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ON k-REGULAR GRAPHS CONTAINING
(k—1)-REGULAR SUBGRAPHS

Abstract. A well-known open problem in graph theory is: which k-regular simple graphs
Contain a (k— 1)-regular subgraph (John R. Reay, 1979). This problem is solved for k-regular
Simple graphs on k+3 vertices. Also the number of labeled k-regular simple graphs on a given
Dumber of vertices is calculated. Using this, a lower bound for the number of k-regular simple
8raphs with (k—1)-regular subgraph is established.

1. Introduction. In [1], p. 246, the following conjecture is stated: Every
4-regular simple graph contains a 3-regular subgraph. It is called the Berge—
Sayer Conjecture; see also [5]-[7] and [10]. Recently this problem has been
Solved by Limin [4]. The general statement, each k-regular simple graph
Contains a (k—1)-regular subgraph, is not true in general. For instance, the
®omplete 3-partite graph on 9 vertices T3, is 6-regular but contains no
S-regular subgraph (see below). This example disproves Limin’s conjecture
(see [4], p. 135). So the question is: which k-regular simple graphs have a
k—1)-regular subgraph? In Section 2 it is shown that all k-regular simple
8raphs on k+3 vertices contain a (k—1)-regular subgraph on k+2 vertices,
SXcept precisely the k-regular complete multi-partite graphs on k+ 3 vertices.
0 Section 3 the number of k-regular graphs on p vertices is calculated; it
S@rves as a tool in partly solving the main question of this paper. |

2. k-regularity on k + 3 vertices. For 2-regular simple graphs the existence
of I-regular subgraphs is obvious. It is well known that the graph itself or its
°°_mplement or both are Hamiltonian provided the graph is regular. From
1}“3 it follows that each k-regular simple graph on p vertices with p even and
IP S k < p—1 contains a (k— 1)-regular subgraph on p vertices. Clearly, each

Tegular simple graph on p =k+1 vertices with p odd and k> 2 is a
Omplete graph K, ., and, therefore, contains a (k—1)-regular subgraph on
P~1 vertices, namely K;. '

. _Let k and m be integers > 2. The complete m-partite graph on km
rgr‘tl'Ces T 4m 18 an (m—1)k-regular simple graph without an (m—=1)k—1)-
“Bular subgraph on km—1 vertices. |
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THEOREM 1. Let k be even = 4. Each k-regular simple graph G on p =
k+3 vertices contains a (k—1)-regular subgraph on p—1 (= k+2) vertices
iff G # Tpy3m With k=3m—3 and m=3,5,17, ...

Proof. Take k even > 4 and let G be a k-regular simple graph on k+3
vertices. Then the complement G of G is a 2-regular simple graph on k+3
vertices. If G is not a complete multi-partite graph with precisely three
vertices in all the components of G, it follows that G has at least one
component with 4 or more vertices. Let v, be a vertex in a component of G
with at least 4 vertices and let v, and v, be adjacent to v, in G. Deleting the
vertex v, and its k edges in G gives a graph with all vertices having degree
k—1, except v, and v,. As v; and v, are not adjacent in G, they are adjacent
in G. So leaving out the edge v, v, in G yields a (k— 1)-regular subgraph of G
on k+2 vertices. _

Note that there are always at least 4 vertices that can be taken out
obtaining a (k—1)-regular subgraph. The necessity follows from a previous
remark.

3. The number of k-regular simple graphs. By N(p; k) we denote the
number of k-regular simple graphs on p vertices, k > 1, p > 2. For the sake
of clarity we remark that the number N (p; k) does not count only the non-
isomorphic graphs but all k-regular simple “configurations” on p fixed
vertices. The number of all simple graphs with degree sequence (d,, ..., d,) 18
denoted by N(d,, ..., d,). Hence

N(p; k)= N(k, k, ..., k).

N*(,, ..., d,) denotes the number of “locally restricted” simple graphs with

degree sequence d,, ..., d,, which means that each labeled vertex has fix

degree (see [3]). Clearly, not all constant degree sequences are graphlc, 694
(p, k) = 0 for k = p = 2. Define

N@©,...,0=1

Erdds and Gallai (see, e.g., [1]) have given necessary and sufficient condmonﬁ
for a degree sequence to be graphic. Using this we find that, for p > k+1
=3, N(p; k) =0 iff both p and k are odd integers. By

N(Sl; dl’ ey Sq; dq)

we mean

N, ....dy,....d

v

51 times sqtimes
where s; is called the order of d;, 1 <i<gq.

THEOREM 2. For any positive degree sequence (d,, ..., d;)) with d; of ordet
ssi=1,...,9 and s;+ ... +s, = p) the following hold: '
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‘1. The “equality

p! :
_l——_TN*(Sl; dl’ ceny Sq, dq)
Sl....Sq.

N(sl;dl, ooy Sgidg) =

is satisfied.
2 For 0<o;<s;, o+ ... +a,=d; and a; <s,:

N*(sl;dlﬁ"" sq; dq)
s;—1\/s, Sy .

= : e N* I;O, - _l;d 3 - s

alz (0‘1 )(dz) (otq) ( 51—y 1> S2—%3

ay;di—1, ..., 0, d,—1).

dy, ..., Sg—0,; d, 4

Proof. 1. There are s, vertices with degree d, that have to be divided

Over p vertices. This gives ( p) possibilities. There are s, vertices with degree
S1

d, for the remaining p—s, vertices, so we have (p 1) possibilities, etc.

S2

(p (p—s,— cee=Sg-1) _ p!
s;) S spl...8,!

2. In case of ‘N*, the degree of each vertex is fixed. Consider
| N*(Sl;dl,...,sq; dq)

and some vertex v° with degree d,. This vertex v° is connected with d, other
Vertices. Say v° is connected with &, vertices of degree d; (0 < a, <s,), with
%, vertices of degree d, (0 < a, <5,), ..., and with a, vertices of degree d,
(0<ozq<sq), @+ ... +o, =d,. Taking away the d, edges of v° yields a
8raph with the degree sequence

Clearly,

(1,0, 5y —ay—1; dy, s3—0y; dy, .oy 5,—0; dg, 2y di—1, ..., a, d,—1).

-1 ' ’ | : .
There are (p 4 ) possibilities the vertex v° is connected with the other
: . ,
Vertices. One can easily check that

(p—l)_ 5 (s,—l)(sz) (sq)
dl TYseenlly %y x . a‘!
f?" €ach «, ..., a, = 0 such that a; <sy, a3 <35,, ..., o, <s, and a; + ...
ta, = d,. This gives the desired result.

- For k-regular simple graphs on p vertices we have N(p; k) = N*(p; k),
be‘-"ause all vertices have the same degree.
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The following theorem is a direct consequence of Theorem 2:
THEOREM 3. We have

N(p; k) = (pZI)N(l; 0, k; k—1, p—k—1; k).

In the following example, N(7; 4) is calculated using the technique of
Theorems 2 and 3:

N(7;:4)=N@4,4,4,4,4,4, 4)=(2)N(4, 4,3,3,3,3,0)
6\[ 4
={4)| N4 2.2,2,2,0,0+(, |NG.3,2,2,2,0,0

4/1

(;)N(Z, 2,1,1,0,0, 0)]]

+ |
- G)[G)N(l 1,0,0,0, 0,0+ (:)[N(o, 0,0,0,0,0,0)
+ @)[N(z, 0,0,0,0,0,0)+ @N(L 1,0,0,0,0, 0)}]]

= 15[ () +4[1+3[0+@ (1] = 15[3+@ (D] = (15(31)
= 465. ' |

In the Table the number N (p; k) is given for 2<p<11 and 1 <k <9
For more results see [9]. In [8] the number of labeled 4-regular graphs are
calculated for 5 < p < 13. In [9] an algorithm is developed that counts the
number of labeled simple graphs.

THEOREM 4. N(p; k) = N(p; p—k—1) for p=> k+2. _

Proof. This theorem expresses that the number of k-regular simple
graphs on p vertices with p > k+2 equals the number of the complements of
the k-regular simple graphs on p vertices, being (p—k— 1)-regular simple
graphs on p vertices. The proof is left to the reader.

THEOREM 5. N(p; 1) is for even p = 2 the number of perfect matchings of
the complete graph K,. Moreover,

N(p+21)=(p+)N(@p; 1)

- (6) N(1,1,1,1,0,0, 0)+(:)[N(3, 1,1,1,0,0,0)

and | ‘
| N(p; ) =135 ... (p=1) = (p—1D)!.
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TABLE

N2 3 4 s 6 71 8 9 10 11
1]t 0 3 o0 15 0 105 0 945 0
2 10 t 3 12 70 456 3507 30016 286884 3026655
3o o 1 0 70 0 19355 0 11180820 0
4 flo0 0o o 1 15 456 19355 1024380 66462606 5188453830
510 o o o 1 0 3507 0 66462606 0
6 10 0 0 0 0 1 105 30016 11180820 5188453830
7410 0 o0 0o 0 0 1 0 236884 0
810 0o o o 0 0 0 1 945 3026655
910 o o o o0 0 0 0 1 0
‘ 0 1

Proof. The first part is obvious. The second part follows from Theorems
"2 and 3:

N@+21)=N(,..., 1) = (”“)N(om 1) =(p+1)N(p; 1).

p+ 2 times ptimes

The last part is left to the reader.
CoroLLArY 1. For even p > 2 the following holds:

N(p+2, p) =(p+1)N(p; p—2).

This corollary is a direct consequence of Theorems 4 and 5.
THEOREM 6. We have

PN (p; 2)+(§)N(p—2; )=N(+1;2) for p=4.

Proof. Wg obtain
N(p+1;2 = N(2 2) (Z)N(Z,...,Z, 1,1,0)

S, it

p+l r—2
=(§)[(p;_2)1v(2 s 2,1,1,0,00+N(2, ..., 2,0,0, 0)].
\_?__d —

On the other hand,
1
N(p;2)=N(2,. ,2) (” )N(Z . 2,1,1,0).

e, —i?

S0 we find

N(p+1;2) = ( )[((p 2)/(” 21) N5 D+ N(p-2; 2)]

= pN(p; 2)+( )N(p 2; 2).
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The above theorem can also be shown in the following way. Take any
set of vertices V with |V] = p+1 and let vyc V. Consider V' \{v,}. The number
of 2-regular simple graphs on V\{v,} equals N(p;2). A 2-regular simple
graph on p vertices has p edges. Extending a 2-regular simple graph on p
vertices to a 2-regular simple graph on p+1 vertices means taking away
some edge v, v, and insert two new edges v, v, and v, v, (see Fig. 1). For
each graph on p vertices there are p possible extensions V\{v,} to ¥, making
PN (p; 2) 2-regular simple graphs on all of V. However, this process yields
that v, is always in a cycle with more than 3 vertices. The number of 3-cycles

that contain v, is (g

vertices is N (p;z; 2), there are (g)N (p—2; 2) graphs with v, in a 3-cycle.

) As the number of 2-regular simple graphs on p—2

So the total number of extensions equals

PN (p; 2)+( )N(p 2,2,

and this has to be N(p+1; 2).

4]
\\\
~,
P’
//
e
V2

Fig. 1

=3

COROLLARY 2. We have

PN (p; p—3)+(g)N(p—2; p—5)_ =N(p+1;p—-2) for p=6.

This corollary is a direct consequence of Theorems 4 and 6.
ProBLEM. Find a recurrence relation for N(p; k).

As we have seen above, not all k-regular simple graphs contain a (k—1)-
regular subgraph, e.g., the complete multl-partlte graphs do not. How many -
are there?

ConNJECTURE. The complete mult:-part:te graphs are the only k—regulaf
simple graphs without (k— 1)-regular subgraphs.

THEOREM 7. Let m and k be integers > 2. The number of (m— 1) k-regular
simple graphs on mk vertices without an ((m— 1)k —1)-regular subgraph on
—1 vertices is at least

(mk)!
kY™m!’
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Proof. In Section 2 we have seen that the complete 7T,,,, graph is a
graph satisfying the theorem assumptions. Its complement is a graph con-
-Sisting of m complete graphs K,. One can easily verify that the required

Number equals
1 (mk ((m—l)k) (k
m!\ k k) k)’

and this leads, by a straightforward calculatibn, to the above formula.

Thus not all N(9; 6) = 30016 6-regular simple graphs on 9 vertices do
have a S-regular subgraph. Theorem 7 states that there are at least 280
Without a 5-regular subgraph. By Theorem 1, the remaining 29736 graphs
Contain a S-regular subgraph on 8 vertices. We investigate now whether it is-
Possible to generate these 29736 graphs by means of extending the 3507 5-
" Tegular simple graphs on 8 vertices by adding a new vertex v, with its six
edges together with an edge connecting (if possible) the remaining two
vertices. As N(8; 5) = 3507 and as there are 8 pairs of vertices not adjacent,
there are at least 8N (8; 5) = 28056 extensions to a 6-regular simple graph on
9 vertices by adding a new vertex v,. So there are 1680 graphs left. Looking
at the complements of the 28056 graphs, v, is never in a 3-cycle. There are

8
(2) = 28 3-cycles with v, on 9 vertices. For each such 3-cycle there are 6
_ Vertices left. As N(6;2)=70 and as there are

1/6
3(3)-10

Pairs of 3cycles on the remaining 6 vertices, there exist 70— 10 = 60 graphs
Which have as the complement a 3-cycle with v, and a connected cycle on
the remaining 6 vertices. Clearly, these 60 graphs can also be obtained from
4 S-regular simple graph on 8 vertices. So we obtain

8N (8; 5)+ @) [N (6; 2)--;- (g)] = 29736,

Which shows that in fact all 6-regular simple graphs on 9 vertices, except the

Ts.g-graphs, can be obtained from the S-regular simple graphs on 8 vertices
Y an extension argument. Using this technique it is possible to give a lower

bound for the number of k-regular simple graphs on p vertices that contain a
~1)-regular subgraph on p—1 vertices.

. 4. Lower bound for the number of k-regular simple graphs on p vertices
With (k — 1)-regular subgraph on p—1 vertices. Consider a line segment with
8in point 1 and end point g. These g points divide the line segment into
9~ 1 segments, denoted by 12, 23, ..., g— 1q. The segments will be marked 0
f 1 in such a way that no two adjacent segments are marked 1; the number
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of segments marked 1 is n with 1 <n<{qg/2], = 2. Let D(q, n) be the
number of possibilities the g—1 segments can be marked in the above
described way. We shall shortly call such a marking an (n x 1)-marking. It
follows directly that D(q, 1) =q—1 and D(2n, n) = 1. We define D(q, n) =
for n > [q/2].

LemMma 1. For q >4 and 2.< n <[g/2] the following holds:
D(qs n) = D(q—19 n)+D(q_2a n_l)'

Moreover,
D(g, n)=( ;”) for =2 and 1< n< [¢/2].

Proof. If g—1q is marked 1, the path 1,...,9q—2 has D(g—2, n—1)
((n—1) x1}-markings. If g—1q is marked O, then the path 1,...,q—1 has
D(g—1, n) (n x1)-markings. The total number D(g, n) of (n x 1)-markings on
q—1 segments is therefore equal to D(g—2,n—1)+D(g—1, n). The re-
maining part is well known.

THEOREM 8. For k < p—[p/2]—1 and p+k odd the following holds:

p—1 (z(p+k 3))
N(p; k) = N(p—1;k-1).
P02 Lo kDN Gp—k—1:2) \4p—k-3)) N P71 ED
Proof. Take p vertices v, v5, ..., v,. The number of (k—1)-regular

simple graphs on v, ..., v,_; is N(p—1; k—1). Let G be such a graph. As p
—k—1 > [p/2], it follows from [1], p. 54 and Ex. 4.2.10, that G° is Hamilto-
nian. Let H be a Hamilton cycle in G°. Extending a (k—1)-regular simple
graph G on vy, ..., v,_, to a k-regular simple graph on v,, ..., vy, means:
connecting v, with k vertices of G and adding a perfect matching to the
remaining p—k—1 vertices of G. Although p—k—1 is even, it is not always
possible that such a perfect matching exists.

We calculate the number of possibilities p—k —1 vertices can be connect-
ed in such a way that the new 4(p—k—1) edges belong to H and such that
no two new edges are adjacent. Put '

H=vy,...,0,_4, 0.

Fix one edge, say v,_,v,-;€H. Let n=3(p—k—1). The problem now
reduces to: calculating the number of possibilities one can add n—1 new
edges to v;, ..., v,_3 in such a way that the new edges belong to H and 00
two of them are adjacent. This means: designing an ((n— 1) x 1)}-marking t0-
U1, ..., Vp,—3 in H. According to Lemma 1 it follows that

_ —-—n—2
D(pj-3,'n—l) = (pn_l )
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So the number of (n x 1)-markings of the cycle H equals

L 11)(p 3,n—1)=2" 1(” " 2).
n n—1

For each (k— 1)-regular simple graph Gonvy,...,v,_, there is a Hamilton
Cycle H in G°. So for each G there are '

p—1 (p— n—2

n \ n—1 )
possibilities to connect v, with k vertices of G such that the remaining p—k
—1 vertices have a perfect matching in H. For each (k—1)-regular simple
graph on p—1 vertices we observe the following. There are at most N (2n; 2)
Possibilities to add a matching to 2n fixed vertices of the graph. So at most
N(2n; 2) (k—1)-regular simple graphs on p—1 vertices deliver the same k-
regular simple graph on p vertices by extending the original graph. As there
are N(p—1; k—1) (k—1)-regular 31mp1e graphs on vy, ..., v,_, the number
of “extensions” equals '

p—1 [(p—n-2
P N(p—1;k—1).
nN (2n; 2)( n—1 ) p )

This means that, for the number of k-regular simple graphs on p vertices,

r—1 p—n—2 .
k) > - N(pp—1;k-1),
N(p’k)>nN(2n'2)( n—1 ) (p- )

which yields the desired result. :

The above theorem gives a lower bound for the number of k-regular
simple graphs on p vertices (with k < p—[p/2]—1 and p+k odd) that
contain a (k—1)-regular graph on p—1 vertices. Question: Can there be
found a better lower bound?
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