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and by (3.46) and (3.53), this last quantity 1s
> 2C (4% f, (m)/(5n'12),

provided k is large enough. It is now easy to conclude the proof of the
theorem. Let N be the least integer > n, such that 4°f (N) = S(N). Then, by
the above discussion,

A5, (n Z ( )|R,, J<Sin

for all n < N, n = ny, so that (—1)*4*p(n) > 0 for n < N. On the other hand,
for n> N, n<ng,

441, Z (JiRecs

so that A* p(n) > 0 for all n > N. Finally, 4% p(N) can only be negative if N is
odd. This completes the proof of the theorem.
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on an earlier version of the manuscript.
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Rational approximation vectors
by

Georce Szekeres (Kensington) and Vera T.-Sos* (Budapest)

To Paul Erdés, for his 75th birthday
1. Introduction. It is well known and an easy consequence of the theory
of continued fractions that the “best” approximations

I/k=Nk18Mdk3 k=11 2139 7akEZ-J N;‘EZ>0

of an irrational f# change sign with each successive approximation, that is
Vi>0=V,. . <0=V.i,>0.

Here ¥, is called best (or closest) if |V <[Nf—
< Ny
Little is known about the analogous problem in higher dimensions. One

a| for all integers 4, N, 0 < N

result by Rogers [3] will be mentioned below. Given f=(8,, ..., B,)e R’ the
best approximation vectors
Vi =N p—ap. @ = (... e 2" NyeZ.o, k=123, .
are characterized by the property that
IN B—all <|INB—a] for all acZ", 0 <N <N,

where ||x|| = max|x;/. For convenience we shall write (for irrational «)
J

o) =a—a, aeZ, |a—al <1/2,
and generally for a«=(ay, ..., a,)
{m}' z(lralgw AR} lanj}

The notation will also be used for rational «, provided that jo—al # 1/2.

* Research supported by Hungarian National Foundation for Scientific Research, Grant
No. 1811,
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In particular if each f; is irrational then the best approximation vectors
of B are

Vi = N8},
Vi = Bl

N, is called the denominaror of the approximation p, = @/N,, and [|{N, 8}/
the norm of the approximation.

Each ¥ =(¥,. ..., ¥,) determines an n-signature (briefly, a signature)
Gy = 1a -+ o Ten)s O3 =ty = +or—, defined by

1IN B < [N B
Nl - 1.

i

for all 0 < N < N,

iV =0, j=1,.... 1

Thus with each irrational § we associate the sequence of signatures o,
=g (f), k=1, 2, ... of its best approximation vectors. Sometimes it will be
convenient to write o(k) for a.

What are the possible sequences o, associated with some g7 First, it is
easy to see that two consecutive best approximations cannot have the same
signature {Rogers [3]). For suppose that ¥ = [N, B! and Wy = {Nyy B)
have the same signature {(are in the same s-quadrant). Consider

V=1(Nio1— N B} =(Vk+1.j‘_VLja F=1,0 0.
Then clearly
Vil = mj'leIV?m,,--— Vsl < m?XIPL;! = [ %l
since

max |V, ;1 < max |Vl
i i

by the definition of best approximations. It follows that there is an !Ng}
with N < N, (namely N =N, ,, —N,) which is better than ¥, (hence
N = Ny), contrary to the assumption that ¥, is the next “best™ approxima-
tion.

We call a signature sequence proper if consecutive signatures are always
distinct. Thus every signature sequence associated with an irrational g is
necessarily proper. Is it true that conversely, every proper n-signature sequen-
ce Is associated with some f7 In particular (in the 2-dimensional case) is there
a B =(f,. B;) with the property that the successive closest approximations
wander around in- successive quadrants, clockwise or anticlockwise? The
problem in this form came up in dynamical systems and was posed to us by
Professdr Sinai. We shall find that the answer is yes, in fact every proper n-
signature sequence is associated with some fe R"

THEOREM. Given any proper sequence of n-signatures o} there is a 8
=(f1, ..., By such that o (f) =6 for dll k= 1.
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It is interesting to note that if # lies on a rational line (one that passes
through two points with rational coordinates) then o, (f) must ultimately
alternate between two opposite n-quadrants, namely the ones determined by
the direction of the line. This follows from the following lemma due to John
Mack:

Macks LEMMA ([11) Suppose that the n real numbers B,
linear relations

voes B, satisfy v

Z Biij=Ai G=1,....n
i=1

where the Bi; are not all zero, and the B;; and A; are integers. Then there is a
constant ¢ > 0, depending on the By; only, such that the following is true:
If ay/N. ..., afN (a;e Z, Ne Z.,) satisfy

max|Nf;—af < ¢
J

then

B a (=10
=1 N

That is, all reasonally good simultaneous rational approximations (cer-
tainly all best approximations with big denominators) must satisfy the same
rational dependence relationships as f itself. In particular if  is on a rational
line then all good approximations lie on the same line. We shall make
substantial use of Mack’s lemma in the next section.

Some interesting open questions remain. Suppose fi, ..., f, are in a real
algebraic number field of degree n+1. What signature sequences can such a
§ have? More generally if §,, ..., f, are “badly approximable” numbers (e.g.

they have bounded continued fraction digits, or min lim inf N*[{NB}| is
PoNeLso .

positive for some A= 1, or more appropriately lim inf N* min | {N§;}|
NeZs g i

is positive for some Az 1/n etc.} what can one say about the signature

sequence of §7 Our construction in the next section gives no information
about these questions; the components of the constructed f§ are Liouville
numbers {(hence transcendental) with exceptionally good rational
approximations.

2. Proof of the theorem. We denote by I', (= Z7) the set of lattice points
with integer coordinates, by I, the set of points with rational coordinates. If
g ={;, ..., #,) is an n-signature, its opposite is a® =(—1ys ---» —Hy) (namely
the signature of the opposite n-quadrant). If o # o' # o°, we say that ¢’ is
adjacent to a. '

Suppose that we are given a propet n-signature sequence or,
k=1,2,... 1t determines uniquely a (possibly finite) sequence of integers



258 G. Szekeres and Vera T.-Sos

ky =1 <k, <k; < ... withthe property: k, for v > 1 is the smallest k, > k,_,
such that ¢* (k,) is adjacent to ¢*(k,—1). It is then also adjacent to o*(k,_,).
The sequence is finite, of length g, if afy; = af® for all k= k,. For instance
the k,-sequence Is finite for all o, (f) associated with a f on a rational line.

The proof of the theorem rests on the construction of a g whose
cornponents have, like Liouville's numbers, exceptionally good simultaneous
rational approximations. The point f itsell will be obtained as a fast
converging limit of rational points p(k)eZ,, k=1, 2, ..., which will then be
shown to be the best approximants of B.

To start with set p(1) = 0. Suppose we have already comnstructed g
=plk,_1)=a/NeZX,, acl',, NeZ.,. We can obviously determine a point
g, = aye ', 50 that g, — q has the given signature ¢* (k,_,). Moreover we can
achieve that

g0 — 4ll = laos—ay/N|
for a certain index s =5, which is such that

(1) (k)9 = (=D 0* (kyo )7, dy = k=K

Such an s, certainly exists since ¢*(k,)} is adjacent to o*(k,.. ;). We want to

construct the points p(k) for k,_; <k < k, so that they should all lie on the

line segment L joining g4 and g,. If B lies sufficiently close to p(k,) this will

ensure that f—p(k) for k,_, <k <k, will have the correct signature.
Consider the points

gy =f{a+Ka)f{l+KN), K=1,2,...
(the iterated medians of ¢ and go); clearly they all lic on Land approach ¢
monotonically as K — o. We now define
plhy—1+1) = g¢

for a suitably large K; the exact conditions that K has to satisfy will be
specified later, as we proceed with the construction. At this stage we merely
require that K be so large that

”qK_q” <&

for some g, >0 which has been specified in the previous steps of the
construction. We may set at any rate g, = 1.

Now set d =d, =k,—k,_, and define for j=2,...,d (if d > 1)

.1
plky-+]) = Q(Fj(aO+Ka)+Fj—1 a)
where F_, =1, Fo=0, F; =1, F, =1, F; =2, F, =3, ..
sequence (F;,, = F,+F,_,) and

Q;=F;(1+KN)+F;_, N,

. 18 the Fibonacci

j=0,1,2, ..
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(In particular Qg = N, Q; = 1+KN.) The points p(k,_, +j) alternate on the
segment L arround their limit point

p(0) = (ao+Ka+£2_1 a)/(1+KN+£2:-1N).

In particular

1
pik) = p(k,. +d) =§‘(Fd(“o+Ka)+qu1‘1)~
d
If the k, sequence is finite, of length , and v = p-+1 then d = oo and
plk, 1) = p(o0) above.
Note that
{2) Ny} = Ngg—a = (Nag—a)/{(1+KN)

hence as small as we like if K is large enough.

Since there are only a finite number of approximation vectors of points
on L with denominator less than N, by taking K large enough we can
achieve that [Ngy} is a best approximation vector of gx and {Np(k,) is a
best approximation vector of p(k,). A forriori it is best among approximation
fractions which are confined to the line segment L.

It follows from a result of Mack ([2], p. 421) (which essentially states
that the best approximations on L are obtained by the ordinary continued
fraction process constrained to L) that the best approximations of p(k,) on L
with denominators M, N £ M < @, are exactly the points p(k), k,_; <k
< k,, with the proviso (since these points are rational} that the point gg.., (if
d=1) or p(k,—2) (if d > 1) has the same approximation norm with respect
to p(k,) as p(k,—1) has. More specifically if 4 =1

3) {1+ =) N)p(k)} = {1+(K-1)N) gk}
1

+(K-1)N
_—%E—Iv)—*w(ao”}"Ka)—“(ao’{'(K“—l)a)
a—Na
I‘l“ﬁ = —{Nqx} = — {Np(k,);

by (2), and if d > 1

Qa1
Q

= (1Y (a—Nag)/Qs = —1Qa-2 p(k))}.

4 1Qu- plk,)} =

(Falag+Ka)+Fy_y a)~(F,  (as+Ka)+F,_, a)

as easily verified from Fy_ Fy ,—F Fyj_3={—1¢"1, .
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Now the p(k). k,_, <k <k, are the best approximants of p(k,) even if
we do not constrain them to the segment L; there are just no other best
approximants off the segment, provided that X was chosen sufficiently large.
For k=k,.; this is so by the assumption already made, and for
k,., <k <k, it is an immediate consequence of Mack’s lemma. The limit
point g == lim p(k) is of course slightly displaced with respect to p(k,), and

k—=wo

the approximation norms with respect to § are not quite the same as with
respect to pik,), but the p(k), k,.; <k <k, will remain the best approxi-
mants of g (and B—p(k) will have the same signaturc as plk,)—p kY
provided that

i)y [|B—ptkl] is sufficiently small, and
(i) the following condition is satisfied (to circumvent the ambiguity of
approximation norms mentioned in (3), (4) above):

5) {1 -+K =) N) B > [H(L +K =) N) p (k]
=|{Np&) > NG i d=1,
© Qa2 Bl > 11Qam 2 pUIHI = 1{Qum 1 R > 111 Qa s B
if d>1.

Condition (i) can be achieved if we prescribe sufficiently small values for
Ey41> Evsz, ... N the subsequent steps of the comstruction. Condition (i} is
fulfilled because of definition (1) of the index s = s, which specifies the norms
of vectors in the direction determined by L. For let us write p(k,-;+9)

—plky—1) = (Pirsoos Piad = ,d and suppose that o* (k,)* = + (if it is
—, the proof goes in exactiy the same fashion); then for 1 <i <d
Pis > Pivr,s >0 i i s odd,
0 <py<pi+ys Af i1is even

and in particular py; > py-, if d is odd, py < p;..4 i d s even. Hence if we
set

B=pk)+8, =0 ..., 3,
then condition (1) requires
7 (—1y8,>0.
To show (5) suppose d = 1, then
(8) {1+(K=1N) B} = [(1+(K ~1) N)p(k)}+(1 +(K —1) N} &

provided that ||8]) is sufficiently small (this is part of the specifications for
condition (i} above). But then the s-components of the two terms on the
right-hand side of (8) are both negative, by (3) and (7), and the first inequality
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n (5} is proved. Similarly
{NB) = {Np(k,)) +N§

for sufficiently small ||d]|, and the s-component of the first term on the right
is positive, by (3), proving the second inequality in (5) (again provided that
|4]] is small enough).

Next suppose d > 1 and even. Then

04— 2B} = 104 2pk)] + Qs 20

and the s-components of both terms on the right are positive, proving the
first inequality in {6). Similarly

04— B} =1{04-1plk)} + 0y, &

and the terms on the right have opposite signs, proving the second inequality
in (6). The proofs are the same if d > 1 and odd.

This concludes the construction and the theorem is proved. It would be
difficult to write down the conditions for §, the ¢, and the K explicitly, but 1L
is clear from the construction that the g, must decrease extremely fast, and
the components of $ are strongly Liouvillean.
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