)-2(Y, $T3)(X, 2))
=g(T:(X, Y), Z)—¢(Y, T;(X, 2))
—g9(KTy(X, KY), Z)+g(Y, KTy (X, KZ))
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and, as is proved by a computation (see the Appendix),
(54  49(YIT(KX, Y), Z)—4g (¥ T)(Y, KX), Z)
—49((¥9T)(X, KY), Z)+49 (¥4 T)(KY, X), Z)
=29(T:(KX, Y)-T,(X, KY), Z).

Compare now the right-hand side members in (5.4) and (5.1). Consequently, if
we put

H(X,Y)= -2T;(X, Y),
for V= V+y@dH we have
(5.5) T,(KX, Y)-T,(X, KY) =0,
and thus the required connection exists, since
V=V+ydH = yoV+y@H,
and it suffices to consider the earlier property (iv), since ¥ is L,-partial, and

we have (5.5).
Explicitly, we see, using (5.2) and (5.3), that

PxY =VxY+(I$T)(X, Y)
can be expressed, in terms of the Levi—Civitd connection, as
(56 g(VxY,2)= g(lsDx Y —4Jl3(DxJ) Y +4J13(Dy ) X +413(Dyy ) X, Z)
—49(Y, JI3(DzJ) X +13(DyzJ) X).
As for the uniqueness, suppose
Vg=0, FVK=0,

T,(KX,Y)=T(X,KY). If H_is any (1,2) tensor field, then for ¥
=y¢(V+H) we have Vg =0, VK =0 and

(X, V)=V Y-Vy X-1L[X, Y]
=Vy Y- Py X—L[X, YI+($YH)(X, Y)—($¥H)(Y, X)
= T,(X, Y)+(@YH) (X, Y)—($¢H)(Y, X).
Thus T3(KX, Y) = T,(X, KY) iff
(BYH) (KX, Y)—($YH)(Y, KX)—($YH)(X, KY)+($YH)(KY, X) = 0.
If we write
S(X, Y, Z) = g(@¥H)(X, Y), Z)
and put KX instead of X, we obtain the necessary and sufficient condition

(57 —S(X, Y, Z)+S(Y, X, Z)-S(KX, KY, Z)+S(KY, KX, Z) = 0.
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On the other hand, it is obvious that
(5.8) SX,Y,2)=-8S(X,2,7)
and we have
S(X, KY, Z) = 4g(H(X, KY), Z)-3g9(H(X, Z), KY)
—19(H(X, Y), KZ)+3g(H(X, K2), Y)

and
S(X,Y,KZ)=13g(H(X, Y), KZ)-3g9(H(X, K2), Y)
—19(H(X, KY), Z)+1g(H (X, 2), KY),
that is,
(5.9) S(X,KY,Z)=-S(X, Y, KZ).

If we now consider the cyclic permutation of (5.7) and apply (5.8) and
(5.9), we obtain

0 =cycl {S(X, Y, Z)-S(Y, X, Z)+S(KX, KY, Z)-S(KY, KX, Z)}
—2{S(Y, Z, X)+S(X, Y, 2)+8(Z, X, Y)}.
That is, if T3(KX, Y) = T3(X, KY), we have (5.8), (59) and
(5.10) cyclS(X, Y, Z2)=0.
But then, applying (5.10) in (5.7) we have
0=—-S(X,Y, 2)-S(Y, Z, X)-S(KX, KY, Z)-S(KY, Z, KX)
=S(Z,X,Y)+S(Z,KX,KY)=2S(Z, X, Y),

whence S =0, and so V = V.

We now study F' and 2. According to the previous considerations we
decompose V', i =1, 2, into two partial connections V% and V3, and we
choose for V4 the canonical connection, that is,

(V3)XA1=II[X’ Al]’ i = 1, 2.

Thus, it rests only to compute the Fj, i, j = 1, 2. Since (g|,, J|.) is not a
Riemannian almost product pair, because L, | L,, and L, | L,, the Vais-
man connection [8] cannot be used as a guide in our case.

Furthermore, since g|,, = gl., =0, we cannot work separately with L,

and L,, as we do with L and L;. Thus we have

THEOREM 5.2. There exists a unique L-partial connection V in L such that:

(a) Ag(B, C)=¢g(V,B, C)+g(B, V,C); _

(b) V4JB=JV,B, and thus V induces partial connections V;, i,j=1, 2,
by restriction;
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(c) the partial connections V. and V? are the canonical ones, that is,
Va, B, =1,[A,, B;] and Va, B, =1,[4,, B,].
Proof. From condition (a), if such a connection exists, we have
(5.11) g(V,B+VgA,C)= Ag(B, C)+Bg(C, A)—Cg(A, B)
+9(VcA-V,C, B)+g(VcB—VgC, A).
But, applying now (b) and (c) we deduce
(5.12) VaB—VpA—I[A, B] = T, (A,, B))—T;(4,, B,)
—1li [A;, B;]-1;[A,, By],
where
T.(A;, B) =V, B;—VpA;—|;[A;, B], i=1,2.
Consequently, by substitution we have
VaB+VgA=2V,B-I[A, B]+I,[A,, B;]+1,[A,, B,]
~T,(Ay, B))—T;(A,, B,).
Thus, from (5.11) and (5.12) we obtain

(5.13) 29(V,.B,C)= Ag(B, C)+Bg(C, A)—Cg(A, B)
+g(I[4, B1-1,[4;, B,]-1,[A,, B,]
+T,(4;, By)+ T;(4,, By), C)
+g(I[C, A1-1L[C2, A;1-1[C1, A1+ T, (Cy, 4))
+T,(C,, 4,), B)
+g(I[C, B]-1, [C,, B,]1-1,[C,, B,]+ T,(C,, B,)
+T,(C, B,), A).

From L, | L, and L, | L, we deduce that V,JB = JV,B iff
29 (V4 By, Cy) =2(V,B,, C,) = 0.
Thus, if we put B=B, and C = C, in (5.13), we obtain
(514 0=B,g(Cy, A2)~C1g(4s, B)+g(;[4;, B,], Cy)
+9(1.[Cy, A2), By)+9g(!, [Cy, B+ T, (Cy, By), A4,).
And, since C,, A, and B, are arbitrary, (5.10) determines completely T;.
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Indeed,

0 = (L5, 9)(Cy, A2)—(ZLc, 9)(42, B1)+29(l, [By, Cy], A43)
+g(T1 (Cy, By), Az),
whence
T,(Cy, B)) = 2L, [Cy, B{1+97 ' (%, 9)(By, 1) — (LB, 9)(Cy, 1), *)
and an analog for T,. Thus, according to (5.13), if such a connection exists, it
is unique.

Finally, the connection given by (5.13) satisfies, by construction, (a) and
(b), and from the expressions of T; condition (c) is easily deduced.

If we consider Theorems 5.1 and 5.2 simultaneously, we can give

THEOREM 5.3. Let M" be a (J, g)-manifold, where g is an aem. Then there
exists on M" a unique linear connection V such that:

(@) VI =Vly =1VJ =0, and thus V is the sum of three connections V', V2,
V3 in the vector bundles L,, L,, L, respectively, given by restriction.

(b) The Ls-partial connection defined from V? is Hermitian in the sense of
Theorem 5.1, and the L-partial connection defined from V' is adapted to J
and g.

() The partial connections Vi, Vi, V3, V1, V2 are the canonical ones.

We note that

Vi, A=Vx, A1+ Vxy, A; =11 [ X3, 4]+ [X5, 43],

which in general is not I[X;, A]. That is, the connection V% is not the
canonical one.

We note also that it is easy to give the developed expression of V, and
the different aspect of the L-part and the L;-part emphasizes the fact that we
do not have a Riemannian almost product structure operator on L.

APPENDIX

Verification of (5.4). The left-hand side member is

9(L(KX, Y), Z)~g(Y, (KX, 2)-g(KT (KX, KY), Z)
+9(Y, KTKX, K2))—g(T (Y, KX), Z)+g(KX, T3(Y, 2))
+9(KT(Y, K2 X), Z)—g(KX, KTy(Y, KZ))—g(T (X, KY), 2)
+9(KY, Ty(X, Z))+g(KT(X, K*Y), Z)—g(KY, KT (X, KZ))
+9(T3(KY, X), Z)—g(X, T(KY, 2)-g(K T (KY, KX), Z)
+9(X, KT, (KY, KZ)),
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where the 7th and 11th, 3rd and 15th terms cancel. Moreover, from (5.2), the
2nd, 4th, 10th and 12th terms are, respectively,

—g(Y. (KX, Z)) = —g(Y, §K (V; K) KX —4K (Vx K) Z);
g(Y, KT3 (KX, KZ)) = g(Y, K(GK (Vxz K) KX —3K (Vxx K) K Z))
=g(Y, —3(Pxz K)YKX3+3(Vxx K)K2);
~g(Y, KTy (X, Z)) = —g(Y, K(}BK (V; K) X —3K (Vx K) Z))
= —g(Y, —3(7K) X +3(Vx K) Z);
and
—g(Y, (X, KZ)) = g(Y, —3K (Vxz K) X +3K (Vx K)KZ).

Thus, the sum of these terms is, since K? = —1,

g(Y, —3K (7, K)KZ+3K (VxxK) Z—4(Vx: K) KX
+3(Vex KIKZ+3(V; K) X —3(Vx K) Z 3K (P2 K) X +3K (Py K)KZ) = 0.

On the other hand, the sum of the 6th, 8th, 14th and 16th terms is also zero,
since it is analogous to the earlier, changing X and Y. Thus, it rests only the
sum of the 1st, 5th, 9th and 13th terms, which is precisely the right-hand side
member of (5.4).
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