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ACTA ARITHMETICA
XLIX (1988)

The growth rate of the Dedekind Zeta-function on the
critical line

by
D. R. Hearo-Brown (Oxford)

For Paul Erdos
on his 73th birthday

1. Introduction. Let K be an algebraic number field of degree n, and let
tx(s) be ils Dedekind Zeta-function. Thus

(=Y. (NA™*  (Re(s) > 1),

A
where A4 runs over the non-zero integral ideals of K, and NA is the absolute
norm of A. The question considered in this paper is the order of magnitude
of ¢x(s) on the critical line, The trivial bound is

Cefh+in) €™ (tz 1),

where the notation <, indicates that the implied constant may depend on
K. This follows from our Lemma 2, for example.'When K = Q, the Dede-
kind Zeta-function reduces to the Riemann Zeta-function {(s), and one has
the estimate ((3+it) €¥°** (r = 1) for any fixed &> 0. Indeed, the
exponent  can be slightly reduced. When the field K is Abelian, {x(s)
factorizes ns a product of ({{s) and n—1 Dirichlet L-functions L{s, x).
For these one can prove an estimate

(L1 Lk, ) <€, 0704 (¢ 2 1)

(Here also it is possible to improve the exponent 1/6 in the same way as for
{{s)} It follows that

(12) Lx(h+i) <™ (12 1)

if K is Abelian. It would be of interest to make the dependence on K explicit.
However, it is difficult to get a satisfactory uniform estimate even in the case
of (1.1), and so we concentrate on the t-dependence in this paper. Our goal is
to prove the bound (1.2) for all K, whether Abelian or not.
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THeoreM. Let K be an algebraic number field of degree n. Then
[ GHit) <gt"®™ 21
for any fixed & > 0.

We conjecture that much more is true. The Lindelsf hypothesis for i (s)
states that

[k (G+if) €, tf

for any fixed & >> 0. Moreover, the Riemann hypothesis for {(s) implies the
stronger estimate

(L= 1)

i ‘ logt
CeE+iD éxexp(cbglogr) (r=3

for an appropriate constant ¢ = ¢(K) > 0. Indeed, it seems reasonable to
conjecture that

L G+iry <gexp{logHM?*s) (12 2)

for any fixed ¢ > (. However, until now, the only non-trivial bound available
was

Exl % Fil) €5 phid= c/nliag(n+ 2)

due to Sokolovskii [1].

When K is non-Abelian one cannot factorise {;(s) completely, and so
our proof of the theorem uses an n-dimensional version of van der Corput’s
method for estimating exponential sums. To date all treatments of the
n-dimensional form of the method have been rather cumbersome. We intro-
duce a simplification by using weighted sums and integrals. This avoids in
particular the complicated conditions previously imposed on the regions of
summation and integration. We hope that our approach will be of wider use
in the theory of n-dimensional exponential sums.

In future all constants implied by the notations <, > and O(..)) may
depend on the field K. We shall also use vector notation. Vectors, and vector
valued functions, will be written in bold type thus: x, 9(c), u(x). They will
generally be n-dimensional, except in Section 3, where some r-dimensional

vectors are needed. We will denote the scalar product by x-y in the usual
way, and the length of x by lx|.

{t=1),

2. Preliminary transformations. Qur first concern is to reduce the prob-

lem to one involving finite sums. This we do by the method of approximate
functional equations.

Lemma 1. Let t 2 2. Then
It ¢ G+ i) <2TN4)” 2y (NAY+0 (1),
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where Wo(x) = Wo(x, 1) has derivatives of all orders, and satisfies
d* Wy (x)

T < x ¥min(1, 2 x71),

Let K have ry real conjugates and r, pairs of complex conjugates, so
that n=r;+2r;. Let % be the discriminant of K, and write
C=2""2 n—n,'zl‘%uz’
G(s) = CI'(s/2)" I'(s)'3,
and

Sk () = G (5) Lk ().
The functional equation for {y(s) then takes the form &g (s) = &x(1—s).
Moreover, &g (s) is holomorphic and bounded in the strip [Re(s)| < 2, except
in neighbourhoods of s = 1 and s = (), where there are simple poles. Taking
s =%+it with t = 2, we therefore find that

1+ion

! d _
1) | Eels+w e D = G T (NA) Wy (NA),
2mi 1=iw w A
with
1ot Gls+w) a2dw
2 Wold = L5 6w < W
We now move the line of integration in (2.1) to Re(w) = —1, allowing for

the poles at w=0, 1—5 and —s. This vields

1 —1+im dw
GO T NAY " Wo(NA) = &l +0 (™~ | Lils+wyer
A —1-im
1 1+!°° zdu
-y _ ul
= 0@ )5 [ dell-srwe™ T,
on using the functional equation and the substitution u= —w. Since
G(s)™! < e it follows that
1___.
SNAY Wy N A+ TS LT (V=1 W (V) = L)+ O D),
A G(s) G
where
L1 G(l-stu) ad

* (%) = e a0 gt
W =5 1 X Gisy ¢ w

Finally we recall that s = §-+it, whence G(1—s) = G(s) and W*(x) = Wy(x).
We thus obtain the first assertion of the Jemma.
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From (2.2) we have

d* Wy (x)
@3 =
1 1+ix

kL i _ Gl adw
=x ?m];w( Dfx " ww) (k= 1) = e S

If w=o+it, Stirling’s formula ylelds

Fe+w) oo TEEWY2)
. [’T T s JA R A @ tﬂ'f- O(ifl)=
e e &) ¢

and hence

Gls+w) < 11912 U,

G(s)
umformly for —1/4 <o < 1. It follows that
G pl
W(W'i—i) Aw+k— 1) (GS?«W) w1l étncn‘le—r—fz:

so that (2.3) is 0{x*"11"?). Alternatively, if x < ("% we move the line of
integration to Re(w) = —1/4. The resulting expression is then

< x"—k(tn,'lx—l)** L1j4 & x—k

If & =0 there is a pole at w=0, with residue 1 < x~*. The second part of
the lemma now follows.
We next define

-
wo(x)z%exp(—;—(i‘-_x)), 0<x<1,
0, otherwise,
and
1
(24) w(x) = {[o, (¥ dy} !t ().

Then w{x) has derivatives of all orders, and satisfies

2.5) 0®(x) 41, ©x=0 (x<0orxz1),
and
| ox)dx=1.

— o

e
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We now have

A

DINA) VW (N4 = ?So(x) dx
G

where
= A;(NA)“UZ"I'I Wo(NA)w(x—logNA}_

On substituting x = logy we obtain the following result.
Lemma 2. Let t = 2. Then
LeG+inl <2 IS
1

1l dy+0(1),

where -

S1(¥) =2 (NA)* W (NA, 1, y).
A

Here Wi(u, t, y) has partial derivatives of all orders with respect to ueR
Moreover '

'6u"1 €y M min(l, 12y

and Wy =0 unless e™ 'y <u<y.

3. A smoothed sum over integer vectors. We now proceed to transform
S.(y} into a finite weighted sum over n-tuples of rational integers. To this
end, we firstly choose a set of representatives 4,, ..., A, for the ideal classes
where A 15 the class number. Then A ~ A7 if and only if A4, = («) for some;
algebraic integer o<« K. Hence ’

;‘”(NA)‘" W, (NA, 1, )= (NA)uZ{Z),N A Qﬁ:l t, y)

o : .
where ) indicates the condition 4 ~ 47! and ¥ runs over a set of
non-asseciated algebraic integers acA;. Thus

Ny
S, (y) = NA) ft No| * W, (l
1 j;i( EAJ "W NA Ly)

*
whcre: the sum Y * runs over exactly one & from each equivalence class of
associates. The 1deals 4, depend only on K and not on t. Hence, for some A;
(=4, say) one has

(1) () <

o (B2,
N it y
X" N w (o })

, In ort;ler to select exactly one xe A from each class of associates we use
the following standard device. Let the real conjugates of « be 2 (1 <j<r))



328 D. R. Heath-Brown

and let the complex conjugates satisfy

— (+72) .
dh =o' Y, r < jgr 4.

We now sef r=r +r,—1. and define a lincar mapping % K— {0} ~ R’
by takmg () to be the row vector

(3.2) S(a) = (log |V, ..., loga™]).

If K contains exactly m roots of unity then 8(x) = I(ap) will have exactly m
solutions aeK, if xoe K— {0} is given. :

Now let &, ..., & be a system of fundamental units for K, and let E be
the invertible r xr matrlx whose rows are 3(g)), ..., 3{&). Then if X is any
fixed vector and

= {(xiﬂ [ERE) x;-)ER’: ngi"_xi < 0}

we see that the condition $(zx)E~'eC picks out exactly m numbers
axcK — {0} from each class of associates. We shall take

X =(log V)1, ..., DEY,
where Y = y/". We now define § < R’ to be the set
S={E"': aeA—{0}},

so that § has periods Z. Moreover, for each o€S, we define

] N
f(o) = INo "5 W, ('ﬁi : y),

where ac A— {0} satisfies $(x) E~' = a. This definition is independent of the
choice of «, and produces a function which, like S, has periods Z" We now
introduce a smooth r-dimensional weight

r

w(xia rres xr) = H w(xi):

i=1

where o is given by (2.4). Then

s ()= T 6

zed o=SnC

[ Y flowle+xdx,...dx

R oesnc

=3 | Z fl@o(c+x+ndx, ... dx,

ne 2t CoeSnC

i X f(6+n]m(a+x+_n)dx1...dx,

nezr CoesnC

= [} flo)olo+x)dx, ..

CocS
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Thus (3.1} yields

S1(y) <

xed

2 |Na| "W, (lNA[ ,y)w(Q(a)E”I%x),

for some xeC.

We shall use the linear function ¢(u) = (g, (u), ..., 0,(w)), where

uj, Jsry,
o;(m) = %uﬁiu}.hz, ry <j<ri+r,,
U, =iy, Ti+r, <j<n
We also define a weight W, (u), for any ueR", by

W, (—mm-—lnjsj;u)!, t, y)co(vE"+x),

Wou) = Wo{u; A, 1, y,x} =
where

v = (log g, (W), .., log |o,(#)]).

It follows that there are positive constants ¢,, ¢, such that W, (#) is non-zero
only when

(33) QY <lgl <, ¥ (1<j<n).

We denote the above region by R(Y). Moreover, if we adopt the notations
=(ky, ..., ko), k=13 k; and

&
D ——
Flug... o™,
then the partial derivatives of W, will satisfy
{3.4) DEW, <, Y %y~ 2min(1, 2 y~Y).
Now let (xy,..., @,) be an integral basis for 4 over Z and define
(3.5) 20 =Y afx, (1<j<n),
h=1

N =T 2% (),
h=1

and u(x) ={u,, ..., u,), where

a(i') (x): j< ?'1,
(3.6) u; = {Re(a‘-”(x)), rp<jsrn +"2,
(e’ F @), o <i<
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We then have:

LEMMA 3. Let t 3= 2. Then there is an ideal A of K and a function W (u)
= W, (u, y) such that

o0

te@G+in < 14 [1S:(idy.
i

where .
Sy =Y N(m) Wy (u{m).
meZ"

Here W, (w) satisfies (3.4) (where Y = y") and is non-zero only in the region
R(Y) given by (3.3). !

4. Van der Corput’s method. To estimate S (y) we first apply the van der
Corput “A process”, For any he Z" we have

S, = ¥ N(m-+ k"W, (u(m+h).
mcZ"

Thus, if I<H<Y, and

(4.1) H, =% heZ" |H < H],
we obtain .
(4.2) HiSs(0) = T Y N(m+R ™" W, (u(m+h)
Bl<H m
=Y Y N(m+h “Wy(u(m+Hh).
m |h|<H

If Wy (u(m+h) =0, then (3.3), (3.5) and (3.6) yield

2 m+h) <Y (1<j<n).

i=1
Since det (=™ # 0, it follows that [m+ | < Y. However [kl < H < Y. so that
only those m with |m| < Y can contribute to (4.2). Hence Cauchy’s inequality
yields B
@3) HES, () < Y*Y| Y N(m+R "Wy (u(m+n)’

ne ]Illﬁff_
N{m+j)

% (N (m+h
<Y"H{ ¥ 2(

<2H o

=Y"H, ¥ [y,

Ws2H

<y"

) Wz(u(m+]'))%(u(m+h)}'
i <H

N it .
I(Vn('n—:)n ) Wa(u(m+ 1) W, (u(m))l
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say. We now apply the n-dimensional Poisson summation formula. This
takes the shape :

2 fm=% jerrfixydx, .. dx,

mc 2" peZ' @t
for any smooth function f of compact support. Thus

(4.4) Ll y)= Y F(, p),
peZht
where
—_ T mp-x N(x+’) ¥
(4.5’ F(L p)_ iﬂez p (mm__) W"z(u{x-i-[})ﬂf'z(u(x))d.rl.dxn.

We czln sim_p[i'fy this somewhat by substituting # = u(x). According to
(3.5) and (3.6} this is a non-singular linear transformation u = xU. We write

Wa () = Wy, L, ) = W, (u-+ 1 () W (u).

Then W (1) has support in the region R(Y), and its partial derivatives satisfy

(4.6) DEW, <, AY %,
where
(4.7) 4 =y 3 min(l, "y~ 3?),

uniformly for | < 2H. If we set A=1U and g=p(U")" ", then

4.8) 2] <« |l
and
(4.9) [pl < [u] <]pl
Moreover e2MP¥ w pnina ap4
Nsth 7 lostat A
N o1 gl -
Hence (4.5) takes the form
(4.10) F(l, p)=IdetU|™" [ & W () duy ... du,.
o .
Here
rn rytrg
(4.11) u) = z o)+ Y oy, Ujiry)s
: j=1 J=rpt+1 )
where
(4.12) @;(u) = 2rp;u+tlog utd <€y,
u
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and
(44> + 0+ Xjt,)
4.13) @;(u, v) = 2r{put 4, v) +tlog 5
U0
| (rl <J r +T2)

5. F(l, p) for large p. In this section we estimate the integral in (4.10)
when p is large. We begin by proving the following lemma.

Lemma 4. Let W: R— R have support in (a, b) and let ¢: [a,b]— R.
Suppose that W and ¢ have derivatives of all orders and write

(5.1) =inf {i¢’(x)j: a <x < b}.
Suppose further that
(5.2) d;;:,[: 4, b—a)" (xeR, k20)
and

dk
(5.3) T <k(b al *¢  (xe(a, b), k= 1).
Then

b
[e?PW(x)dx <y(b~a) "N~V
- for any integer N = 0.
We prove the lemma by induction on N, the case N = 0 being the trivial
bound
b
[e*X W(x)dx <b—a,

which follows from (5.2) with k = 0. For the general case we integrate by
parts to obtain

b L . (JC)
(54) [E*O W (x)dx = [(ig' (x) e“”("’) ’(x)
@(x) W{X))
fe' ( w5

By Leibniz’s formula we have

dk+1

». (E _kil.(k"i”l_f-_ 1 dk+1"jW
A\ ) & j-)dxf o] dx

(5.5)
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One may easily show by induction that

& ('1 ) H
dd N\ | (@ yF T
where H is a polynomial in the derivatives of ¢'. Moreover, any monomial
{hle
[To™
]

occurring in H will have

Ye=j, Yhe=2
It therefore follows from (5.1) and (5.3) that

d 1
dx’( )<d> (b—a)y™,

whence (5.2) and (5.5) yield

& (WY
dx"( )<k((b a) @) Yb—a) k.

b—a s (“f("))'
@'(x)

satisfies the hypotheses of the lemma in place of W(x), and our induction
assumption yields

Thus the function

]
[eo (b — )@(WEXD dx <y(b—a)?~ N §' -V

The case N of the lemma then follows from (5.4).

We turn now to the integral in (4 10), and consider the case in which g
Is large. We define

V= lQJUv)] (1<j<n).

According to (4.8) there will be a constant c3 > 0 such that v; < }c, ¥ {with

¢y as in (3.3)) providing only that H < c¢53 Y, which we henceforth assume. It
follows that

loj(u+ 2| = 4c, Y

for all ue R(Y). The formulae (4.11), (4.12) and (4.13) now yield

dp
% s 2nﬂj+O(Y2)
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for ue R(Y). There is therefore a constant ¢4 > 0 such that

deo

ou.

J

> n|pf

for every j for which
(5:6)
We will then have

-2
[l Z cat¥ ™ v;.

e tv;
et @1_»'__
ﬁuj Y!+1

|#j|

« YI—l'

If there is any index j satisfying (5.6) we may use Lemma 4 to deduce that

T e W () sy < ATl

- T

since any line meets the region R(Y) in at most two intervals. We therefore
conclode that

§ €2 W, () duy ...du, LAY (Y )™V,
R

6. F(l, p) for small p. We now consider F(I, p) when u is small. We
define '

L;=min{c, Y, (v/Y?) ™)

LﬁH%_

1

(1<j<n),

and

1.3

W, (x) = ] olx/Ly),

j=1
where the function ® is given by (2.4). Then

[ Waladdx, ...dx, =L,
P
so that

(6.1) | Wi(w)du,...du,
B ,
=LV [ | OV () W (u—x) duy .. du,dx, .dX,
R
= L' { I(x}dx, ...dx,,
. - _
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say. We proceed to estimate I (x). Clearly I(x) = 0 unless |[x|] < Y. The weight

Wi (1) = Ws(u, x) = Wy () W (u—x)
satisfies

bl 4 A _k
—‘a? < ALj .
by (2.5) and (4.6). Let B{x) denote the box

MeR” 0<u—x; < Ly (1<j<n).
If ug B(x)nR(Y) then

|o; (1) —0;(x)| <ie Y

by the choice of L;. We have already ensured that |g; (/) < 3¢, Y, by taking
H < ¢y Y. Moreover, we have |o;(W)] > ¢; ¥ by (3.3). It follows that

(6.2) Y <ig;(ull, fo;(x), lejlu+ A, lgfx+ Al €Y (weB{x) "R(Y)).

We also note that if x’ is some other point for which B(x") " R(Y) # @, then
(6.3} YEp(x+x'+ A €Y
providing only that
{6.4)

We now find that

lo;(x)—g;(¥) < 3¢, ¥

8 2
%(u)m%(x)@v@jy* (e B(x) N R(Y),

by (4.11), (4.12}, (4.13) and (6.2). It follows that there is an absolute constant
¢s > 0 such that :

8 3 E
%(x)*@ a—f}(u) < Euf_(x) (ve B(x) A R(Y))
J J i)
whenever '
i
%(x} > ety LY 3.
Since L; €Y, we then also have
Fo o ap
< £ LY 3 Lk g |2 1—k
au;g (u) <y yE+1 (v LY ) L;7F < auj(x) L;
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for k= 2 and ueB(x) " R(Y). We now assume that there is some index for
which

G _
(6.5) E?(x) > Py, LY}
B
with ¥ = ¢5, and
64
(6.6) v = Y,
1

(so that L; =(tv;/¥*)~/%). Then we may use Lemma 4 to deduce that

| € Wy (wdu; <y ALY (Pry; LY 707N = 4L, 77,

-x

since any line meets B{x) ~ R(¥) in at most two intervals. We conclude that .

I(x) €y ALY™Y

so that such x contribute a total
' <y Ay @V

to (6.1).

1t remains to consider the set X of those x for which (6.5) fails whenever
j satisfies (6.6). Here we use the trivial bound I(x) < 4L, so that the
corresponding contribution to (6.1) is O(4 mes(X)), where mes(X) is the
Lebesgue measure of X. For any xeX we will have

oy

whenever j satisfies (6.6). Thus if x, and x, are both in X it follows that

< (v Y22

0 b
(©) [ﬁm%f@ﬂ

< 2 (v, Y2,

However, if j <r;, then (4.11) and (4.12) yield

g

w _a_“’ = 5_"’1_ Oo;
au,. (x1) 6uj (x3) = 5uj (x4 ;)“‘é;;(xzj)

Lty + th;
Xyp(%05+ A4 Xp5(xq;+A))
=tlj(;cij—xzj)(xlj+'x2j+ij)
xlszj(x1j+lj](xzj+ij) ’

icm
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By (6.2), (63) and (6.4) we have

8 B -
Ej(-’h)“aj(—fz) v Y 3]Qj(x1)“Qj(x2)!=
i
(6.8) loj{x)—0;(x)l € 3¢, Y.

It follows that

3v1)2
@m}mmch)

¥j
if (6.6) and (6.8) hold, and j <r;. In case r;, <j < r +r, we have v; = Vidrgs

so we may use (6.7) for both j and j+r,. If we put w = gi(xy), z = g;(x,) and
a = 0;(4) then

,.’

E’T(xl) = 2mp;+ 2t Re (—logw+a)

J

dg
fu

Jtra

d
{xy) == 2npyy,,—2tIm (d—logw+a)

172
)"

_a{w—zj{w+z+o)
T wz{w+a)(z+a)

and similarly for x,. Thus {6.7) vields

ilow+a dl
dwgw dz

Z+D$

However

d wao  d z4+a
—-—log

dwgw dz z

and so, just as in the case j < ry, we deduce that (6.9) holds whenever (6.6)
and (6.8) also hold. If (6.6) fails we trivially have

lo(x)—gi(xx)l € Y < (

Y3 172 Y3 172
r <w@__
IVJ- th'

mes (X) i yInZ—nf2 H Vj_ 1/2

J=1

We therefore conclude that

We summarize the results of this section and the previous ome.
LeMMA 5. Let A= U, p=p(UN7, v, =|g;(3 and

4=y 3min(l, "y~ 3.



338 D. R. Heath-Brown

There exist positive constants cq, Cs such that for any integer N =10 we have

(6.10) F(l, p) <gdY" NPy []

j=1

for

‘IJ?CS:

and
(6.11) F(lp) <ydY"(Yigh™ if  Ipl2
7. Completion of the proof. We have now to estimate 2 (l ¥), given by
(44). From (4.8) we have v; € H, so that (6.11) may be used if ] » tHY 2.
According to (6.11) we then have
F(l, p) <y dY"(YIp)™" il
Taking N = n+1 the contribution to (44) is now
€AY Y jpl 7t <Ayt
p*0

When |pl < tHY ™ ? we use (6.10). Taking ¥ = ¢ ¥*", and choosing N
we have

e t¥ 2

pl» tHY 2.

= nle,

F(i, P) A+ A }/3?},’2+l:1'—ﬂf2 n vj—lfl_
i=1

On referring to the definitions of v;, ¢;. A and U. we see that

H vj
where o(f) =« () is given by (3.5). Hence.
YF( p <4 1+@HY ) {14 y3m2+e =2 | Na (D)~ 12,
P

= | Na(l)],

where the sum is for 0 <|p| <tHY "% It follows that
I, y) <€ AU H"Y T2 A HRY TR Na ()12,
providing that

(7.1) max(1, Y2t ) <H< e ¥,
When ! =0 we have the trivial bound
500, y) =Y Wi (u(m) € 47",
whence )
(72 3 IZd
<28

& A {Yn_i_thZn Y‘z"+t""2H" Y;-nlz-l.-a Z
o<l S2H

| Noc(B) ™12}
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Let B be any non-zero ideal of the field K. Any two elements x(I;). x{l,)
which generate B differ only by a unit factor, ; say. Moreover

() leil)
" L) a1

and similarly for the other conjugates of 5. In the notation {3.2) we therefore
sec that [3(n) <log H. However %{y) lies in the lattice generated by

3y), ... He), where g, ..., 6 are a system of fundamental units for K.
Thus 3{n) can take at most O{(log HY) values. It follows that

Y INe@™ <

D<|l|<2H

< ()] H (1)) < H”,

J'";

<(logHy 3 NB Y2 <H"Y?,
NB<H"

whence (7.2) yields
Z |Z(l, y)l <A {Y"+IHH2” Y—2n+rn,n'2H3n/2 Y*n/Z-f*Za}.

<20
Since Hy, given by (4.1), satisfies H, » H", we now deduce from (4.3} that
(73) S3 (y) < Alf.?. {H~ "l Yn+rn/2 Hv? Y“nfz_f_l.ﬂf4- s Ym‘d-+a} ,

for H in the range (7.1). We shall choose # = Y1~ %3, which satisfies (7.1)

if t=e7? and '3 < Y < 1?3, For such Y, {7.3) reduces to
(74) 83 (y) < AEIZ hnjﬁ Yn[3+a+z,n[3} ({:4112 rn,‘é Yn!2+a

< rn,'ﬁ _,V_ 1 +.n]nm1'n(1, In,’zy— 1 )’
in view of (4.7) and the definition Y = y'". We also have the trivial bound

S;(») < ) Wy(u(m) €Y "y *min(l, "2 y),

me 2"
so that {7.4) also holds for ¥ < +"?, Now Lemma 3 yields
{gG+it)
(2n/3
<14 j e '”Ef"mm(l "2y~ VY dy + j y Y 2min(1, "2y~ Ydy

¢2nf3
<€ rn/ﬁ +£f2,

and the theorem follows.
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