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CHARACTERISTIC CLASSES OF MULTIFOLIATIONS
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ROBERT WOLAK (KRAKOW)

In this paper we present results concerning product structures, almost
flag and flag structures and multifoliations. Characteristic classes of these
structures are considered from several points of view. In Section 1 a
vanishing theorem for the characteristic classes of product structures is
proved. In Section 2 flag manifolds are discussed. We define new charac-
teristic classes, prove a vanishing theorem for them and point out obstruc-
tions to the existence of a product structure defining a given flag structure.
In Section 3 we deal with similar problems for almost flag structures and in
Section 4 for multifoliate structures. The exotic characteristic classes are
discussed in Section 5. In the last section we present results on residues of
flag manifolds which are generalizations of Heitsch’s results from [7].

The geometrical objects considered in this paper are smooth, i.e. of class
C*. We assume the knowledge of the basic definitions from [2], [9].

Notation. Throughout the paper, if V is a vector space and V,, ..., ¥,
is a set of subspaces of V ordered by inclusion, then GL(V; V;, ..., V) (resp.
gl(V; Vi, ..., Ki)) denotes the Lie group of linear isomorphisms of V pre-
serving each of the spaces V¥, i =1, ..., k (resp. the Lie algebra of linear
mappings preserving each of the subspaces V;, i =1, ..., k). For ¥V = R? and
V; = R% the Lie group GL(R%; R", ..., R*™) is denoted by GL(q; qy, ..., qi)
and gl(R%; R", ..., R™) by gl(q; 4, ..., q)- Then, of course, q; < g;,,. If we
consider the vector space as the direct sum of subspaces V}, ..., V, then the
Lie group of linear isomorphisms of V preserving V,, ..., ¥, is denoted by
GL(¥,, ..., V) and its Lie algebra of linear mappings preserving V;, ..., V,
by gl(V;,..., V). In case of V,=R" we denote GL(R, ..., R") by
GL(qy, ..., q0) and gl(R", ..., R™) by gl(qy, ..., q). The algebra of in-
variant polynomials of a Lie algebra of a Lie group G is denoted by I(G).

1. Characteristic classes of product structures. First of all we are going to
compute I(GL(V,, ..., V;)), where V = V,@® ... ®¥,. Since
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g=gl(Vy, ..., V) =gl(N® ... ®l(N),
1(G) = I(GL(V,, ..., ¥)) = (GL(V))® ... ®I(GL(V})).

Now we proceed to prove a vanishing theorem for product structures.
By a product structure we understand an integrable GL (V}, ..., V;)-structure.
Let F=(F,,...,F,) be such a structure, ¢, =dimF, g;=) gj, g, =n.

i<i

There exists an adapted atlas to this structure. A product structure gives a
reduction of the structure group of the tangent bundle TM to the group
GL((V)) x ... xGL(V,). The integrability of the GL(V,, ..., V)-structure
assures that infinitesimal automorphisms of this structure are locally of the
form '

2 fi;

where 0;(f) =0 for g,_, <i<g,, j<g,-, or j>g,.
On the tangent bundle we introduce a connection V as follows. Let V'
be any connection on F;. Let seF;, F'= @ F;, % the sheaf of germs of

i#j
infinitesimal automorphisms of F. Then we put
Ves=[X,s] for XeF nu,
Vys =Vis for XeF;.
To prove that V is well defined we have to show that it is independent of the
choice of an infinitesimal automorphism X. Indeed, if

X=ijaj, ng. Orj>gi+la
then

[X,s)=[X i s] =X 19, s1-Xs(H) 9, =X f;[9, 5]
which proves independence of the choice of X.

Note. The connection V is a Bott connection for each foliation F;.

Now we will prove several lemmas which will allow us to formulate and
prove a vanishing theorem.

Lemma 1.1. R(X, Y)s =0 for X, YeF', seF;, where R is the curvature
tensor of the connection V.

Proof. We have
R(Xs Y)S =(VxVy—Vy Vx—le'y])s ‘
=[X,[Y, s]]-[Y, [X, s]]-[[X, Y], 5] =0

as [X, s] and [Y, s] belong to F;.

Lemma 1.2. 'The Chern-Weil homomorphism annihilates I'(GL(V)) for
r>gq.

Proof. Let Q = () be the curvature form pulled back to the base
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manifold (locally). Since R(X, Y)s =0 for seF;, X, YeF', locally we have
% =) a'b,

where b, are forms vanishing on F'; g;_, <s, t < g;. The desired result now
follows directly from the definition of the Weil homomorphism — in
computation we take into account components . of Q for ¢g;,_, <t, s <y,
which we denote by € — and the fact that (&) =0 for r > g;.

Lemma 1.3. Let I'?, be Christoffel symbols for the connection V' and let
gi-1<v,t,s<g;.If 0,I’,=0forr<g;,_,,r>g;, then @(X, Y) =0 for any
Y, and X belonging to F'.

Proof. Since we have proved that R'(X, Y) =0 for X, YeF', it is only
necessary to prove that R'(X, Y) =0 for YeF, and XeF'. We have

Ri(X, Y)S = (Vx Vy—Vy VX—V[X.Y])S-

9
Let s= Y f6,and X=0, Y=20,, r<gi-, or r>g;, gi-; <m<y,.

Then S
R(X,Y)s=[4,, Vi 3 f,6]-V; [0, s]
=[0,, Y (0m(f) 8, +f, T ,)]
= Z (ar am(f;) a:+ ar(.,;) rvm: av+j; ar [wm av)

=2 £10,(I'm) 0, =0.
Now we are in a position to state a vanishing theorem.

THEOREM 14. Let F =(F,, ..., F}) be a product structure, q; = dimF;.
Then the Chern-Weil homomorphism of the foliated bundle L(TM/F,) factorizes
through that of the reduction to the group GL(V,, ..., Vi_y, Vi1, ..., Vi). The
Chern-Weil homomorphism of the reduced bundle annihilates I'(GL(V)) for
r > gq;. If the space of leaves of the foliation F'—M/F’ is a paracompact
manifold, then the Chern-Weil homomorphism annihilates I"'(GL(g;)) for
r> [4/2]. | .

Proof. We have only to prove the last statement. Since M/F’ is a
paracompact manifold, there is a connection on M/F’. Since the bundle F; is
an inverse image by the projection p;: M — M/F/ of the tangent bundle, the
connection on M/F’ induces a connection F’ on F; having the properties
required in Lemma 1.3.

CoroLLARY 1.5. If F/ is a compact foliation (i.e. F’ has only compact
leaves) and M/F’ is a Hausdorff manifold, then the Chern-Weil homomorphism
annihilates I'(GL(V))) for r > [q,/2].

Proof. The Theorem 4.1 of [3] asserts that the projection p;: M
— M/F’ is closed. Since the image of a paracompact manifold by a closed
map is paracompact, we get the result from the second part of Theorem 14.
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2. Characteristic classes of flag manifolds.

Definition. A flag structure on a manifold is a system of foliations
F=(F,,...,F) which is ordered by inclusion, ie. F,cF;,,. Let
q; =codimF; for i > 2 and q, =dimF,. A flag structure on M induces a
reduction of the structure group of the bundle TM/F; to the group
GL(n—gq,; q1, ..., qi), where n is the dimension of the manifold M.

Now we will compute the algebra of invariant polynomials on the Lie
algebra gl(n—q,; q2, -.-, q)-

ProprosITiON 2.1. The algebra of invariant polynomials on the Lie algebra
gl(n—qy; 93, ..., qi) is isomorphic to the algebra of invariant polynomials on
the Lie algebra gl(q,, ..., @x—Qx-1, "—q1 —q), i.e.

I(GL(n—q,; 43, ..., ) =I1(GL(G2; ---, G — k-1, n— 41 — Q)

Since the proof of the proposition is not essential for the understanding
of the paper we defer it to the appendix.

Remark. Unfortunately, the pair (gl(n—gq), gl(q2, ..., q) is not a
reductive pair, so we cannot apply Kamber-Tondeur’s theory.

Our next step is to prove a vanishing theorem for flag structures. Via an
adapted atlas to the flag structure and a partition of the unity it is possible
to construct a Riemannian metric on the bundle TM/F, which is
nondegenerate on each F,/F,.

Let S;=:F;,;nF* Then S;®F,=F;,; and S; is isomorphic to
F;+/F;. It is possible to choose a Bott connection in the bundle TM/F;
preserving F;,,/F;. Let us denote the connection induced in the bundle S; by
Vi. The bundle TM/F, is isomorphic to the bundle @ S;. Then define V as

Vys=Vys for seS§;.

In view of Proposition 2.1 we can consider the algebras I(GL(g,)),
I(GL(g;—4i+,)), 1(GL(n—g,—gq,)) as subalgebras of the algebra I(GL(n
~41; 43, ---, qy)). The image (by the Chern-Weil homomorphism) of an
element of one of these subalgebras depends only on the corresponding
component of the curvature form. But () =0 for r > n—q;—q, for i <k.
Therefore we have the following proposition.

ProposiTION 2.2. Let F =(F,,..., F,) be a flag structure. Then the
Chern-Weil homomorphism of the reduction of the normal bundle of the
foliation F, to the structure group GL(n—q,; q,, ..., q,) annihilates

. I'(GL(q))) for r>n-—gq;—q,,
I'(GL(‘I.'H—Q.')) for r>n-—-gq,—q, for 2<i<k

and
Ir(GL(n-q,—q,)) for r>n—gq,—q,.



MULTIFOLIATIONS 81

Combining Proposition 2.2 with Theorem 1.4 we obtain obstructions to
the existence of a product structure inducing the given flag structure.

Let go =gl(n—q,; 42, .-, @) and g, =gl(qz, .-, G —Gu—1, "= — ).
Then we have the following factorization of the Weil homomorphism

wigl (n-‘qt,)go) \

/ == QM)
Wig, ,91) I(lg‘))/
\\l(g._)

THEOREM 23. Let F =(F,, ..., F,) be a flag structure. The necessary
condition for the existence of a product structure F' = (F4, ..., F,, ) such that
F, =F}, F,= @ Fj is the vanishing of the following characteristic classes

j<i

A.f for feI'(GL(q), n—q, =1 >q,,
feI'(GL(QH»l_qi))’ n—q—qy 2r>4qi+1—g;.

Both Proposition 2.2 and Theorem 1.4 do not imply vanishing for other
characteristic classes than those given by polynomials fel"(GL(q)) for
r>q=n-—gq,.

Now we introduce a notion of the flag bundle.

Definition. A principal G-bundle P — M is called a flag bundle if it is
equipped with a G-equivariant involutive subbundle H such that

(1) H,nGu =0 for any point u of P,

(i) there exist involutive G-equivariant subbundles H; (i=1, ..., k) of
H ordered by inclusion.

Since H; are G-equivariant and involutive, the projections F; of H; onto
the base manifold M define a flag structure F. Unfortunately, the theory of
flag bundles is rather trivial as Proposition 2.4 shows.

For the sake of simplicity, from now on we use terms F-flag bundle and
F-foliated bundle for the corresponding flag (resp. foliated) bundles with the
flag structure F (resp. foliation F;) on M.

ProposITION 24. Let F =(F,, ..., F,) be a flag structure on a manifold
M. A principal G-bundle P -5 M is an F-flag bundle if P — M is an F,foliated
bundle.

Proof. The result follows from the following lemma.

LeEmMMA 2.5. Let P be an F-foliated bundle and F, be a subbundle of the
bundle F. Then F, is a foliation iff HNH™'F, is a flat partial connection.

6 ~ Colloquium Mathematicum 52.1
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Proof. Let F, be a foliation, X;eF,. Then
Ha[X,, X,1=[X,, X,] €H 'F,.
If HANH ' F, is a flat partial connection, then
H 'F,3[X,,X,] and Pt[fu X,1=[X,, X;]eF,.
Proposition 2.4 indicates a rather close relation between characteristic

classes of F;-foliated bundles P when P is an F-flag bundle.

CoROLLARY 2.6. The characteristic classes of an F;-foliated bundle P are
characteristic classes of the F-flag bundle P and of the F;, ,-foliated bundle P.

Proof. An adapted connection to the F-flag bundle (i.e. the F,-foliated
bundle) is also an adapted connection to the F;-foliated bundle.

3. Characteristic classes of almost flag structures.

Definition. An almost flag structure F is a system of distributions
(Fy, ..., F}) of constant dimension ordered by inclusion. Let dimF,; = g;.

We say that an almost flag structure F is of type (ry,...,r) if
r; =supcodimC;; C; is the distribution generated by the sheaf F; N %,
where % is the sheaf of infinitesimal automorphisms of the flag structure F.

We define a connection V in the bundle TM/F, as follows. Let S; be a
subbundle of TM such that F;®S; = F,,,, F, ®S, = TM. Then the bundle
S; is isomorphic to the bundle F;,,/F; and TM/F, is isomorphic to
S;® ... ®S,. By S we denote the bundle @ S;. Let Xe TM, then by X' we

_ jizi
denote the S'-component of X and by X; the S;-component.
Let V' be a connection in S; defined in the following way. For YeS; and

XeF; we put
VY =[X, YI-[X, ¥J*;

for X in S' we take any connection in ;.
LemMMA 3.1. If R; is the curvature tensor of the connection V', then

R/(X,Y)=0 for X, YeC,.
Proof.
R(X,Y)s =(VxVy -V} V'}—fo.n)s
=V ([Y, sY LY, sT*)-Vy ([X, sT-[X, s]*?)
—[[x, Y1, s]' +[[X, Y1, 5]
=[X, 1Y, s¥] - [X, [V, s3] = [X, [V, s7*']
—([Y, X, sYT - [Y. [, s3] " = [Y, [X, s7*'7)
-[x, v1, s +[[xX, Y1, 5]
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=[x, [V, sTT - [, [X, s} —[[X, Y1, s
—[x, 0% s3] -V X, s3] - [1X, YD, 5]
—[X, LY, s} ] +[Y. [X, s3]
= 0.
A connection Von S=S5,® ... ®S, is given by
Vys=Vis for seS§;.

The Chern-Weil homomorphism on I(GL(g;+, —g;)) depends only on
the S;<component of the curvature tensor. Therefore by Lemma 3.1 we have
the following proposition.

ProrosiTION 3.2. Let F =(F,, ..., F,) be an almost flag structure of type
(ry, ..., r). Then the Chern-Weil homomorphism annihilates I"'(GL(g;+, —4;))
for r>r,.

4. Characteristic classes of multifoliate structures. The simplest non-
trivial multifoliate structure is the following: two foliations F,, F, having a
foliation as the intersection. We are going to formulate a vanishing theorem
for characteristic classes of such a structure.

It follows from [11] and [14] that the distribution F, nF, has the
following properties:

(i) F; nF, is involutive,

(ii) dim(F, n F,) = const iff dim(F, + F,) = const,

(iti) if dim(F, + F,) = const, then F, N F, is a foliation.

ProrosITION 4.1. The Chern—Weil homomorphism of the flag structure
(Fy, Fy nF,) annihilates I'(GL(q, —qo)) for r > n—q,, where g; =dimF;,
qgo =dim(F, nF,).

Proof. Since the vector bundle (F, + F,)/F, is isomorphic to the vector
bundle F,/(F, nF,), the result follows from Theorem 2.2.

Note. A similar, but slightly weaker result was obtained by Andrzejczak
in [1]. He considered only foliations F,, F, such that F,+F, = TM.

5. Exotic characteristic classes of almost flag structures. For all details
on exotic characteristic classes and convexity of sets of connections see [12].
We will prove convexity of sets of connections related to a given almost flag
structure and draw some conclusions from this fact for characteristic classes.

ProrosiTiON 5.1. Let F be an almost flag structure. The set of F-con-
nections, i.e. connections adapted to F (see §3), is convex.

Proof. One ot the oasic facts used in the construction of F-connec-
tions is the existence of subbundles S; of the tangent bundle TM such that
S;®F;=F,;,,. Such a sequence of subbundles is given by a sequence of
projections s; '
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S;

Fia Fa/F

0

Let V, V' be two connections in whose construction we have used such
two sequences of subbundles S and S’ given by two sequences of projections
s; and s, respectively. Since T(M xI)=p 'TM @ 1, where p: T(M xI)
— TM is the natural projection and 1 is the vector bundle tangent to its
fibre, put F;, = p*F,® 1. Let s} =ts;+(1—1)s;.

Define §; as

SiIMx {1t} =8, S;=kers.
Then
F i+1 = gi@F i

If Fis of type (ry, ..., ), then F is of type (ry, ..., ).

Let V be an F-connection in whose construction the bundles S; have
been used. Then the F-connections V° = V| M x {0} and V! =V |M x {1} are
homotopic. We must show that V° is homotopic to the connection V and V!
to the connection V. Let S? = p*S;. The connection [V° V] is an F-
connection in whose construction the subbundles S? are used and defines a
homotopy between the connections V° and V. The same can be done for the
other pair, which ends the proof.

PROPOSITION 5.2. The set of metric connections adapted to the almost flag
structure is convex.

Proof. A Riemannian metric on TM/F, is said to be adapted to F if,
for any i, F,®F; nF;,, =F;,,. Let gy, g, be two Riemannian metrics on
TM/F, adapted to F, and V° be a g,-connection and V' a g,-connection.

Choose ¢ such that ¢' =tg,+(1—1)go (—¢ <t < 1+¢) is a Riemannian
metric on TM/F,. The metric g' defines a Riemannian metric § on TM/F,
x(—e, 1+¢&) > Mx(—¢, 14+¢) by

t

gIMxit) =g

Let V be a g-connection, and V' = V| TM/F, x {t}. V defines a homotopy
between V° and V'. We have to show that there are homotopies between V°,
V° and V!, V!. Let §, be a Riemannian metric on TM/F, x(—¢, 1+¢)
defined as the inverse image of g, by the natural projection. The connection
[V°, V°] is a §,-connection defining a homotopy between V° and V°. The
same can be done for the other pair of connections.

Let G =GL(n—q,; 92—¢,, ---, 4« —41), then

' 1(G) = ®I(GL(gi+ —4))®I (GL(n—gy)),

J=QJ; (>r), J = @J; where J; =1d {chj,,}. J; (>r;) denotes the ideal

generated by ¢ ...c} such that ) j, >r. Since the curvature of an
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F-connection has the property (Q")"'J'1 =0, we have a well defined
homomorphism from W(J, J') = I(G)/J®I(G)/J'® A\I* (G) to QM denoted
by 4(V° V'), where V° is an F-connection, V! a metric connection adapted
to F used in the construction of 4. 4(V° V') defines in cohomology

4,(V°, VY): H(W(J, J))— H(M).

Elements -4, (V°, V')(cj, ... ¢} ®h,, A ... Ah,)eH(M) are called exotic
characteristic classes of the almost flag structure F.

ProposITION 5.3. The inclusion of a subalgebra &;R[c]® /\ |H,! (a
odd) into W(J, J') induces isomorphism in cohomology.

Proof. It is essentially Theorem 6.1 of [12].
The Vey theorem gives the basis of H(W(J, J'). See Theorem 6.3 of
[12] or [4].

THEOREM 5.4. Cohomology classes of cocycles of the form
Cjy - C,@m A ... AR,
such that
jl+ +ja+ki)>r|'s lOS.]‘O’

form a basis of HW(J, J')).
Because of the above theorem we can define the algebra WO, whose
cohomology is equal to that of the algebra W(J, J'), i.e.

WOp=WO0,,_q® ... ®WO0,_,,

with the product differential.

Now we can formulate the following rigidity theorem.

THEOREM 5.5. If ji+ ... +ji+kb >r,+1, then 4, (V°, V*)(c, hi) depends
only on the arc-component of the connection V° in the space of connections
having the property (')i*! =0.

Proof. It is essentially Theorem 9.1 of [12].

ProPOSITION 5.6. The cohomology class 4,(V°, V')f is independent of
the choice of V° — the F-connection — and V' — the metric connection
adapted to F.

Proof. Proposition follows from Theorem 7.1 of [12] and Propositions
5.1 'and 5.2.

Note. The only non-rigid characteristic classes are given by (cf. [6])
o € @M, Ao ARy for i+ . djtkh =1+ 1.

6. Characteristic classes and residues. The results of this section are
based on results of J. L. Heitsch announced in [7].

Let F=(F,,...,F,) be a flag structure, X an infinitesimal
automorphism of F such that if X is tangent to F, at a point m, then it is
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also tangent to F; (property S). Such a point m is called a singular point of
X. Then the set Ay of all singular points of X is a union of leaves of the
foliation F,.

We assume that Ay = () F(m;), where F(m;) are closed and separated
leaves of the foliation F,, and that at no other point of the manifold the
vector field X is tangent to F,. On an open subset M — Ay of M there is a
new flag structure F' =(F;+ X, ..., F,+ X). It is possible to embed open
normal disc bundles D; > F(m;) in such a way that their closures D; are
disjoint embedded normal disc bundles.

Let U be an open neighbourhood of the set M—{JD;. A U-X-F-
connection is an F-connection constructed by the use of a set of subbundles
S=(S,, ..., S) with the following properties:

(i) Fi®S; =F;y, on M,

Fi®S; =F;,; on M—Ay,

(i) F,®S, =TM on M,
there exists a subbundle S; on M — Ay, such that
S;@X =Sk on M‘-Ax.

Let V, be an F-connection constructed with the help of the bundles

Si,...,Si. Let V be a connection in the bundle TM/F, whose covariant
derivative is defined as follows:
@Ys = [)” s]ia

for Y a section of the bundle F;, s a section of the bundle S;, i <k;
Vl"s = [}” s]s,"a

for Y a section of the bundle F, s a section of the bundle S;;
VX =0,
for any vector YeF,.

We do not impose any conditions on the covariant derivative along
other vectors but we take V* such that V*S; c S; and V* X = 0. Therefore,
choosing a family of subbundles §,, ..., S,, S; with the properties (i), (ii) and
a family of connections V' in the bundles S,, ..., S,, respectively, we can
construct a connection V in the bundle S, @ ... @S, isomorphic to the
bundle TM/F,. The connection induced in the bundle TM/F, by the
connection V will be denoted by V(S, V'). When possible, we shall omit S
and V' and write V,.

Take an open neighbourhood U of the set M —(D;. Let V,, V; be two
open sets such that UcUcV,cV,cV, Put V,=M-V,. Take a
partition of the unity {fo, f,} relative to {V;, V;}. Then f,|U = 1. Put

V=,(Vo+f1 V,.

We call the connection V a U-X-F-connection. U indicates that on the set
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U the connection V is equal to the connection V(S, V'). When we do not
need to specify the open set U we say that a connection is an X-F-
connection.

LEmMMA 6.1. Let V be a U-X-F-connection, Q its curvature form. Then
QY =0 onU for r>n—gq,—1,i>2.

Proof. It is a consequence of the fact that on the open set U the
connection V is equal to V(S, V).

Let I; be an ideal of WO, _,., considered as a subalgebra of WOy,
generated by the elements of the form ¢j, ...cj, Y j,=n—gq;.

LEmMMA 6.2. If fel;, thendf =0and A(V,V)f =0o0n U for any U-X-F-
connection V.

The proof is straightforward.

THEOREM 6.3. Let F =(F,, ..., F,) be an oriented flag structure on an
oriented n-dimensional manifold M. Let X be an infinitesimal automorphism of
F with the property S, whose set of singular points Ay is a finite union of
closed and separated leaves, Ax = |)N;. Let f €l; be an element of degree r.
Then f, F, X determine a cohomology class

Res, (F, X, N)eH ""%(N;; R,

the residue of f, X and F at N;,, such that
() Res,(F, X, N;) depends only on the germs of F and X at N,
(i) D j*Res (F, X, N;) = 4,(V, V')(f), where j* is the composition

H™""%(N;; R) % HL(D;; R) 5 H"(M; R)

of the Thom isomorphism and the map given by trivially extending a form with
fibre compact support; H.(D;; R) denotes the cohomology of the complex of
forms with compact fibre support.

Proof. For each N; choose an embedded open normal disc bundle D,. Let
V be a U-X-F-connection and V' be a metric connection adapted to F. Lemma
6.1 implies that the form 4(V, V')(f) vanishes on U. Therefore it defines a
differential form on D; with compact fibre support. 4(V, V')(f)| D; is a closed
form and defines a cohomology class [4(V, V')(f)| D;]e H;(D;; R). Integration
over the fibre defines the map

tp; Hi(Dj; R)— H ™ ""%(N; R).
We set
Res (F, X, N) = tDj[A(V, V)(NID,].

LeMMA 64. Res,(F, X, N;) does not depend on the choice of an
X-F-connection.

Proof. Using the same technique as in Proposition 5.1 we can prove
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that the set of X-F-connections is convex. It is sufficient for proving the
lemma.

LemmA 6.5. Res;(F, X, N;) does not depend on the choice of the disc
bundle D;.

Proof. See Lemma 3.18 of [7].

Combining Lemmas 64 and 6.5 we get the first part of the theorem.
Since +/ is the inverse of tp, (cf. [5]), the second part of the theorem is true.

Now we would like to express relations between exotic characteristic
classes and residues of F and X.

Let N be a singular manifold of X, i.e. Nc Ax. Then F is a flag
structure on an oriented n—gq, disc bundle M over the oriented manifold N.
The singular set of X is precisely N. On M—N we have a flag structure
F'=(F,+X,..., F,+ X) defining a characteristic mapping

4,: HWOgp)» H(MM—N; R).

By a we denote the composition of the injection of WO into WOy with the
differential of WOg:

a(cj, ... ;®M, A ... Al )=ci ¢y 6 @My, Al ARy

for each element c;, ...c; ®h, A ... A b of the Vey basis of WOy.

Observe that a(f) =0 iff f is a rigid element of H(WOg.).

Let us choose an embedded open normal disc bundle D of N in M such
that its closure is contained in M. The inclusion i: S+ M—N of the
boundary S of D is a homotopy equivalence. Denote by t5: H*(S; R)

—~ H'7""%"Y(N; R) integration over the fibre of the oriented n—gq,—1
sphere bundle S.
For the objects defined above we have the following theorem.

THEOREM 6.6. Let fe WOf. be an element of the Vey basis. Then
tsi* 45 (f) = Res,p(F, X, N).

Note. The theorem links characteristic classes of the flag structure F’
with residues of the pair (F, X). The proof, using methods similar to those
used by J. Heitsch, will appear in the forthcoming paper.

Appendix

The proof of Proposition 2.1. First we shall show that a mapping f
of I(GL(n—gq,;q, ..., q)) is determined by its values on the set 4 of
diagonal matrices and that the image of the correspondence is the set
P(q2,95—q3, ..., n—q;,—q,) of polynomials symmetric in

PR
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The second part of the above is obvious as we can just interchange the
elements of the basis by matrices from the considered group within the range
described above. Now we shall show that the mapping

a: I(GL(n—q,; 43, ..., )= P42, 93— 925 ---» n— @ —q)

defined by af =f]4 is surjective.

The algebra P(q,, 43—¢3, ..., n—¢q,—q,) is isomorphic to the tensor
product of P(q,), ..., P(n—q,—q,), where P(s) denotes the algebra of
symmetric polynomials in s variables. Then P(s) is isomorphic to the algebra
of polynomials R[g,, ..., g,] where g; is the ith elementary symmetric
function.

Since the matrices of the Lie algebra gl(n—gq,; q,, ..., n—q,—q,) are of
the form

Ay

we can define the following Ad-invariant mappings p;:

pi: gl(n—4q,; 495, ..., n—q,—q,) > gl(Gi+1—q),
p"A = A".

Then the mapping k; given by

k.‘A = det(Id¢i+1‘¢i+tp‘ A)

is Ad-invariant.

" Denote c;(p;A) by cf, then acj =g} where g} is the jth elementary
symmetric function of g;,,—g; variables placed in the ith place by the
isomorphism of polynomial algebras.

To prove that the mapping a is injective we have to change the base
field to C. The algebra I(GL(n—gq,;q,, ..., n—q,—q,)) can be injectively
mapped into Ic(GL(n—q,;q,, ..., n—q,—q,)®C) and P(q,, ..., n—q,—q,)
into Pc(qz,...,n—q,—q,). Since we have the following commutative
diagram
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I6LIn-q,;Gy,.n =Gy -G ) ———— /¢ (GL(N-qy;q, ,...,N- G, -9, )OC)

Plg,y.yn~Ge-q,) R 1qyyyN-q-q,)

it is sufficient to show that a; is injective.

Let T denote the space of upper-triangular matrices. Such a matrix is
diagonalisable if it has different entries on the diagonal. Therefore the
diagonalisable upper-triangular matrices form a dense subset of the set T.
They are also semi-simple, hence they can be diagonalised in GL(n
—q41; 92, ---, N—q;—4q,). Since any matrix of GL(n—q,;q;, ..., n—qx—q,)
is adjoint in the same group to an upper-triangular matrix, the set of
GL(n—gqy; q,, ..., n—q,—q,)-diagonalisable matrices forms a dense subset
of the group GL(n—q,; g3, ..., n—qx—q,).- Therefore, if acf =0, then f =0
(f is a continuous mapping equal to zero on a dense subset).

The above allows us to define the desired isomorphism as follows: Let
c;jeI(GL(q,))®I(GL(93—42)® ... ®(GL(n—gq,—gq;)) be the mapping
1®c;®1 where c; is on the ith place, and define the isomorphism

d: I(GL(n—q;;43, ..., n—q,—q,)) = I(GL(4,))® ... ®I(GL(n—q,—q,))

by putting dc} = c;;.
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