VOL. LIV 1987 FASC. 2

CONNECTIONS PARTIALLY ADAPTED TO A METRIC $(J^4 = 1)$ -STRUCTURE

BY

E. REYES (VALLADOLID), A. MONTESINOS (BURJASOT, VALENCIA)
AND P. M. GADEA (MADRID)

1. Introduction. The motivation for the study of $(J^4 = 1)$ -structures is twofold. First, they can be considered as a generalization of the first-class electromagnetic (1, 1) tensor field \tilde{J} of Hlavatý [3] and Mishra [5]. Also, it is a structure that combines those of almost product and almost complex manifolds.

Let \tilde{J} be a (1, 1) tensor field on a differentiable manifold M^n . We say that it defines a $(J^4 = 1)$ -structure if there are everywhere non-zero C^{∞} -functions p and q on M^n such that

$$(\tilde{J}^2 - p^2)(\tilde{J}^2 + q^2) = 0,$$

and positive integer numbers r_1 , r_2 , s $(r_1+r_2+2s=n)$ such that

$$(x-p)^{r_1}(x+p)^{r_2}(x^2+q^2)^s$$

is the characteristic polynomial of \tilde{J} .

From the first point of view it is natural to impose the existence of a pseudo-Riemannian metric g on M such that

$$g(\tilde{J}X, Y) + g(X, \tilde{J}Y) = 0;$$

then, the (0, 2) tensor field F defined by $F(X, Y) = g(\tilde{J}X, Y)$ is a non-degenerate 2-form that in the case n = 4 represents the electromagnetic field. Due to this, we say that g is an "aem" (adapted in the electromagnetic sense metric). The conditions for the existence of an aem for a given \tilde{J} are studied in [2].

From the other perspective, we consider a Riemannian metric g which is Hermitian upon the almost complex subbundle and makes pairwise orthogonal the three subbundles determined by \tilde{J} in TM. This will be called an adapted Riemannian metric or, briefly, "arm".

In [2] it is proved that the G-structure P defined by (\tilde{J}, g) (in both cases) can also be obtained replacing \tilde{J} by another (1, 1) tensor field J that

satisfies $J^4 = 1$ (this motivates the name $(J^4 = 1)$ -structures). It is given by

$$J = \frac{p^{3} + q^{3}}{pq(p^{2} + q^{2})} \tilde{J} + \frac{q - p}{pq(p^{2} + q^{2})} \tilde{J}^{3}.$$

The new tensor field J is 0-deformable and can be looked at as a tool for the study of the G-structure P. Thus, in [2] the integrability of P in terms of J is studied. Also, there is no linear connection parallelizing \tilde{J} unless p and q were constants, and so in [7] we give the family of connections that parallelize both J and g.

In this paper we study some special connections that are only partially adapted to the G-structure (J, g) but have instead other nice geometrical properties. They generalize in some sense the well-known special connections in almost product and almost Hermitian structures.

2. The connection D. In the following we assume that J is a (1, 1) tensor field on M^n with the characteristic polynomial

$$(x-1)^{r_1}(x+1)^{r_2}(x^2+1)^s$$
, $r_1+r_2+2s=n$,

and such that $J^4 = 1$. Let

$$l_1 = \frac{1}{4}(1+J)(1+J^2),$$
 $l_2 = \frac{1}{4}(1-J)(1+J^2),$ $l = \frac{1}{2}(1+J^2),$ $l_3 = \frac{1}{2}(1-J^2)$

be the projectors that define the direct sums of vector bundles

$$TM^n = L_1 \oplus L_2 \oplus L_3, \quad L = L_1 \oplus L_2.$$

Then

$$JX = X$$
, $JX = -X$, $J^2X = X$, $J^2X = -X$

if, respectively,

$$X \in L_1$$
, $X \in L_2$, $X \in L$, $X \in L_3$.

We consider first the case of an arm. An arm is a Riemannian metric g on M^n such that

$$g(JX, JY) = g(X, Y)$$
 for $X, Y \in T_x M^n, x \in M^n$.

Then L_1 , L_2 , L_3 are pairwise orthogonal.

There always exists an arm in a $(J^4 = 1)$ -manifold, as is obvious. We denote by D the Levi-Cività connection of the arm g. Then we have obviously

PROPOSITION 2.1. If D induces connections in any two of the subbundles L_1 , L_2 , L_3 , then it induces a connection in the third one, and moreover the three subbundles are integrable.

The property of inducing connections in L_1 , L_2 and L_3 can be characterized according to the

PROPOSITION 2.2. A linear connection V in TM^n induces connections in L_1, L_2, L_3 iff

$$\nabla_{\mathbf{r}} l_3 = \nabla_{\mathbf{r}} l = l \nabla_{\mathbf{r}} J = 0.$$

Proof. If $\nabla_X l = \nabla_X l_3 = 0$, we have $\nabla_X lY \in L$ and $\nabla_X l_3 Y \in L_3$. If also $l\nabla_X J = 0$, then $\nabla_X lJ = 0$; thus $\nabla_X l_1 = \nabla_X l_2 = 0$, and so $\nabla_X l_i Y \in L_i$, i = 1, 2. Conversely, if $\nabla_X l_i Y \in L_i$, i = 1, 2, then $\nabla_X lY \in L$ for all Y, and so

$$l_3 \nabla_X lY = l_3 (\nabla_X l) Y + l_3 l\nabla_X Y = l_3 (\nabla_X l) Y = \frac{1}{2} l_3 (\nabla_X J^2) Y = 0.$$

Thus $l_3 \nabla_X J^2 = 0$. Analogously, $l\nabla_X J^2 = 0$. Summing up, we have $\nabla_X J^2 = 0$, and so $\nabla_X l = \nabla_X l_3 = 0$. But, since

$$l_2 \nabla_{\mathbf{x}} l_1 = l_1 \nabla_{\mathbf{x}} l_2 = 0$$

and

$$l_1 = \frac{1}{2}(1+J)l$$
, $l_2 = \frac{1}{2}(1-J)l$, $\nabla l = 0$,

we have

$$l_1 \nabla_X (Jl) = l_1 l \nabla_X J = 0$$
 and $l_2 l \nabla_X J = 0$.

Summing up we have

$$l^2 \nabla_X J = l \nabla_X J = 0.$$

We note that we do not conclude $l_3 \nabla_X J = 0$. That is, the earlier conditions do not guarantee $\nabla J = 0$.

- 3. The connection V. We suppose now that g is an arm. Then we have Proposition 3.1. There is a unique linear connection V on (M^n, J, g) such that
 - (a) ∇ induces connections ∇^1 , ∇^2 , ∇^3 in L_1 , L_2 , L_3 , respectively; that is, $\nabla_X l_i Y \in L_i$, i = 1, 2, 3.
- (b) The induced connections are Euclidean along the tangent curves to L_1 , L_2 , L_3 , respectively; that is,

$$(V_{l_iX}g)(l_iY, l_iZ) = 0, \quad i = 1, 2, 3.$$

(c) $T_i(X, l_i Y) = 0$, where $T_i = l_i T$, i = 1, 2, 3.

Proof. If we make the decomposition

$$\begin{aligned} \nabla_X Y &= \nabla_{l_1 X} \, l_1 \, Y + \nabla_{l_2 X} \, l_1 \, Y + \nabla_{l_3 X} \, l_1 \, Y + \nabla_{l_1 X} \, l_2 \, Y + \nabla_{l_2 X} \, l_2 \, Y + \nabla_{l_3 X} \, l_2 \, Y \\ &+ \nabla_{l_1 X} \, l_3 \, Y + \nabla_{l_2 X} \, l_3 \, Y + \nabla_{l_3 X} \, l_3 \, Y, \end{aligned}$$

the condition (c) determines the 2nd, 3rd, 4th, 6th, 7th, 8th terms in the right-hand side, and the condition (b) determines the 1st, 5th and 9th terms.

We have also

PROPOSITION 3.2. The connection V is torsionless iff L_1 , L_2 , L, L_3 , $L_1 \oplus L_3$, $L_2 \oplus L_3$ are integrable.

Proof. It is clear that

$$T_i(l_i X, l_i Y) = -l_i[l_i X, l_i Y], \quad i \neq j,$$

and

$$T_i(l_i X, l_k Y) = -l_i[l_i X, l_k Y], \quad k \neq i \neq j \neq k, i, j, k = 1, 2, 3.$$

The proposition is immediate from this.

We can now see the relation between D and ∇ .

PROPOSITION 3.3. V is identical to D iff D induces connections in L_1, L_2, L_3 .

The proof is immediate from the properties of ∇ .

The connection ∇ has the following property:

PROPOSITION 3.4. A geodesic of V is tangent at every point to one of the subbundles L_1 , L_2 or L_3 iff it is tangent to it at one point.

This proposition is a direct consequence of the following general result:

LEMMA 3.1. Let \mathscr{D} be a subbundle of TM^n and V a linear connection in M. Then every geodesic with initial condition in \mathscr{D} maintains its tangent in \mathscr{D} iff $V_X X \in \mathscr{D}$ for $X \in \mathscr{D}$.

Proof. Let \overline{V} be a linear connection on M^n . Let $\{e_i\}$, $i=1,\ldots,n$, be a local frame of vector fields on $U \subset M^n$, and let $\{\overline{\theta}^i\}$ be the dual coframe. The 1-forms $\overline{\theta}^i$ can be considered as functions in TU, and so we have a trivialization

$$\pi^{-1}(U) \to U \times \mathbb{R}^n,$$
 $X_x \in T_x \ U \leadsto (x, \overline{\theta}^i(X_x)).$

Thus, a vector field on TU can be locally represented as

$$\tilde{X} = a^i e_i + b^i \frac{\partial}{\partial \theta^i},$$

where a^i , b^i (i = 1, ..., n) are functions and θ^i are the canonical coordinates in \mathbb{R}^n .

If we have $V_{e_i}e_j = \Gamma_{ij}^k e_k$ in U, then the spray of V is the vector field \tilde{G} in TM^n that we can represent in TU as

$$\tilde{G} = \theta^i \, e_i - \Gamma^i_{jk} \, \theta^j \, \theta^k \, \frac{\partial}{\partial \theta^i}.$$

 \tilde{G} , as is well known, is the vector field in TM^n whose integral curves are projected in M^n giving the geodesics of V.

Now, let \mathscr{D} be a q-dimensional subbundle of TM^n . We can consider \mathscr{D} as a regular submanifold of TM^n . Thus, every geodesic with initial condition in \mathscr{D} maintains its tangent in \mathscr{D} iff $\widetilde{G}|_{\mathscr{D}}$ is tangent to \mathscr{D} .

Then, let $\{e_i\}$ be such that $\{e_a\}$, $a=1,\ldots,q$, generates \mathscr{D} in U, and consider $x \in U$, $X_x \in \mathscr{D}$ and $\tilde{X} \in T_{X_x} TU$. Then \tilde{X} is tangent to \mathscr{D} iff there is a curve

$$\sigma(t) = \sigma^{i}(t) \, e_{i(\pi \cdot \sigma)(t)}$$

such that $\sigma(0) = X_x$, $\sigma(t) \in \mathcal{D}$ in a neighbourhood of $0 \in \mathbb{R}$, and $\dot{\sigma}(0) = \tilde{X}$. In order that $\sigma(t) \in \mathcal{D}$ we put

$$\sigma(t) = \sigma^a(t) \, e_{a(\pi \cdot \sigma)(t)}.$$

Thus

$$\dot{\sigma} = \frac{\dot{\sigma}}{\pi \cdot \sigma} + \dot{\sigma}^a \left(\frac{\partial}{\partial \theta^a} \cdot \sigma \right).$$

If

$$\tilde{X} = a^i e_{ix} + b^i \frac{\partial}{\partial \theta^i} \bigg|_{X_x},$$

we have

$$a^{i}e_{ix} = \frac{1}{(\pi \cdot \sigma)}(0), \quad b^{u} = 0, \ u = q+1, \ldots, n, \quad b^{a} = \dot{\sigma}^{a}(0).$$

But at X_x we have

$$\tilde{G}_{X_x} = \theta^i(X_x) e_{ix} - (\Gamma^i_{jk})_x \theta^j(X_x) \theta^k(X_x) \frac{\partial}{\partial \theta^i} \bigg|_{X_x},$$

and since $X_x \in \mathcal{D}$, we deduce

$$X_x = X_x^a e_{ax},$$

that is

$$\tilde{G}_{X_x} = X_x^a e_{ax} - (\Gamma_{ab}^i)_x X_x^a X_x^b \frac{\partial}{\partial \theta^i} \bigg|_{X_x}.$$

Thus, in order that \tilde{G}_{X_x} should be tangent to \mathcal{D} it is necessary that

$$\Gamma^i_{ab} + \Gamma^i_{ba} = 0, \quad i > q.$$

The condition is clearly sufficient, since $X_x \in \mathcal{D}$. More intrinsically, we can give the condition as

$$\nabla_{\mathbf{Y}} X \in \mathcal{D}$$
 if $X \in \mathcal{D}$.

Indeed, if $X \in \mathcal{D}$, then $X = X^a e_a$, and so

$$\begin{aligned} \nabla_X X &= X^a \, \nabla_{e_a} (X^b \, e_b) = X^a \, e_a (X^b) \, e_b + X^a \, X^b \, \nabla_{e_a} \, e_b \\ &= X (X^b) \, e_b + \frac{1}{2} (\Gamma^i_{ab} + \Gamma^i_{ba}) \, X^a \, X^b \, e_i, \end{aligned}$$

and it is in \mathscr{D} for every $X \in \mathscr{D}$ iff $\Gamma^i_{ab} + \Gamma^i_{ba} = 0$, since $X(X^b) e_b \in \mathscr{D}$.

4. The connection $\tilde{\mathcal{V}}$. We consider again an arm g on M^n , but now we consider the almost complex operator induced by J on L_3 .

Proposition 4.1. There is a unique linear connection \tilde{V} on (M^n, J, g) such that

- (a) $\tilde{V}_X l_i Y \in L_i$, i = 1, 2, 3;
- (b) $(\tilde{V}_{l_iX}g)(l_iY, l_iZ) = 0, i = 1, 2, 3;$
- (c) $T_i(X, l_i Y) = 0$, i = 1, 2;
- (d) $T_3(JX, l_3 Y) = T_3(X, Jl_3 Y);$
- (e) $(\tilde{V}_{l_3X}J) l_3 Y = 0$.

That is, as in the case of V, we require that by restriction we get linear connections in the structural subbundles, and also that the parallel transport along a tangent curve to each of the subbundles preserves the scalar product of vectors of such a subbundle; in particular, that the length of such a vector is preserved. The conditions on the torsion are the same as before in the case i = 1, 2, but in L_3 we consider the usual conditions of the almost Hermitian case.

Proof. If we make a decomposition similar to that given in the proof of Proposition 3.1, we obtain 9 terms; the terms 1-6 are determined as in Proposition 3.1; the terms 7 and 8 by means of the condition (d), and the last term in the usual way (see [9] and also Theorem 5.1 below).

Now, we see the relation between \vec{V} and \vec{V} .

We define the 2-form F as

$$F(X, Y) = g(l_3 X, Jl_3 Y),$$

and put

$$N(X, Y) = N_{Il_3}(l_3 X, l_3 Y).$$

Then as usual we have (see [4], p. 148)

(4.1)

$$4g((V_{l_3X}J)l_3Y, l_3Z) = 2dF(Jl_3X, l_3Z, Jl_3Y) + 2dF(Jl_3X, Jl_3Z, l_3Y) + g(N(Jl_3Y, l_3X), l_3Z) + g(N(l_3X, Jl_3Z), l_3Y),$$

and if we define $l_3 dF$ as

$$(l_3 dF)(X, Y, Z) = dF(l_3 X, l_3 Y, l_3 Z),$$

we have

PROPOSITION 4.2. (i) $V = \tilde{V}$ iff $l_3 N = 0$ and $l_3 dF = 0$.

(ii) L_3 is integrable and its leaves are Kaehlerian iff N=0 and $l_3 dF=0$.

(iii) $D = \tilde{V}$ iff D induces connections in L_1 , L_2 , L_3 and $V = \tilde{V}$.

Proof. (i) Suppose $\nabla = \tilde{\nabla}$. Then

$$dF(l_3 X, l_3 Y, l_3 Z) = \text{cycl}(V_{l_2 X} F)(l_3 Y, l_3 Z)$$

= cycl
$$\{l_3 X(g(l_3 Y, Jl_3 Z)) - g(V_{l_3 X} l_3 Y, Jl_3 Z) - g(l_3 Y, V_{l_3 X} Jl_3 Z)\} = 0$$

because of (b) in Proposition 3.1 or 4.1. On the other hand, as is easily verified,

$$N(X, Y) = -l[l_3 X, l_3 Y],$$

and thus

$$l_3 N(X, Y) = 0.$$

Conversely, if $l_3 N = 0$ and $l_3 dF = 0$, we deduce from (4.1) that

$$(\nabla_{l_2X}J)\,l_3\,Y=0,$$

and since $l_3 T(JX, l_3 Y) = 0 = l_3 T(X, Jl_3 Y)$, we have $\overline{V} = \overline{V}$.

(ii) If N = 0 and $l_3 dF = 0$, then $\overline{V} = \overline{V}$, whence

$$N(X, Y) = -l[l_3 X, l_3 Y] = 0,$$

and thus L_3 is integrable. Also, since $(\nabla_{l_3X}J)\,l_3\,Y=0$, the leaves of L_3 are Kaehlerian. Conversely, if L_3 is integrable and its leaves are Kaehlerian, we have

$$T(l_3 X, l_3 Y) = l_3 T(l_3 X, l_3 Y) = 0,$$

and so $V_{l_3X} l_3 Y = D_{l_3X} l_3 Y$. Since

$$(D_{l_3X}J)\,l_3\,Y=D_{l_3X}Jl_3\,Y-JD_{l_3X}\,l_3\,Y=(\nabla_{l_3X}J)\,l_3\,Y=0,$$

we obtain $\nabla = \tilde{\nabla}$, and thus

$$l_3 dF = 0$$
 and $N(X, Y) = -l[l_3 X, l_3 Y] = 0.$

- (iii) If $D = \tilde{V}$, then $T_3 = 0$, and thus \tilde{V} satisfies the conditions of \tilde{V} , whence $V = \tilde{V} = D$. The rest follows by direct application of Proposition 3.3.
- 5. The aem case: the connection V. We now suppose that g is an aem, that is a pseudo-Riemannian metric such that

$$g(JX, Y) = -g(X, JY)$$

(see [2] for the conditions of the existence of such a metric).

We require, as in the previous cases of \mathcal{V} and $\widetilde{\mathcal{V}}$, that \mathcal{V} induces connections in the subbundles L_1 , L_2 and L_3 , and so \mathcal{V} is the sum of three

connections ∇^1 , ∇^2 and ∇^3 or, if we consider only $TM^n = L \oplus L_3$, the sum of two connections ∇^L and ∇^3 , that we shall study separately. We adopt from now on the following notation:

 A, B, C, \dots are vectors and vector fields of L;

 A_1, B_1, C_1, \ldots are vectors and vector fields of L_1 ;

 A_2, B_2, C_2, \dots are vectors and vector fields of L_2 ;

 X, Y, Z, \dots are vectors and vector fields of L_3 ;

and we recall that $L \perp L_3$, $L_1 \perp L_1$ and $L_2 \perp L_2$.

We have a canonical partial connection \mathcal{F}_L^3 given by

$$\nabla_A^3 X = l_3 [A, X],$$

which in the case where L were a foliation coincides with Bott's partial connection [1].

As for the existence and uniqueness of V_3^3 we can apply Vaisman's construction (see Proposition 4.1), since both for aem and arm we have

$$g(JX, Y)+g(X, JY)=0.$$

But in order to obtain an explicit expression for \mathcal{V}_3^3 we give another proof in the following

THEOREM 5.1. There exists a unique partial connection V_3^3 in the subbundle L_3 which is Hermitian in the sense that

- (a) $(\nabla_X^3 g)(Y, Z) = 0$;
- (b) $\nabla_X^3 J Y = J \nabla_X^3 Y$;
- (c) $T_3(JX, Y) = T_3(X, JY)$, where $T_3(X, Y) = V_X^3 Y V_Y^3 X l_3[X, Y]$.

Proof. We observe first that $K = J|_{L_3}$ is a section of End L_3 such that $K^2 = -1$ and that $g|_{L_3}$ defines a metric such that

$$g(KX, Y) + g(X, KY) = 0.$$

Let V be a partial connection in L_3 (that is, V is defined by means of $V_X Y$ with the usual conditions) and let H be a (1, 2) tensor field in L_3 , that is, $H(X, Y) \in L_3$ and it is defined only for vector fields of L_3 . Then $V_X Y + H(X, Y)$ defines a new L_3 -partial connection in L_3 . Following Obata [6] we define the operators ϕ , $\tilde{\phi}$, ψ , $\tilde{\psi}$ as follows:

$$(\phi V)_X Y = V_X Y - \frac{1}{2} K(V_X K) Y,$$

$$(\tilde{\phi} H)(X, Y) = \frac{1}{2} H(X, Y) - \frac{1}{2} K H(X, KY),$$

$$g((\psi V)_X Y, Z) = g(V_X Y, Z) + \frac{1}{2} (V_X g)(Y, Z),$$

$$g((\tilde{\psi} H)(X, Y), Z) = \frac{1}{2} g(H(X, Y), Z) - \frac{1}{2} g(Y, H(X, Z)).$$

Then ϕV and ψV are L_3 -partial connections in L_3 and we have:

(i) If
$$\vec{V}_X Y = \vec{V}_X Y + H(X, Y)$$
, then

$$\phi \tilde{V} = \phi V + \tilde{\phi} H$$
 and $\psi \tilde{V} = \psi V + \tilde{\psi} H$.

- (ii) $\phi \psi = \psi \phi$.
- (iii) An L_3 -partial connection $\tilde{\mathcal{V}}$ in L_3 satisfies $\tilde{\mathcal{V}}g=0$ and $\tilde{\mathcal{V}}K=0$ iff there exists another connection \mathcal{V} such that $\tilde{\mathcal{V}}=\phi\psi\mathcal{V}$.
- (iv) Let \overline{V} be an arbitrary (but fixed) L_3 -partial connection in L_3 . Then the following expression, for any H, gives all (and only) the L_3 -partial connections in L_3 such that $\overline{V}g=0$ and $\overline{V}J=0$:

$$\tilde{V} = \psi \phi V + \tilde{\psi} \tilde{\phi} H.$$

On the other hand, since the torsion of an L_3 -partial connection V in L_3 is

$$T_3(X, Y) = \nabla_X Y - \nabla_Y X - l_3 [X, Y]$$

we see, if

$$\tilde{V} = V + \tilde{\psi}\tilde{\phi}H,$$

that

$$\tilde{T}_3(X, Y) = T_3(X, Y) + (\tilde{\psi}\tilde{\phi}H)(X, Y) - (\tilde{\psi}\tilde{\phi}H)(Y, X),$$

and thus

$$(5.1) \quad \tilde{T}_3(KX, Y) - \tilde{T}_3(X, KY) = T_3(KX, Y) - T_3(X, KY) + (\tilde{\psi}\tilde{\phi}H)(KX, Y) - (\tilde{\psi}\tilde{\phi}H)(Y, KX) - (\tilde{\psi}\tilde{\phi}H)(X, KY) + (\tilde{\psi}\tilde{\phi}H)(KY, X).$$

Let D be the Levi-Cività connection in TM^n corresponding to g and put

$$\widehat{V}_X Y = l_3 D_X Y.$$

Then \hat{V} is the L_3 -partial connection in L_3 verifying $\hat{V}g = 0$ and $\hat{T}_3(X, Y) = 0$, as is easily proved.

Now, we consider

$$\nabla = \psi \phi \hat{\nabla} = \phi \hat{\nabla}$$

(since $\hat{\nabla}g = 0$), and thus

$$\nabla_{\mathbf{x}} Y = \hat{\nabla}_{\mathbf{x}} Y - \frac{1}{2} K (\hat{\nabla}_{\mathbf{x}} K) Y.$$

Then, since $\hat{T}_3(X, Y) = 0$, we obtain

(5.2)
$$T_{3}(X, Y) = \nabla_{X} Y - \nabla_{Y} X - l_{3} [X, Y]$$

$$= \hat{\nabla}_{X} Y - \frac{1}{2} K (\hat{\nabla}_{X} K) Y - \hat{\nabla}_{Y} X + \frac{1}{2} K (\hat{\nabla}_{Y} K) X - l_{3} [X, Y]$$

$$= \frac{1}{2} K (\hat{\nabla}_{Y} K) X - \frac{1}{2} K (\hat{\nabla}_{X} K) Y.$$

We then have

(5.3)
$$4g((\tilde{\psi}\tilde{\phi}T_3)(X, Y), Z) = 2g((\tilde{\phi}T_3)(X, Y), Z) - 2g(Y, (\tilde{\phi}T_3)(X, Z))$$
$$= g(T_3(X, Y), Z) - g(Y, T_3(X, Z))$$
$$-g(KT_3(X, KY), Z) + g(Y, KT_3(X, KZ))$$

and, as is proved by a computation (see the Appendix),

(5.4)
$$4g((\tilde{\psi}\tilde{\phi}T_3)(KX, Y), Z) - 4g((\tilde{\psi}\tilde{\phi}T_3)(Y, KX), Z)$$

 $-4g((\tilde{\psi}\tilde{\phi}T_3)(X, KY), Z) + 4g((\tilde{\psi}\tilde{\phi}T_3)(KY, X), Z)$
 $= 2g(T_3(KX, Y) - T_3(X, KY), Z).$

Compare now the right-hand side members in (5.4) and (5.1). Consequently, if we put

$$H(X, Y) = -2T_3(X, Y),$$

for $\tilde{V} = V + \tilde{\psi} \tilde{\phi} H$ we have

(5.5)
$$\tilde{T}_3(KX, Y) - \tilde{T}_3(X, KY) = 0,$$

and thus the required connection exists, since

$$\tilde{V} = V + \tilde{\psi}\tilde{\phi}H = \psi\phi\hat{V} + \tilde{\psi}\tilde{\phi}H,$$

and it suffices to consider the earlier property (iv), since \hat{V} is L_3 -partial, and we have (5.5).

Explicitly, we see, using (5.2) and (5.3), that

$$\tilde{V}_X Y = V_X Y + (\tilde{\psi} \tilde{\phi} T_3)(X, Y)$$

can be expressed, in terms of the Levi-Cività connection, as

(5.6)
$$g(\tilde{V}_X Y, Z) = g(l_3 D_X Y - \frac{1}{2} J l_3 (D_X J) Y + \frac{1}{4} J l_3 (D_Y J) X + \frac{1}{4} l_3 (D_{JY} J) X, Z) - \frac{1}{4} g(Y, J l_3 (D_Z J) X + l_3 (D_{JZ} J) X).$$

As for the uniqueness, suppose

$$\nabla g=0, \quad \nabla K=0,$$

 $T_3(KX, Y) = T_3(X, KY)$. If H is any (1, 2) tensor field, then for $\tilde{V} = \psi \phi(V + H)$ we have $\tilde{V}g = 0$, $\tilde{V}K = 0$ and

$$\begin{split} \tilde{T}_3(X, Y) &= \tilde{V}_X Y - \tilde{V}_Y X - l_3 [X, Y] \\ &= V_X Y - V_Y X - l_3 [X, Y] + (\tilde{\phi} \tilde{\psi} H)(X, Y) - (\tilde{\phi} \tilde{\psi} H)(Y, X) \\ &= T_3(X, Y) + (\tilde{\phi} \tilde{\psi} H)(X, Y) - (\tilde{\phi} \tilde{\psi} H)(Y, X). \end{split}$$

Thus $\tilde{T}_3(KX, Y) = \tilde{T}_3(X, KY)$ iff

$$(\widetilde{\phi}\widetilde{\psi}H)(KX, Y) - (\widetilde{\phi}\widetilde{\psi}H)(Y, KX) - (\widetilde{\phi}\widetilde{\psi}H)(X, KY) + (\widetilde{\phi}\widetilde{\psi}H)(KY, X) = 0.$$

If we write

$$S(X, Y, \dot{Z}) = g((\tilde{\phi}\tilde{\psi}H)(X, Y), Z)$$

and put KX instead of X, we obtain the necessary and sufficient condition (5.7) -S(X, Y, Z) + S(Y, X, Z) - S(KX, KY, Z) + S(KY, KX, Z) = 0.

On the other hand, it is obvious that

(5.8)
$$S(X, Y, Z) = -S(X, Z, Y)$$

and we have

$$S(X, KY, Z) = \frac{1}{4}g(H(X, KY), Z) - \frac{1}{4}g(H(X, Z), KY)$$
$$-\frac{1}{4}g(H(X, Y), KZ) + \frac{1}{4}g(H(X, KZ), Y)$$

and

$$S(X, Y, KZ) = \frac{1}{4}g(H(X, Y), KZ) - \frac{1}{4}g(H(X, KZ), Y)$$
$$-\frac{1}{4}g(H(X, KY), Z) + \frac{1}{4}g(H(X, Z), KY),$$

that is,

(5.9)
$$S(X, KY, Z) = -S(X, Y, KZ).$$

If we now consider the cyclic permutation of (5.7) and apply (5.8) and (5.9), we obtain

$$0 = \operatorname{cycl} \{ S(X, Y, Z) - S(Y, X, Z) + S(KX, KY, Z) - S(KY, KX, Z) \}$$

= 2 \{ S(Y, Z, X) + S(X, Y, Z) + S(Z, X, Y) \}.

That is, if $\tilde{T}_3(KX, Y) = \tilde{T}_3(X, KY)$, we have (5.8), (5.9) and (5.10) $\operatorname{cycl} S(X, Y, Z) = 0$.

But then, applying (5.10) in (5.7) we have

$$0 = -S(X, Y, Z) - S(Y, Z, X) - S(KX, KY, Z) - S(KY, Z, KX)$$

= $S(Z, X, Y) + S(Z, KX, KY) = 2S(Z, X, Y),$

whence S = 0, and so $\tilde{V} = V$.

We now study V^1 and V^2 . According to the previous considerations we decompose V^i , i = 1, 2, into two partial connections V^i_L and V^i_3 , and we choose for V^i_3 the canonical connection, that is,

$$(V_3^i)_X A_i = l_i[X, A_i], \quad i = 1, 2.$$

Thus, it rests only to compute the V_j^i , i, j = 1, 2. Since $(g|_L, J|_L)$ is not a Riemannian almost product pair, because $L_1 \perp L_1$, and $L_2 \perp L_2$, the Vaisman connection [8] cannot be used as a guide in our case.

Furthermore, since $g|_{L_1} = g|_{L_2} = 0$, we cannot work separately with L_1 and L_2 , as we do with L and L_3 . Thus we have

Theorem 5.2. There exists a unique L-partial connection ∇ in L such that:

- (a) $Ag(B, C) = g(V_A B, C) + g(B, V_A C);$
- (b) $V_A JB = J V_A B$, and thus V induces partial connections V_j^i , i, j = 1, 2, by restriction;

(c) the partial connections V_2^1 and V_1^2 are the canonical ones, that is, $V_{A_1} B_2 = l_2 [A_1, B_2]$ and $V_{A_2} B_1 = l_1 [A_2, B_1]$.

Proof. From condition (a), if such a connection exists, we have

(5.11)
$$g(\nabla_A B + \nabla_B A, C) = Ag(B, C) + Bg(C, A) - Cg(A, B) + g(\nabla_C A - \nabla_A C, B) + g(\nabla_C B - \nabla_B C, A).$$

But, applying now (b) and (c) we deduce

(5.12)
$$V_A B - V_B A - l[A, B] = T_1(A_1, B_1) - T_2(A_2, B_2)$$
$$-l_1[A_2, B_2] - l_2[A_1, B_1],$$

where

$$T_i(A_i, B_i) = V_{A_i}B_i - V_{B_i}A_i - l_i[A_i, B_i], \quad i = 1, 2.$$

Consequently, by substitution we have

$$V_A B + V_B A = 2V_A B - l[A, B] + l_1 [A_2, B_2] + l_2 [A_1, B_1]$$

- $T_1 (A_1, B_1) - T_2 (A_2, B_2)$.

Thus, from (5.11) and (5.12) we obtain

(5.13)
$$2g(\nabla_{A}B, C) = Ag(B, C) + Bg(C, A) - Cg(A, B)$$

$$+ g(l[A, B] - l_{1}[A_{2}, B_{2}] - l_{2}[A_{1}, B_{1}]$$

$$+ T_{1}(A_{1}, B_{1}) + T_{2}(A_{2}, B_{2}), C)$$

$$+ g(l[C, A] - l_{1}[C_{2}, A_{2}] - l_{2}[C_{1}, A_{1}] + T_{1}(C_{1}, A_{1})$$

$$+ T_{2}(C_{2}, A_{2}), B)$$

$$+ g(l[C, B] - l_{1}[C_{2}, B_{2}] - l_{2}[C_{1}, B_{1}] + T_{1}(C_{1}, B_{1})$$

$$+ T_{2}(C_{2}, B_{2}), A).$$

From $L_1 \perp L_1$ and $L_2 \perp L_2$ we deduce that $\nabla_A JB = J \nabla_A B$ iff

$$2g(\nabla_A B_1, C_1) = 2g(\nabla_A B_2, C_2) = 0.$$

Thus, if we put $B = B_1$ and $C = C_1$ in (5.13), we obtain

(5.14)
$$0 = B_1 g(C_1, A_2) - C_1 g(A_2, B_1) + g(l_2 [A_2, B_1], C_1) + g(l_2 [C_1, A_2], B_1) + g(l_1 [C_1, B_1] + T_1 (C_1, B_1), A_2).$$

And, since C_1 , A_2 and B_1 are arbitrary, (5.10) determines completely T_1 .

Indeed,

$$0 = (\mathcal{L}_{B_1} g)(C_1, A_2) - (\mathcal{L}_{C_1} g)(A_2, B_1) + 2g(l_1 [B_1, C_1], A_2) + g(T_1(C_1, B_1), A_2),$$

whence

$$T_1(C_1, B_1) = 2l_1[C_1, B_1] + g^{-1}((\mathscr{L}_{C_1}g)(B_1, l\cdot) - (\mathscr{L}_{B_1}g)(C_1, l\cdot), \cdot)$$

and an analog for T_2 . Thus, according to (5.13), if such a connection exists, it is unique.

Finally, the connection given by (5.13) satisfies, by construction, (a) and (b), and from the expressions of T_i condition (c) is easily deduced.

If we consider Theorems 5.1 and 5.2 simultaneously, we can give

THEOREM 5.3. Let M^n be a (J, g)-manifold, where g is an aem. Then there exists on M^n a unique linear connection ∇ such that:

- (a) $\nabla l = \nabla l_3 = l \nabla J = 0$, and thus ∇ is the sum of three connections ∇^1 , ∇^2 , ∇^3 in the vector bundles L_1 , L_2 , L_3 , respectively, given by restriction.
- (b) The L_3 -partial connection defined from ∇^3 is Hermitian in the sense of Theorem 5.1, and the L-partial connection defined from ∇^L is adapted to J and g.
 - (c) The partial connections V_L^3 , V_3^1 , V_3^2 , V_2^1 , V_1^2 are the canonical ones. We note that

$$\nabla_{X_3} A = \nabla_{X_3} A_1 + \nabla_{X_3} A_2 = l_1 [X_3, A_1] + l_2 [X_3, A_2],$$

which in general is not $l[X_3, A]$. That is, the connection V_3^L is not the canonical one.

We note also that it is easy to give the developed expression of ∇ , and the different aspect of the L-part and the L_3 -part emphasizes the fact that we do not have a Riemannian almost product structure operator on L.

APPENDIX

Verification of (5.4). The left-hand side member is

$$g(T_{3}(KX, Y), Z) - g(Y, T_{3}(KX, Z)) - g(KT_{3}(KX, KY), Z) + g(Y, KT(KX, KZ)) - g(T_{3}(Y, KX), Z) + g(KX, T_{3}(Y, Z)) + g(KT_{3}(Y, K^{2}X), Z) - g(KX, KT_{3}(Y, KZ)) - g(T_{3}(X, KY), Z) + g(KY, T_{3}(X, Z)) + g(KT(X, K^{2}Y), Z) - g(KY, KT_{3}(X, KZ)) + g(T_{3}(KY, X), Z) - g(X, T_{3}(KY, Z)) - g(KT_{3}(KY, KX), Z) + g(X, KT_{3}(KY, KZ)),$$

where the 7th and 11th, 3rd and 15th terms cancel. Moreover, from (5.2), the 2nd, 4th, 10th and 12th terms are, respectively,

$$-g(Y, T_{3}(KX, Z)) = -g(Y, \frac{1}{2}K(\hat{V}_{Z}K)KX - \frac{1}{2}K(\hat{V}_{KX}K)Z);$$

$$g(Y, KT_{3}(KX, KZ)) = g(Y, K(\frac{1}{2}K(\hat{V}_{KZ}K)KX - \frac{1}{2}K(\hat{V}_{KX}K)KZ))$$

$$= g(Y, -\frac{1}{2}(\hat{V}_{KZ}K)KX_{3} + \frac{1}{2}(\hat{V}_{KX}K)KZ);$$

$$-g(Y, KT_{3}(X, Z)) = -g(Y, K(\frac{1}{2}K(\hat{V}_{Z}K)X - \frac{1}{2}K(\hat{V}_{X}K)Z))$$

$$= -g(Y, -\frac{1}{2}(\hat{V}_{Z}K)X + \frac{1}{2}(\hat{V}_{X}K)Z);$$

and

$$-g(Y, T_3(X, KZ)) = g(Y, -\frac{1}{2}K(\hat{V}_{KZ}K)X + \frac{1}{2}K(\hat{V}_XK)KZ).$$

Thus, the sum of these terms is, since $K^2 = -1$,

$$g(Y, -\frac{1}{2}K(\hat{V}_{Z}K)KZ + \frac{1}{2}K(\hat{V}_{KX}K)Z - \frac{1}{2}(\hat{V}_{KZ}K)KX + \frac{1}{2}(\hat{V}_{KX}K)KZ + \frac{1}{2}(\hat{V}_{Z}K)X - \frac{1}{2}(\hat{V}_{X}K)Z - \frac{1}{2}K(\hat{V}_{KZ}K)X + \frac{1}{2}K(\hat{V}_{X}K)KZ) = 0.$$

On the other hand, the sum of the 6th, 8th, 14th and 16th terms is also zero, since it is analogous to the earlier, changing X and Y. Thus, it rests only the sum of the 1st, 5th, 9th and 13th terms, which is precisely the right-hand side member of (5.4).

REFERENCES

- [1] R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math. 279, pp. 1-94, Springer-Verlag, 1972.
- [2] J. M. Hernando, P. M. Gadea and A. Montesinos, G-structures defined by tensor, fields of electromagnetic type (to appear).
- [3] V. Hlavatý, Geometry of Einstein's Unified Field Theory, P. Noordhoff, 1958.
- [4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. II, Intersc. Publ., 1969.
- [5] R. S. Mishra, Structures in electromagnetic tensor fields, Tensor N. S. 30 (1976), pp. 145-156.
- [6] M. Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Japan J. Math. 26 (1976), pp. 43-77.
- [7] E. Reyes, A. Montesinos and P. M. Gadea, Connections making parallel a metric $(J^4 = 1)$ -structure, An. Sti. Univ. "Al. I. Cuza" 28 (1982), pp. 49-54.
- [8] I. Vaisman, Variétés riemanniennes feuilletées, Czechoslovak Math. J. 21 (96) (1971), pp. 46-75.

- [9] From the geometry of Hermitian foliate manifolds, Bull. Math. Soc. Sci. Math. R. S. Roumanie 17 (1965), pp. 71–100.
- [10] K. Yano, On a structure f satisfying $f^3 + f = 0$, Tech. Rep. No. 12 (1961), Univ. of Washington.

DEPARTAMENTO DE GEOMETRÍA FACULTAD DE CIENCIAS VALLADOLID, SPAIN INSTITUTO JORGE JUAN C.S.J.C., MADRID, SPAIN DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA FACULTAD DE MATEMÁTICAS BURJASOT (VALENCIA), SPAIN

Reçu par la Rédaction le 30. 5. 1985