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Introduction. Weyl's theorem on equidistribution, which superseded
earlier results by Hardy and Littlewood, implies that for any real pelynomial
p(t), and ¢ >0, the diophantine inequality

lp(x)—p(0)—y| <&, x#£0,

has a solution ([9]). A multidimensional version ([7]) tells us that we can
solve

—p; () —p;O)—yil <&, j=1,2,.,J, x# 0

simultaneously for any finite set of real polynomials {p;(x)}.
In terms of the exponentials

@;(n) = exp(2mip;(n))
the foregoing states that the functions ¢; on the integers return simultaneous-
ly arbitrarily close to their values at 0.

We shall present a general principle here according to which certain
functions on Z “recur”, and the recurrence takes place along specified sets
of integers, the IP-sets which we shall presently define. Because of the
information on the sets of recurrence, it will follow that the functions in
this class recur simultaneously. Each combination of such functions presents
us with a result on diophantine approximation. Our principal result will be
that if py(fy), Pa(tas t2)s --os Piltys By --o, 1)) are arbitrary real polynomials
vanishing for ¢ = 0, then for any & >0, the system of inequalities

p1(xg)—xa < &
0 byl

|pi(xy, X25 e s X)—Xe3} < &

has a solution in non-zerg integers.
IP-sets are closely tied up with the notion of recurrence in topological
dynamics. For the background in this we refer the reader to [2], [3] and [4].
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Our presentation here will avoid concepts based on dynamics; but it
should be stated that dynamical notions, principally those relating to the
phenomenon of distality, are not irrelevant to our discusston. Moreover, our
interest in the problem stems from an application to problems of recurrence
in ergodic theory (which in turn can be applied to studying which patterns
necessarily occur in any subset of Z of positive density).

An IP-set in Z is a sequence py, Pa, ..., Pn» - . Of not necessarily distinet
integers together with all sums

Pa = Dijigoiy, = Py TP+ oot D

formed by adding elements with distinct indices. To see the connection
with diophantine approximation, suppose we have “recurrent” function, ie,
a bounded function f(n) on Z and some sequence {g;} so that for each =,
fln+g)— f(n) as j— o,

Now let £> 0. For j; large we will have

2 1f{g;)—F (O] <e.

For j, very large we will have |f(g;, +¢;,)—f(g;,) so small that, in addition
to (2) and

i, <iy<...<i

3) | f(g5,)—FO) <e,
we will have
(4 |f(g;, +;,)— (O <.

Proceeding inductively in this way, we can find a subsequence {p;} = {gj.} 80
that for the entire IP-set {p,} generated by {p;} :

Lf(pa)—f(O) <.

In other words, for a recurrent function f(n), the inequality

(5) ' If ) —f O] <&

holds for some IP-set of n. Now the functions which. we will consider will

have the property that for any IP-set § — Z, there exists an IP-subset S’ = §
so that (5) holds for nes'. '

To illustrate our method let us .show‘ how to prove that the system
ax—yl <
© lex—yl <e,
|Bxy—z| <&

hgs a non-trivial solution. (This particular case of {1) can also be deduced
directly from the minimality of a certain 3-dimensional “nilflow”. See [1])

Let I(x)=[x+%] denote the integer nearest x. We will show in the
sequel that the functions exp{2nrion) and exp (2miBnl (o)) are both in the class
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of “IP-recurrent” functions having the property described above. If S is an
IP-set on which exp(2mian) is close to 1, then with xe§ and y = I(ax) we
have a solution to the first inequality of (6). But now our second function
exp (2m‘ﬁn1 (om)) comes arbitrarily close to 1 for n restricted to S, and so the
second inequality is obtained as well. Since moveover the values of n for
which x=n, y=1I(an), z=1 (ﬁnI (om)) form a solution to (6) themselves fill
an [P-set §' =S we could proceed to obtain further inequalities.

Thus the main part of our exposition is devoted to obtaining a wide
class of IP-recurrent functions. For each polynomial p(t) the function
exp (2m'p(n)) will be seen to be IP-recurrent. We will repeatedly use the fact
that TP-recurrent functions form an algebra.

We expect that IP-recurrence is a rather special property representing
the exception, rather than the rule. For example, for almost all a

exp (2rincos no)

is not I P-recurrent, as we shall prove in Section 6. We do not know however
whether there is an a for which

lexp (2mincos nay—1| <&

fails to have a solution,
One reason for the usefulness of IP-recurrent functions is that not only
does the inequality

|f(m)—fO) <e

have a non-zero solution n, but the set of solutions forms a relatively dense
(syndetic) set: that is, the solutions for n >0 can be arranged as

O<n <ny <...<my<..

with .., —m, bounded, and similarly for n < 0. In particular, the set of
solutions has positive lower density.

1. Hindman's theorem and its refinements. We begin with the following
Ramsey-type theorem. We denote by # the family of all finite subsets of the
natural numbers,

Tueorem 1 (N. Hindman ([5] and [6]). If & is partitioned into finitely
many sets, ¥ = C, W CzuU...w G, then there exists a sequence of disjoint sets
Gys Gz cevs Oy - SO that for some j, all finite unions g;; U RVINNUT. belong

to the same C;.

For any finite partition of the natural numbers N =D; uDyu...0 Dy,
let us derive a partition of & by setting

g = {il:' iz, eiag ik}ECj <~ ZZEEDJ-.

igs
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Hindman’s theorem then gives the following far reaching extension of Schur’s
lemma:

THEOREM 2. If N=D,UD,u...uD, then for some j, D; contains an
IP-set.
 If S is an IP-set, it is generated by a sequence {p;} and each element of §
has the form p, =} p;, where e #. '
ico B
Suppose we partition an JP-set {p,}. This induces a partition of & and
by Theorem 1 we can find 7, 15, ..., 1,, ... so that all T UT, VT
belong to the same set. The subset of the form
Pr=D, .
icr .
again forms an IP-set all of whose terms belong to the same cell of the
partition of {p,}. Thus we have the following extension of Theorem 2,
Theorem 3. If S = {p,} is any IPset and S=C,UCsu...uC, is a
partition, then for some j, C; contains an IP-subset of §.

The next result shows the relevance of IP-sets for diophantine approxi-
mation.

THEORE%&M:L If {p,} is any IP-set and o a real number then Jor £ >0 the
inequality |e"""" —1| < ¢ has a solution Jor some ce #.

Proof Divide the unit circle into small arcs A ;» and’ set

C
P.eC; = e W"uedj.

By Theorem 3, for some o, 1, p,, p, and Ps.» belong to the same C;. So

(L
all belong to the same arc. If the arcs are small this implies [{,—~1| < & which
proves the theorem. m

In fact the argument shows that |exp(2mina) — 1| < ¢ has a solution for 1
along an entire IP-subset of §, _

In general, we refer to a sequence of elements of any set {x,} cX

indexed by 6% as an F-sequence. We can form F-subsequences of an
f—sequ_ence as follows: Let 7,, 1,,... be digjoint sets in %, If

{;=exp(2mip,a), [ =exp(2nip) and

‘then {.J(E;,} is an #-subsequence of {x,}. Notice that an #-subsequence of an
IP-set in Z is again an IP-set. Also notice that an & -subsequence of an F-
subsequence is an #-subsequence. .

Now suppose X is a metric space; and let {x,} be an F-sequence in X.
We shall say :

IPlim x, =xeX or X, — X
o . .
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if, for any & >0, there exisis o{g) such that whenever ¢ Nno(g) = @ (le., o is
based on indices sufficiently far out),

d(x,, x) <e.

1t is now not difficult to deduce from Theorem 1 the following:

THeOREM 5. If X is a compact metric space, then any F-sequence in X
has a convergent F-subsequence.

2. IP-recurrence.

DrrFiniTION. A function f{n) on Z with values in a compact metric space
is IP-recurrent (feIPR, or f is IPR) if for any IP-set {p | there exists
an #-subsequence {p,} so that

(N 1P-lim f (n+pg) = f(n)
for every n '

The following is easily proved.

THEOREM 6. If (n) is IPR with values in X and 5 (n} is IPR with values in
Y then (£(n), n(n)) is IPR with values in X x Y.

If IPR denotes the family of bounded, complex-valued functions on Z that
are IP-recurrent, then IPR is an algebra closed under passage to uniform
limits. .

The crucial property for us is the following:

CororLAry. If &,(n), E5(m), ..., &(n) are IPR functions, then for any
>0 we can find n >0 with

i)=& (0 <&, Em—C00<s .., 1GM-40) <e

The next result plays the role of the van der Corput lemma in
equidistribution theory. _

TueorEM 7. Let f{n) be an IPR function with values in the unit circle of
C. If g(n) satisfies g(n+1)g(n)~" = f(n), then g(n) is an IPR function.

Proof. Let {p,} be an IP-set of integers. We may assume that we have
already passed to a subsequence for which

IP-ﬂh’m fn+p) =1

and moreover such that IP-limg(n+p,) exists for all n. Here we have used
a o -
Theorem 5 and the compactness of the infinite dimensional torus. Set

g (ny =IP-mg(n+p,).
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Then
g'{n+1g (n)"" = IP-limg(n+1+p)g(n+p,)~*

= IP—alimf(nera) = f(n)

=gm+gm™.
it follows that there exists a constant y so that g'(n) = yg(n), and we have

IP-lim g (n+ p,) = yg (n).

For some oy, if 0o, =@, we will have

®) lg(p)—vg (O} <.
For t with t oy = and t o =@ we will have

©) | 19(Po)—79(0)] <.

For some oy, if Tno, =@, we will have, in addition,
(10 |9 (Pa+ p)— 79 (Pl < z.

Since {p,} is an IP-set, p, . = p,+p.. We then have
(1) lg(patp}—7?g (O <26, Ig(p.+p)—yg(0) <e.

Since & > 0 is arbitrary we deduce that y = 1 and this proves the theorem. =

Another result which enables us to manufacture IPR functions is the
following. :

THEOREM 8. Let f(n) be an X-valued 1PR function and let ¢: X — Y be a
Junction continuous at the points f(r)eX. Then g(n) = gp( f (n)) is an IPR-
Junction.

The proof is immediate.
By Theorem 7, since the constant function is IPR, we deduce that

exp(2ning) is IPR. Proceeding inductively we find that exp(2mip(n)) is I1PR
for any polynomial p(n).
3. Extending the family of IPR functions.

DermviTion. We will say that a real valued function f(n) is LIPR, if for
all real A, exp(2midf (n) is TPR.

Thus all polynomials are LIPR. Also all IPR functions are LIPR as well
(by Theorem %}. We shall see in Section 6 that for some «, f(n) = ncosna is
not LIPR. :I‘h]S shows that the family LIPR is not closed under multiplica-
tion. In this section we shall construct an algebra of functions in LIPR
extending the polynomials.

Lemma 9. Let g{n) be an IPR function with finite range and let fe LIPR.
Then the function g(n) f(n) is in LIPR.
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Proof. Let {t;, t5, ..., t;} be the range of g. We can find polynomials
pn), i=1,2,..., I, such that pilt;) = 5[-j. Then one has

(12) exp (2midg (n) f(n)) = Z p;(g (m) exp (2nidt; f(m)).

But the right-hand side of (12) is the sum of products of functions in IPR
and so 18 itself in JPR. This proves the lemma. =

The set of functions LIPR is translation invariant, since IPR is, and it is
closed under addition, since IPR is closed under multiplication. The set of
finite valued functions in IPR form a ring which we denote by # and LIPR
is a module under multiplication by 2.

We denote by AF the function 4F(n) = F{n+ 1)—F (n). Then Theorem 7
tells vs that Af e LIPR implies that feLIPR. Now let us define a space of
function as follows.

DrrinTion. & denotes the smallest space of functions on Z satisfying

(i) the constants are in &,

(ii) & is a module under multiplication by £,

(i) If Afe &, then fe &

Since the intersection of spaces %, with these properties again has these
properties, % is well defined. If T denotes translation, then T.# has these
properties, and so by minimality T.% = & so that % is translation invariant.
We will see that & is closed under multiplication.

In any case we have

Turorem 10, & < LIPR.

Proof We verify by Theorem 7 and Lemma 9 that LIPR has proper-
ties (i), (it), and (iii). =

Consider the following subspaces of . We take %, = #. Proceed
inductively to define spaces %, and .%, by the foliowing:

(i) If Afe &,_, then fe P,

J
Q) If fie %, and g;ek, j=1,2,...,J then } fige %,
i=1

Lemma 11. Each of the spaces %, is translation invariant and
Loy Losy . :

Proof. Both statements are proved by induction. Translation invariance
passes from %, to ¥ to & to ¥; to ZF, elc.

The second statement is true for p-+v=0. Suppose it is true for
{4V < u+v. Suppose fe. &, ge &, Then

Afg(m) = f(n+Dgn+1)—flnpg(n) = Af(ﬁ)g(n+1)+f(ﬂ)dg(n),
50

Afgegh—1y2+y;¢y;—1c$u+v—l and fg’EE:H_\,C v
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To check the product of elements in %, and %, it suffices to consider
(hy ) (hyg) with hy, e, fe&,, g, but this case follows im-
mediately. m

TuroreM -12. The space & is the union of £, and forms an algebra.
“Proof. Since |J.#, has the properties of the definition of % we must
have =%, =

Clearly % contains all polynomials. An example of a non-polynomial
function in %, is

g(n) = [an+3]
where o is irrational. To see this note that
1) =[x+at+5}—[x+1]
is a periodic function of x with discontinunities when

x=1%, 3—a(mod 1).

So I(x) = L(exp(2nix)) with L{(z) continuous except for z= —1, —e2™,
Hence by Theorem 8, L{exp(2nina)) is IPR. But
L{exp(2nin«)) = I(n2) = g(n+1)—g(n)

and since [(m) is in &y, we have ge ;. _

‘We construct systematically a subfamily of % which will be useful for
problems in diophantine approximation.

Let hg{x) =x—[x-8].

Lemma. 13, For all x, y

(13) he (x)— hg(y) =

hg(x— )+ Gg(exp 2mix, exp 2riy)

where Gy(z, w) is a bounded integer valued function on the torus continuous
except along the curves z = e*™0 yw = "6 zy~1 = 240

Proof. Since hs(x~+1) = hy{x), G, defined by (13) is a function on the
torus a_nd it can be discontinuous only if either hy(x), hy{y) or hy(x—)) is
discontinuous. Since hy(x) = x (mod 1) it follows that G, is integer valued
and it is bounded since h, is bounded. w

- We now prove

ProrosiTioN 14. For each function fe % there is a countable set

O (f) =R such that if 8¢©(f) then hy(f(n) is a function in £.

Proof. We prove this for fe %, by induction on v. For fe %, f (m) is
finite valued and IPR. For all but countably many values of 6, h, is

~ continuous on the range of f (). By Theorem 8, he(f (m)) is again IPR, and
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so hgo f e L. Assume the proposition valid for functions in #,_,. If fe &,
then 4fe #,.,. Consider now hycf We have by Lemma 13,

(14 heof(n+1)—hyo f () = hy(4f (n)+ Gg{exp 2mif (n+ 1), exp 2nif (n).
Hence if 8¢@(4f)u (S (n)+ Z), the function to the right of (14) is in %,

since exp2mif (n) is in IPR and G, is continuous at the points under
consideration.

J
Next suppose f =3 g,f; where f;e %, and g,e % Let the range of g;

1
bﬁ' {tj]_, tjl: fay quj}.
Piallie) = Oyq

7
hgo f(n) = hy (;T_, g;(n) f;(n)

We find polynomials
.. We now check that

Pg» 1<g<g; so that

Z Piey 91 (”))

Floves rr

-Pyry (W) ha( Z v 13 (1)

Since E Ey fie &, the function ho(z £e, i n) will be in ¥ provided 0
=1

i=

J
avoids the countable set @(Z
Py = )

) Moreover each pj,j(gj(n)) is in

#. Hence we may take

ef) =

and for 0¢0(f), hofe ¥ =

!r @(§1 EJ"‘_ij‘)

4. Applications to diophantine approximation. Let
Ig(x) = x—hy{x) = [x—0].

ProposTion 14'. Let f, (1), f3 (1), ..., fi(n) be functions in Z. Then if
0¢0(f) and p(x,, x5, ..., X,) is any real polynomial, the function

S =p(fi ), Fo (), - fr-1 (), Lo (S, (D))
is in %. | |

Proof. We can write /(1) = p'(fi (), f2(n), ..., - (), (), By O f())
for some other polynomial p’. Since % is an algebra and each of thc

functions in question is in % so is f.

Now suppose we have a sojution to an inequality of the form

(15) [P(Xy, X9y ooy X)) =) <&
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where y, x4, ..., x;€ Z. For & small (15) is equivalent to
(ii) y = integer nearest p(x;, X,, ..., X
If e—1«<f < —g then (15) ‘implies that the integer nearest
P{Xy, Xq, .., %)) 18 Ig(p(xy, X3, ..., X)) Thus (15) is equivalent to (i) and
(i) y = L(p(xy, X3 ...y xp) for -1 <0 < —&
TuroreM 15. Let py(ti}, Paltss t2), oos Paltes tas o os 1) be real poly-

nowmials vanishing for t; =ty =...=1,=0. Then for any € >0 there exist
integer solutions, not all 0, to :

{p1(x1)—x;| <é,
Xq, Xa)—X3| <&,
(15) |p2 (X1, X2 3

1Pe(%ys Xa, ooy XP— 241} <.

Proof. We form functions in & inductively setting
fl (n’) =N (n)n

19 f2(m) = pa(n, g, (f1 (),

.........................

fitn = pl("a Iﬂl (f1 (), .-, Ioi_i(ft—l(”)))-

The #, are chosen inductively in the interval {e—1, —¢) and so that the
function f;,, remains in % in accordance with Proposition 14’ Thus the
functions '

03(n) = &0

are all IPR functions which for »n = 0 take on the value 1.

Now apply the corollary to Theorem 6 to the IPR functions ¢;. We can
find n so that all ‘

lo;(M)—1] <6 = 2sinme, j=1,2,...,1L

Thus the distance of each f;(n) to the nearest integer is <& Hence
(17) tfj(n)—l,,j(fj(n))| <e.
Set x3 =n, x3 =TIy (fi(n) xs =T, (/2(n), ..., xp0y = Iy, (fi(n)); then (16)
_and (17) give
' ' |pj(?c1, Xgs e X)—Xpq| <E. ®m

5. Recurrence along relatively dense sets. A subset S < Z is called
relatively dense (also syndetic) if finitely many translates of § cover Z.
Equivalently § is relatively dense if § has bounded gaps.
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Lemma 16. If S = Z is not relatively dense, there is an IP-set {p,} in Z
which does not meetr §.

Proof. For every n there are intervals (a,, a,+n) < Z\S. Choose
p1eZ\S. Choosing an interval of length |p,} outside of S we find p, ¢S with
p2+p; ¢S, Continue inductively so that after p,, p,, ..., p, have been found
so that no partial sum is in §, find an interval outside of S of length > 2(|p,|
+pal+ ... +|pf)+ 1. If .y is the midpoint of this interval then all p;, +p;,
+ o F P P €5 for iy <ip <. <, <I+1. This proves the lemma. a

Now let f(n) be an IPR function with values in a compact metric space.
Then for any IP-set {p,} and for any &> 0 we will have

d(f(p.), f(0)) <&

for some p,. Consider the set § of n for which d(f (n), f(0)) <e. If this set
were not relatively dense, use the lemma to find an IP-set in the complement
of §. Since this contradicts the definition of IP recurrence we must have
recurrence along a relatively dense set. Applying this to a vector valued
function (f; (n), ..., fy(n)) we obtain the following

Tueorem 17. If fi(n), fo(n), ..., fi(n) are real or complex-valued IPR
Junctions then for any &> Q, the set of n simultaneously satisfying

[fin—fO) <&, |am-f200<e ...,

is relatively dense.

Lfi{m— fi()] <&

6. The function ncos s, It is not always easy to ascertain if a function is
IPR. We prove in this section '

TueoreM 18. For almost all t, the function f (n) = ncosnt is not in LIPR,
and exp(2nincosnt) is not in IPR.

This proves that LIPR is not closed under multiplication.

Let TZ denote the space of sequences {x,},.z with the product topology.
We denote by ¢ the shift on TZ: (gx), = x,+,. We define the positive orbit of
a point xe TZ as the set {¢"x} < TZ and the positive orbit closure of x is the
closure of this set.

Theorem 18 will follow from the next proposition.
Prorosimion 19. For almost all ¢ the positive orbit closure of the point
e{t) = {e?™resm) 2 is all of TZ

Assume this has been established and let ¢ satisfy the statement of the

~ proposition. In particular the point with all coordinates —1 is in the orbit

closure of ¢(r). Now this means that there are arbitrarily long intervals of n
with

|62nincosnt+” <\/§
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and

IEZﬁncosnl_H >\/§
By Theorem 17, & cannot be IPR.

We proceed to prove the proposition.
We shall check that for n, growing sufficiently rapidly, for any d the
sequence

!

2nimcos nyt
G ¥ 5

Ilti(nk+ 1)eos{m, + 1)
! € )

le:t'(rlk+d-— L)cos(rg +d— 1)r)

3 s

is equidistributed on the d-torus for a.e r. In particular it will follow that the
positive orbit closure is all of TZ LeVeque ([8]) has shown that for ac. t
e?™reasm jg jtself equidistributed on T It is quite reasonable to suppose that
we could take n, = k even in our multi-dimensional case. However, since that
is not the main point of this illustration we shall not pursue that more
delicate question. To prove the theorem we use H. Weyls criterion and a
standard elaboration of his proof that for any sequence of integers going to
infinity the fractional part of {n.t} is equidistributed in [0, 1] for ae. ¢,
to reduce the problem to the following lemma:

Lemma 20. For any integers a;, 0 < j < d not all zero and any fixed m we
have

2% d~1 i-1
lim [expi( ) (n+j)a;cos(n+jt— Y (m+j)a;cos(m+ji)dt = 0.
5o D j=0 i=0

Since the arguments are fairly routine we will only sketch the proofs
briefly. '
Proofl. Denote for brevity
d—1

Ly =3 (n+ja;cos(n+j)t.
. =0

Clearly f, (t)— fn(t) has at most O(n) zeros in [0, 2], and the same is true
for f)'~fn. On each interval of mouotonicity of f,— f, we look at a
subinterval (a, b) where this derivative has a value at least n¥/?, The standard
estimates show that our integral evaluated over such an interval (a, b) is
0 (1/n?) so that the total contribution of such intervals is O {1/n"/?). Next we
show that the measure of [0, 2n] not covered by such intervals tends to zero
as n— co. Indeed since

' d-1 d-1 N2

Ao = 20: (n+jP asin(n+j)t =n* Y (1-}—{;) a;sin(n+j)t

I
and m is fixed, |f () —f.(0)] < n¥? forces
d—1

N2
Y (1-}-{;) a;sin(n-+j)t = 0{1/n*/?).

o
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However we can write this latter expression as

il RS ;
I (e”“ ) (1 +n) a; e”‘) = 1, (€™ Q, (1))
where Q,(1) converges uniformly to a non zero polynomial of degrec at most
d—1. From this it easily follows that meas {t: |f/(t)— ()] < nM2 -0 as
n— oo which completes the proof m

Proof of Propesition 19. Using the lemma and a diagonalization
procedure we choose a sequence n, — oo such that for any fixed 4 and choice
of {ag, ay, ..., ay—,) there is a ko =k(d, ap, ..., a;_;) such that for all
ko <k <! one has

2n d=11 d—1

Jexpi( ) (m+jageosim+j)t— 3, (m+ja;cos(m+j)t)de <275
4] 0 0
It follows that
n 1 N d—1 2
| 7 Y expi{ Y (m+jla;jcos(m+jt)| di = O(1/N)
h! k=1 0
and thus
® 2% | N2 d—1 2
Y [l X expi( Y e+ a;cos(m+t)| dt <oo.
N=110 N k=1 Q
Now for a set of full measure of s we deduce that
NZ d—1
x> =5 Yoexpi{ Y (m+j)a;cos(m+j)t)—0
k=1 0

whence it lollows, since the exponentials are bounded, that gy(1)—0 as N
— oo not necessarily along squares. Then Weyl's criterion gives the equidis-
tribution. m
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1. Statement of results. Our object is to estimate the probability that a
sum of independent random variables is large. In this direction we derive a
rather precise upper bound, and a corresponding lower bound.

THeorEM 1. Let X, X,. ... be independent random variahles such that
PX,=1)=1/2, P(X,= —1)=1/2. Let |r,] be a non-increasing sequence
of nan-negative real numbers for which

(1) at= 3 ry <o,
* n=1

and put X =3 r,X,. If N and V are chosen so that Y r,< V/2, then

n=1 nsN
) P(X 2 V)<exp(—3V2( T )71

>N
If ¥ r,22V then
nEN
(3) P(X 2 V)2 2 exp(—-120¥2( T r3)7Y).
n=N
Also, if 'Y r, 2V then
nE&N

4 PXzWV)yz27N1
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