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On homogeneous multiplicative hybrid problems
in namber theory

by

C. Pomerance® and A. SArkozv (Athens, Ga.)

Dedicated to Paul Erdés on his 75-th birthday

1. Inthe last 10 years, several authors have studied many “hybrid” problems
in number theory, i.c., problems involving both special and general sequences of
integers. Most of these problems have been additive problems, i.¢., equations of
the form

k I
(}.) Zal‘a,‘: Z b_)a aIGAl,...,akEAk, bIEBi,..., bIEB,
=1 ji=1

have been studied, where A, ..., A, are general sequences (“dense” sequen-
ces), B,, ..., B, are fixed special sequences (sequences of the squares, of the

numbers of the form p—1, etc.), and oy, ..., % are fixed real numbers. An
k

equation of the form (1) is said to be homogeneous if Y o =0. A typical
i=1 :
homogeneous problem is to study the structure of difference sets of “dense”

sequences of integers, i.e., to study the solvability of equations of the form
a—a' =b, aeA,deA, beB,

(where 4 is a “dense” general sequence, B is a fixed special sequence); Erdds,
Fiirstenberg, Kamae, Mendés France, Ruzsa, Sdrkdzy, Stewart and Tijdeman
have studied problems of this type.

Recently Iwaniec and Sdrkszy [6], [7] have studied two multiplicative
hybrid problems of inhomogeneous nature. Here our goal is to study
homogeneous multiplicative problems. In fact, by a theorem of F. Behrend
[1], N> Ng, A<= {1,2, ..., N} and

1 log N
Lz PR (log log N)Y!/*
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imply the solvability of ala’, ac 4, a'e 4, a # '. Thus we may expect that f
certain special sequences B and for “dense” (general) sequences A4 t
equation

!

(2) ' —EZb’ acd, aded, beB
must be solvable. The solvability of an equation of this form can be called
homogeneous multiplicative problem, and here our goal is to look for spec
sequences B for which equation (2) must be solvable (for “dense” sequenc
A). In other words, here our goal is to study the structure of the integ
quotients a'fa, ac A, ¢'eA.

First we will prove the following theorem:

THEOREM 1. There exist absolute constants ¢,, N, such that if N is

positive integer with N = Ny, P is a set of prime numbers not exceeding
with
1
(3) Z — > C3,
PEPp
A< {1, 2, ... N and

. . 1 1\ "2
(4) 3 — > 10(log N) (2 —) ,
asAa pst
then there exist integers a, 4 with
(5) a#d, aed, ded, ad, E|Hp.
a

i d

HPis aset of primé numbers not exceeding N, then let 4 denote the !
of the integers a with a< N and

' 1
Yl= [2 —J,
pla per P
pelP

It can be shown that for this sequence 4 we have

1 1\ 172
ZE>63108N(Z*) \

acd pel

and, on the other hand, clearly there exists no integers a, «’ with a # o, ac

, , a : ,
deAd, ada and E' [T p. This example shows that Theorem 1 is the b

. pelP
possible apart from the value of the constant factor on the right of (4).
Note that i the special case when P denotes the set of all the pris

numbers not exceeding N, Theorem 1 gives the following slightly shary
form of Behrend’s theorem:
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CoroLLARY 1. There exist absolute constants ¢y, N, such that if N is a
positive integer with N2 N,, A< {1,2, ..., N} and

¥ 1 S log N
PR et v X
Sa (log log N)/?
then there exist integers a, a' (% a} such that ac A, d'c A, da’ and a'fa is
squarefree.

We mention three other consequences of Theorem I. First, choosing P
in Theorem 1 as the set of the primes p with p < M, we obtain

CoroLLARY 2. There exist absolute constants cs, ¢g, N3 such that if M, N
are positive integers with N > Ny, ecs < M < N, then for A =12, ... N},

i log N
- (g
,éa o (log log M)Y/?

implies there exist integers a, a' {s¢ a) such rhat acd, d'eA, ald, dfa is
squarefree and the greatest prime of d'/a is < M.

1
(Thus if Y, — > log N, then there exist a, a'(# a) with ac 4, d'c4, dd
aed
and a'fa =0(1))
Next, if we choose P as the set of the primes p with p< N and p
= | (mod 4), then we obtain

CoROLLARY 3. There exist absolute constants c,, N, such that if N is a
positive integer with N = N,, A< {1,2,..., N} and
1 log N
Z >0 1732
azd @ (IOg IC‘EN)

then there exist integers a, & (# a) such that ac A, d'€A, dala’ and d'/a= x?
+y? can be solved.

Finally, if we choose P as the set of the primes p with p< N and p
=1 (mod k), then we obtain

CoroLLARY 4. There exist absolute constants ¢y, N5 such that if k, N are
positive integers with N2 N5, A< {1,2, ..., N} and

gL (o) Mo N
Za” " (loglog N)'*

then there exist integers, a, ¢ (# a) such that acA, ded, ala and
a!

(6) — =1 (mod k).
a

(o(k) denotes Euler’s phi function.)
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In fact, it follows from Theorem 1 that there exists an integer quotient

!

a
a'/a such that p =1(modk) for all p|E

Note that the residue class = 1(mod k) in (6) cannot be replaced by any
other residue class modulo k. In fact, if A denotes the set of the integers a
with g = 1 (mod k), a < N, then we have

’

— = 1(mod k)

for any pair a, ¢ with aed, a'e4, ala’, and, on the other hand, Y lais
aed
“large”.
As the remark after Theorem 1 shows, both Corollaries 2 and 3 are the
best possible (except for the values of the constants cs, ¢g, C7, N3, Ng). On
the other hand, Corollary 4 seems to be far from the best possible. In fact,

we guess that Corollary 4 can be sharpened in the following way:

Contecture L. If k is a fixed integer, N is an integer with N 2 Ng(k),

A<il,2, ..., N} and
1 log N
L2 “loglog N7

then (6} is soivable.

(By Behrend’s theorem, this estimate would be the best possible except
for the values of the constants) This assertion would follow [rom the
following one:

CONIECTURE 2
Acil, 2,

CIf k is a fixed integer, N is an integer with N = N (k),
.. N}, a=d (modk) for all acd, de4 and

‘ 1 e logN
‘ E,a 9 k{log log N)1/2

then there exist integers a, o (5 a) such that ac A, dedA and ala'

Unfortunately, we have not been able to improve on the estimate given
in Corollary 4.

Another arithmetic property of the quotients «'fa (with ala’) can be
derived easily from a theorem of Erdds, Sarkdzy and Szemerédi [4]. Let v{n)
denote the number of distinct prime factors of », and let 2(#) denote the iotal
number of prime factors of »n counted with multiplicity.

Turorem 2. (1) If ¢ > 0, N is a positive integer with N > Nyle), k is a

positive integer, A ={1,2, ..., N} and

1 klogN
7 e S S o
@ E‘a ( +8)(2nloglogN)”2’

then there exist integers a, a' such that a # o', ac A, a'e A, alo’ and k|Q{(d'/a).

icm
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(i) If e >0, k is a fixed positive integer and N > Ng(e, k), then there
exists a sequence A such that A ={1,2,..., N}

klog N
8 > —_—
®) EA (21r10g10g N2
and there exist no integers a, @ with as o', ac 4, a'e A, a|la and k|Q(d'/a).
Note that k|@(a'/a), ie.,

(a'/a) = O(mod k)
in Theorem 2 cannot be replaced by

Q(d'fa) = b(mod k)

for some fixed integer b. In fact, if A denotes the set of the integers a with
klQ(a), a < N, then we have

Q{a'fa) = O(mod k)

for all ac A, '€ 4, ala, and nevertheless, > 1/a is “large”™
acAd
We guess that the assertion of Theorem 2 holds also with the function

v(n) in place of Q(n). Unfortunately, we could prove cnly the following
slightly weaker estimate:

TueoreM 3. (i) If e > 0, N is a positive integer with N > N, (e), k is a
positive integer, A ={1,2, ..., N} and

1 klogN
®) ,EE > ) S g log N) 2

1
where C=]] (1+(p— l)p)’

then there exist integers a, a' such that a # ', ac A, a'e A, ala’ and k|v{a'fa).
(ii) If € > 0, k is a fixed positive integer and N >N11(a k), then there

exists a sequence A such that A < {1,2,..., N},

1 klog N
10 - l—g) 7,
(10) -£a>( E)(EnloglogN)”z

and there exist no integers a, o with a 2 d', ag A, a'ed, ala’ and klv(a'/a).
We mention another related conjecture: We guess that if ¢ >0, N is

safficiently large in terms of &, A < {1,2,..., N}, A consists of squarefree
integers, and

):1 - (149> 6 log N -

—a n? (2r log log N)
then there exist integers a, @' (a # a') such that ae A, ’¢ 4 and ala’. (Compare
with the theorem at the beginning of Section 3). We note that Conjecture 2
and this conjecture could be generalized; we hope to return to these
questions in a subsequent paper.
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If A4 denotes the set of integers a with @ < N, 2|{Q(a), then we have
Y ija~3logN,
acd
and ac 4, a'ed, dd, a'/a=p (prime).is not sclvabie.

If we replace this last equation by a'/a= p+1 (or = p+(2k + 1)), then by
using the fact that p-+1 is even for p > 2, still we may construct a “dense”
sequence A so that this equation should not be solvable. On the other hand,
one may guess that for “dense” sequences 4, ac A4, a'e A, ala’, o'fa = p+2 (or
= p+2k) must be solvable. This is not so, ag the following result shows:

THEOREM 4. For each non-zero integer k the set A(k) of natural mumbers
divisible by at least one number of the form p+k where p is prime and
[p+kl > 1 possésses asymptotic density d{A{k)) < 1.

Thus if A = N— A(k) then A is “dense” yet there do not exist ac 4, a’'e 4
with a £ &', ald’, and a'fa = p+k for some prime p.

2. In this section, we will prove Theorem 1.
Let us write all ac 4 in the form

a = b(a)*(a),

where b(a), t{a) are positive integers and b(a) is squarefrec. For
t=1,2,...,put 4, = la: ae 4, t(a) =t}. We are going to show that there
exists a positive integer T with

-2
{11 ¥ b()>6(10gN)(Z 1) .

agdp el

In fact, if we start out from the indirect assumption that there does not
exist a T satisfying (11), then we get

Z Z Z" Z thb(ﬂ

aca =1 neAr t=1 acd,

+w +m -1j2
Y Lgge L asten (3l

=11 asA,b(”) =l pep P

, V172 112
=7 (logN)(z —) <lO(]ogN)(z w)

peP pe‘PP
which contradicts (4). This contradiction proves the existence of an integer T
satisfying {11).
Let B denote the set of the positive integers b such that for some ae Ay
we have b(a) =b. For ae Ay, a'e Ay we have
a4 bld) T2 b(a)

a b@T* bla)’

so that in order to show the solvability of {5). it soffices to show the
solvability of
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{12) b#b, bcB, beB, by and H p.
pcP
Let us write v* (n) = Z 1, and for a positive integer n, let g(n) denote
pln

. peP
the number of solutions of

bk=n, beB, vk >%1Y Up.
peP

We are going to show that there exists a positive integer n with

1—1,‘2
(13) g(n)>r(n)(2~) . N*<n< 2N

peP

(z(n) denotes the divisor function.) In fact, if such an n does not exist, then
for large N we have

an2 an? 1N\~ 12
14 3 gm< ¥ T(n)(Z —)

n=NZ n=nN2 peb

1\-12 2n2 [\-1/2
3(2 “) Y T(”)Z(Z -) (I1+0(1)) N*log N?

peP

1\~ 12
<§N2(IogN)(z —) .

pelP

On the other hand, if > (1/p) and N are large enough, and N < x, then
pel
by a theorem of Erdds and Kac [3] we have

{n:xgn 2x, vt(n) > Z}

pe?
Thus in view of (11},

2n2 2N2
2 gm=% )3 1
n=nN2 e N2 bk=n

beBy k) > (1/p)
A

=2 1> ENZ—ENZZI
<8 %_Z_gkg_.ﬁg_z_ bEBS b —-5 belb
vt 1
W>3 T tin
12 1\~
>— Nz(logN)(Z )
pe P
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which contradicts (14), and this contradiction proves the existence of an
integer n satisfying (13).
Let n be an integer satisfying (13) and write m = [ [ p- The elements of B

pln
are squarefree, so that b|n holds if and only if blm, and thus in view of (13},

1 ~1/2
(15) ZlleZg(n)>r(n)(Z;) .

bjm b|n pekP
beB bel

Let us write
X ={p plm}, Y=|p:pim, pgPl. Z=1p: plm, peP]
so that
X=YuZ, YnZ=0.
For b|n, put
M (b) = {p: plb}.

We need the following lemma of Sirk8zy and Szemerédi [8]:

LemmMa. Let X be a finite set, and let X =Y UZ, YNZ = Q. Put |Y|
=y, |Z] =z Let My, M,, ..., M, be subsets of X with

s F
(16) ” ([2/2])

Then there exist subsets M, and M, (v v) with
MnY=M,nY ad M, nZcM,nZ.

We are going o apply this fernma with the sets M (b) (where bjm, be B)
in place of M;, M,, ..., M, so that in view of (15), the number of these
subsets is

17472 1\~ /2 1\~ 12
(17 1> t(n) (Z E) = t(m) (Z 5) = pyte (Z _) .

peP pelP pe.Pp

On the other hand, by g(n) > 0, we have

so that in view of (3), for large enough ¢, (so that thus z is large} we have

y{ yEEZ_ Eyﬂl 1—1/2 y+z 1~1/z
(18) 2([2/2])<2 5o <52 ZZp <2 (¥ .

peP peP

icm
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Nov,t (16) follmys from (17) and (18), so that, in fact, the lemma above can be

applied. By using the lemma, we obtain that there exist b, b’ with h # b',
MBINY =M@®)nY and M@GBNZcMP)NZ.

Clearly, these integers b, b’ satisfy (12), and this completes the proof of
Theorem 1.

3. To prove the first half of Theorem 2, we need the following theorem
of Erdds, Sdrkézy and Szemerédi [4]:

If & >0, N>N12(8), Acil,2,...,N) and

1 log N
- >l 4g) e
?;,a ( 8)(2Tclog log N2

then there exist integers a, d' (a + a') such that ac A, d'c A and afd’.
Assume now that (7) holds, and for i =0, 1, ... put 49 = la: ae 4, Q(a)
= i(modk)}. By (7) we have

1 1.1 log N
max D - ([ o) E - b A—
0£i<ka§,~)a klg,a ( E)(2nloglogN)”2

W

so that there exists an integer i, with 0 <i, <k and

1 log N
Sttt
aEm 2”0t (2m log log N)Y/2

Then by the theorem(_o)f Erd(’)'s,( _S)érktizy and Szemerédi, there exist integers a,
a' (a# a) with aed ™, a'ed™® and ga'. These integers satisfy also

Q{d'fa) = Q(a)—Q(a) = iy~ iy = O(mod k)

which completes the proof of (i} in Theorem 2.

Now we are going to prove (i) in Theorem 3. Let M denote the set uf
the positive integers m such that pjm (pprime) implies that also p*m holds.
{In other words, 1e M, and an integer m > 1 satisfies me M if and only if

there exists no prime p with plm, p®tm.) Clearly, any ac 4 has a unigue
representation of the form

a=m(a)n(a) where m(a)eM,

For me M, put

#{n(@) =1 and (m(a), n(a)) = 1.

A% = {a: ac 4, m(a) = m},

Then (9) implies that

1 & klogN
19 S 1+= 2
1) s n;Z,,ﬁn(a) >( +C)(2nloglogN)1”
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since otherwise we would have

1 1 1 1 ( a) klog N
20 Iogly 1 _gif 8y kleN
2 EIAG mngugm n{a) ,E‘M m C /(2nloglog N)'/*
1 klog N
:( 8) klOgN —(C 8) og

(2x log log N)i/2 (2rlog log N)I72

T

!MMm

since

1 1 1
—= — | = I+ ]=C
mgmm I}(I+k=zl7’c) I}( +(P"‘1)P)

(20) contradicts (9) which proves (19).
By (19). there exists an integer m, with

1 £ klog N
—_— It—= )3
,,;‘k n{a) >( +C>(2nloglogN)”2
L]

Then by using the first half of Theorem 2 with s mgned, jun) =1,
(img, ) = 1} in place of 4 (and with #/C in place of &), we obtain that there
exist a = mon{a), a’ = mon{a’) such that a # o, ae 4, a'e A, n{a)n(@’} (so that
also ala’ holds) and

o (n(a’)) — (n(a’)) _, (mo n(a’)) Y (a_’)

n(a) n(a) mg n(a) a
which completes the proof of (i) in Theorem 3.

We are going to complete the proofs of Theorems 2 and 3 by proving
(ii) in Theorems 2 and 3 simultancously. Let A = {a: a < N, loglogn < Q(a)
<loglogn+k}, Then (8) and (10) hold by a theorem of Erdds [2]. Further-

more, a ¥ &, acd, a’'ed and ala’ imply that 1< Q(a'/a) < k—1. But then
neither k|Q(a'/a) nor k|v(a'/a) can hold which completes the proof.

4. In this section, we will prove Theorem 4.

If 4 is a set of positive integers, let B(A) denote the set of positive
muitiples of members of A. Let Ay = 4n[1, T], AT = A (T, ), and for
positive integers u. M let Z(u, M) denote the set of the paositive integers n
with n = u (mod M).

Lemma 1. Let u, M be positive integers, and suppose that the set A of
positive integers is such that lim d(B(A™))=0. Then d(B(A)nZ(u, M)
T+«
exists and is equal 10 Im d(B(Ap)NZu, M)).
T+ oo
(d(A) and d(4) denote the asymptotic density and the asymptotic upper
density of A, respectively.)
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Proof. For any T we have

21) d(BlAg, N Zu, M) < d(B(A) ~ Z(u, M))

< d{B(A)nZ(u, M)

SA(B(Ag) N Ziu, M)+d{B(AT).
Since d(B.{A(T,)ﬁZ(u, M)) is monotone, it has a limit 4. Thus letting
T—+ow in (21) and using the hypothesis we have

d(B(A) N Z(u, M)} = d,
Lemma 2, If TliT d(B{(A"™) =0 and L4 A, then d(B(A)) < 1.

Proof. First note that for any C < 4, d(B(C™) < d(B(A™), so by
Lemma 1, ,

d(B(CO)Yn Z(u, M)) = lim d(B(Cp) N Z(u, M)) for any u, M.
T+
Also by Lemma 1, d(B(A4")) exists for any T
Let T be such that Z(B(A" ) =d(B(A"™™) <1, Let M= [] a and
“EA(T(JD

let C=lacA: (4, M) =1}. Then if (u, M) =1, using 1¢A, we have
B(A) N Z(u, M) = BA™) n Z{u, M) = B(C) " Z (1. M).

Thus it will suffice to show 4(B(C)r Z(u, M)) < I/M.
For any T let M(T)= [] ¢. For any j < M(T) with J€B(Cp), we

. X {.’EC{T]
have exactly one of j, j+M(T), ..., j+(M— 1) M(T) congruent to umod M.

But the set of j+iM(T) where j < M(T), jeB(Ciry), and 0Li< M—1 is
equal to [1, MM(T)] N B(Cp)). Thus for any T,

(22) d(B(Cir) N Z(u, M) = gl,;d (B(Cm)).

Letting T— 400 in (22) and using Lemma 1, we have

d(B(C) " Z (u, M) =$:1(B(C)) < ;4 d(B(A") <. L

which, as we have noted, is sufficient for Lemma 2,

In order to prove Theorem 4, we need also the followin, 5 5
and Wagstalt [or : g result of Erdds

Toeorem (ErdSs and Wagstaff). If 4 = {p—1: pprimel, then
lim (B(AM) = 0.

T+ oy
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Replacing p—1 in this theorem by p+k {for any fixed non-zero k), the
same proof goes through. . ‘

Now combining the theorem of Erdds and Wagstaff (with p_+k m.placc
of p—1) with Lemma 2, we obtain the assertion of Theorem 4 immediately.
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On multiples of certain real sequences
by
J. A, Haigur (London)

Several years ago Professor Erdds suggested to me the following prob-

lem:
I 4, <4d;<... is a sequence of real numbers such that
iminf N™* 3 1> 0Ois it true that, for any & > 0 the inequalities |1 —j,| < &
1,EN

have an infinite number of solutions in i, j, k?

If the 4, are integers the condition reduces to 4] and the question has
a positive answer, by a well-known theorem of Davenport and Erdés ([37,
Thm. 5, Ch. V). I was not able to solve this problem without a further
condition on the sequence. However, it then became possible to weaken the
“liminf” condition to “limsup™:

Tueorem 1. If A4, <4, < ...is any sequence of real numbers such that

(a) AfA; is irrational, i # |,

(b) imsupN™* ¥ 150

2,EN
then, for any e >0 the inequalities |A,—jl| <& have an infinite number of
solutions in I, j, k.

Here we have a situation which is quite different from the integer case.
Besicovitch constructed a sequence with positive upper asymptotic density no
terms of which divides any other ([3], Thm. 4, Ch. V).

Condition (a) arises from the fact that integral multiples of an irrational
number are uniformly distributed modulo 1. This implies (Lemma 1) that the

- sels

0K x—nlfy<efly, O, n=1,2,..}
are almost independent.

[ noticed that this simple lemma makes it possible to prove the
following result;

Trrorem 2. If A; < A, < ... is any sequence of real numbers such that, for
some £ > 0,

limsupy™ ! U [4,, Ay +e] [0, y] >0
n=1



