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Dedicated to Professor Pdl Erdfs
on the occasion of his 75th birthday

The purpose of this paper is to describe some properties of functions that
preserve uniformly distributed sequences of real numbers, Here we say that a
map T of the unit interval =<0, 1} to itself is a wuniform distribution
preserving (u.dp.) trangformation if {T(x)}%,; is a uniformly distributed
sequence (u.d.) sequence in I for every u.d. sequence {x,}2, c I

In the course of our discussion we shall see that the study of u.d.p.
transformations leads to the opposite question to that investigated in the
ergodic theory. Namely, given a measure p (in our case this will be the Jordan
measure), describe properties of transformations with respect to which u is
invariant. Perhaps our results may motivate other directions in the theory of
dynamical systems, besides the study of properties of sets of points with
periodical, recurrent, dense, etc. orbits to study, for instance, sets of points
which orbits are uniformly distributed or to investigate sequences of integrals
of iterations of transformations. Another direction is the study of the orbit
behaviour of concrete points. It will be worth to answer these questions at least
for piecewise linear transformations. '

1. General criteria. From the well-known integral critetion ([4], p. 2) for
u.d. sequences the fellowing necessary and sufficient condition for a map of I to
be a ud.p. transformation results immediately,

THEOREM 1. A map T: I -1 is a wd.p. transformation if and only if for
every Riemann-integrable function g: I-+R the composition goT is also
Riemunn-integrable and

1 1
o)  obdn=fg(T@)ax

Proof. Suppose that T is a u.d.p. transformation and {x,}s2, is a wd.
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sequence. Then {T(x,)}iz, is also a u.d. sequence and consequently

i 906+ 2 909 Ty oy = tim £ 2 +9(T'(x,))

for every Riemann-integrable function ¢ on 1.

The existence of the limes on the right-hand side implies that goT is
Riemann-integrable. In the opposite case there exists ([1] or [2]) a u.d.
sequence {t,}+, = I for which the sequence

{go Tt,)+ ... +go T(r,,)}m
n

n=1

does not have a finite limit. The Riemann-integrability of goT implies

im g(Tx)+ = g (Te) ig(T(X))dx

and the necessary condition follows.

- For the proof of the sufficient condition suppose on the contrary that T is
not a u.d.p. transformation. Then there exists a u.d. sequence {x, ., for which
the sequence {T(x,)};~, is not wd. This means that there exist a Riemann-
integrable function h: I — R for which the sequence

{hoT(xl)+ .. +ho T(xn)}w

(2)
n n=1

does not converge to [h{x}dx. We can suppose that hoT is Riemann-

8]
)]

integrable. Then (2) necessarily converges to {ho T (x) dx which contradicts {1
0

and the theorem is proved.
Theorem 1 implies that every u.d.p. transformation is Riemann-integrable.

The function
X x
jM~%

shows that there are functions not integrable in the Riemann sense which arc
not ud.p. transformations though they transform infinitely many u.d. sequen-
ces into u.d. ones, -

By Theorem 1 every composition goT of a w.d.p. transformation and a
Riemann-integrable function g: I — I is again Riemann-integrable. Note that
this is a restriction, because every Lebesgue-measurable function is expressible
as a composition of two Riemann-integrable functions ([6], [7]).

The well-known approximation technique enables us to replace the
Riemann-integrable functions in the integrable criterion for the w.d. sequences

if x i3 a rational number,
otherwise
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used above by continuous functions. More generally, instead of the system of

the continuous functions one can take any system of functions which linear hull

is dense in the system of the all continuous functions. The systems of functions
ny 2minx) ¥

" ey and et lead to the following result (the verification of the
composition property in Theorem 1 is trivial):

THEOREM 2. A Riemann-integrable function T: 1 — Iis a u.d.p. iransforma-
tion if and only if one of the following condition is satisfied:
1 1

(&) Jg(x)dx = [g(T(x))dx for every continuous function g: I - R,
D o
1

(b) {T"(x}dx = 1/(n+1) for every n=1, 2, ...,
0

1
(©) Je™T@dx =0 for every n= +1, £2, ...
a

The next theorem shows that for a Riemann-integrable function of I to
itself the question whether it is a u.d.p. transformation can be decided using
only one suitable sequence. For the formulation of the result we shall need the
following notion: '

Let {N,}i%; be an increasing sequence of positive integers. A sequence
{3 e 1 is called {N, }-uniformly distributed if

111’1’1 A (<Os JC>, Nko {xn}) =x
kv Nk
where A(E, N, {x,}) denotes the number of terms x,, 1 €£n < N for which
x, € E. Such sequences are usually called almost w.d. sequences ([4], p. 53). The
reason for our terminology is that we shall need to stress the réle of the
sequence {N,} in this section.

for 0<x<1,

THEOREM 3. Let T: I — 1 be Riemann-integrable. Then T is a wd.p.
transformation if and only if there exists an increasing sequence of positive
integers {N,}ix, and an {N }-uniformly distributed sequence {x,}}_( < I for
which the sequence {T(x,)}ixy is also {N }-uniformly distributed.

Proof. The necessity is obvious. For the sufficiency suppose that both
{x,}2, and {T(x,)}3, are {N,}-uniformly distributed. Then we have

E

1
) _{Tmgdx for m=1,2, ...
0

LT+ T () + ... + T (xy,
lim
Ny

koo
However the left-hand side can be in turn written in the form

(T O+ (T )™+ (T )"
Nk

lim
k-t

= jl'x'" dx = 1f(m+1)

and Theorem 2(b) finishes the proof.
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The affinity between the Riemann integrability and the Jordan measura-
bility leads to the next result.

TuEOREM 4. A map T: I —1 is a wdp. transformation if and only if

(a} T is measurable in the Jordan sense,

©) 1T~ 1) =|I,] for every interval I <1 (|E| denotes the Jordan or
Lebesgue measure of E).

Proof. First of all we have
3) AL, N {T(x)}) = A(T~*(I), N, {x,})

for every sequence {x,}:%, < I
Suppose (a) and (b) are true. Then () implies that 77! (1,) is measurable in
the Jordan sense. Thus for every u.d. sequence {x,}%, we have

AT, N, {x,))

lim =T 4I,).
N-+w N .
Then (3} and (b) imply that
Al
hm ( I:N) {T(xn)})=“'li

N—oo N

which means that {T'(x,}};%, is a u.d. sequence.

Conversely, let T be a u.d.p. transformation and I, a subinterval of /. If
T~ (1,) is Jordan measurable then (3) implies (b). Suppose therefore that
T~'(I,) is not Jordan measurable. Then the indicator x of T71(I,) is not
Riemann integrable and thus there exists [2] a u.d. sequence, say, {x,}oo lor

which the sequence
N XX,
Nosn N=1

does not have a finite limit. On the other hand,

Z. X(JC") = A(T_l (IJ.): N, {xn})
nEN
and (3) leads to a contradiction that T is a (Ld.p. transformation.
2. Miscellanea. In this section we shall present several simple propertics
of u.d.p. transformations which may be of some interest. The proof of the first
proposition is straightforward.

Prorosirion 1. Let T and G be w.d.p. transformations and o a real number.
Then To G, 1 ~T and the fractional part {T+o} are also ud.p. transformations.

PROPOSITION 2. Let {T,}i%, be a sequence of wd.p. transformations uni-
formly converging to H. Then H is a u.d.p. transformation.

Proof. If T, H then also T¥ 3 H* for every exponent k = 1,2, ...,

icm
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which implies that
1 1
lim | T (x)dx = | H*(x) dx.
r—w 0 0
Owing to Theorem 2(b) every integral on the left-hand side is equal to 1/(k+1).
Consequently the same is true for the right-hand side and the samec theorem
finishes the proof.

ProOpPOSITION 3. Let T I — I be a w.d.p. transformation and let at least one
of the following conditions be satisfied:

(a) T is monotone,

(b} T has the derivative at each point of I,

(¢} T has the Darboux property (i.e. every interval is mapped onto an
interval) and T is injective,

(d) T is continuous and either T(x) < x for each xel or T(x) = 1—x for
each xel.

Then either T(x)=x for each xel or T(x)=1—x for each xel.

Proof. (a) If T is a wd.p. transformation and monotone then T is
necessarily continuous (no jumps are possible). This means that for each
subinterval I, of I the set I, = T~'(I,) is also an interval. Then I, = T(I,) and
by Theorem 4 |T71(I,)| = |I,|. This implies that |I,| = |T(L,)|, ie.

LA

1.
1]

This gives in turn that the derivative of T in every point of I equals 1 or —1
and the conclusion follows.

{b) We reduce this case to (a) showing that the derivative T' of T has no
sign changes, The opposite case would lead to a point xel with T'(x) = 0 and
this in tumn to a sequence {I,};% of subintervals of I such that

1T'(Z,)

|
=0.
i

O0<if), Ilm|,j=0 and Im

n—o a0

But then
1
TTHTE)| 2 1L > 1T

for n > n,(g) and an arbitrarily small & > 0. The contradiction with Theorem 4
finishes the proof of {b).
(c) If T is injective and I, any subinterval of I then
A (Il’ N= {xn}) - A(T(Il}: N: {T(xn)})
N N '
If T possesses the Darboux property then T'(I,) is a subinterval of I and for a
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u.d. sequence {x,},%  the right-hand side converges to |T(f,)| and the'lefi-hand
side to {I,|. Thus |I,| = |T'(1,)| for every subinterval I, = I This implies that T
is continuous. But a continuous and injective transformation is obviously
monotone and the proof returns again to (a).

{d) In analogy with the definition of the u.d. sequences in I we say that a
sequence {x,}=, of elements of a subinterval I, < I is uniformly distributed in
I if
lim %%’JM = LF] for every interval I, = I,.

N—=o | ll
Given an yel, denote by I, the interval <0, y.

Suppose now that T'(x) < x for each xel. Then the contraction T/I yisa
transformation of I, to I, preserving the u.d. sequences in the just mentioned
sense in the interval [,. We can prove in a manner analogous to the proof of
Theorem 1 that

G(T ) dx = [ g () dx

0

O t—

for a wdp. transformation T/I, on interval I, and for every Riemann-
integrable function g: I, -» R. For g(x) = x this implies that

¥ )
fTx)dx = [xdx.
) 0

The differentiation at the continuity point y of T yields that T(y) = y. This
proves the case T(x) < x. The case T'(x) = ! —x can be proved along similar
lines. :

ProrosiTion 4. If T is a ud.p. transformation then every its iteration T™ s
a w.d.p. transformation and

1
[T (x)dx =12 for each n=1,2, ...
0

The proof follows immediately from (1) by induction on » beginning with
gx)=x

As an immediate consequence of Theorem 3 we have the following result.

PROPOSITION 5. Let T: I—1 bhe Riemann-integrable. Then T is a wd.p.
transformation i one of the following conditions is satisfied:

(a) There exists an almost u.d. sequence {x,}%%, in I for which the sequence
{T(x,)—x, 51 converges to a finite limit.

(b) There exists at least one xel for which the orbit

x, T(x), T{T (%), ...

is an almost wd. sequence in I.(})

() We are indebted to M. Padtéka for calling our attention to this result.
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The following observation forms the background for the next proposition:

If a ud.p. transformation T: I — [ is differentiable at a point t1, and if T
is continuous in a neighbourhood of this peint then |T7(5)| 3 L.

The opposite inequality would namely imply the existerce of a closed
neighbourhood, say, U of t on which T can be supposed to be continuous and
where

IT(x}T(0)] < |x~1

Let x, # x, be elements of U such that

for all xeU.

Txp=maxT(y) and T(x,)=minT(y).

el yelf

If ¢ lies between x, and x, then
ITx)—Tx,) < |x; —xal.

But this yields a contradiction with Theorem 4 for I ; defiied by endpoints
T(x,) and T'(x,) because then

1T 2 g —xa) > T 0eg)~ Toey)| = |14

A similar contradiction can be obtained for £'s outside the closed interval
determined by x; and x,.
We have more generally:

PROPOSITION' 6. Let T: I — I be piecewise differentiable. Then T is a u.d.p.
transformation if and only if

@ 1

st | T (0)
Jor all but a finite number of points yel.

Proof. Suppose that T is piecewise differentiable. If T is a u.d.p.
transformation or if (4) is true then T is a piecewise continuous strictly
monotone and surjective map. To such a map one can always find two systems
of disjoint open intervals (similarly as for piecewise linear maps in the next
section) '

(= (e y)i j=1,2, ..., 0},
{Lioi=1,2,..., n,j=1,2,...,n}

with

i

T_I(Jj)= U Ij,i:

P=1

T1)=J;

and such that the contraction T/I,; is continuous, strictly monotone and

n n nj

LAI=1 % Y=t

j=1 j=1li=1

forall i=1.2....n,j=1.2,...n
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Further let G;;: J;—I;; be the inverse map to T for i=1, n;,
j=1,..., 1 According to Theorem 4 transformation T is a u.d.p. one 1f and
only if we have

® y=Yi1 = 3 G~ Gyalryos)

for every yeJ; and every j=1,....n Then the differentiation of (5) gives

(6) 1= Z IG5 ()

what is equivalent to (4).
Now suppose that (4), and consequently also (6), is true. Then ([8], p. 199)

ny

N y=yj-1= i Tdy=3% j |G (W dy < ZIG“ V=G -1l

Vi-t I=1yi-1 i=1
This implies that

IJ< Y el forall k=1,...,n
i=1

On the other hand if the inequality in {7) would be strict for some ye J, then we
obtain

n}
i < >
i=1

for this j. But this together contradicts the fact that the open intervals J; for
j=1,...,n form a disjoint decomposition of I. Thus (4) implies (5) and the
theorem is proved.

Propos1t10n 6 can be employed for construction of nontrivial u.d.p.
transformation in the following manner. On some subintervals of [ we can
choose T arbitrarily but with sufficiently large derivatives in magnitude. On the
remaining subintervals of I we complete T in such a way that {4) or (5) is
satisfied. For instance, let I, = €0, 1/2), I, = (1/2, 1). Let T/I, be strictly
increasing, T/, strictly decreasing with T(0) =0, T(1/2) = 1, T(1) = 0 and let
G,, G, be the corresponding inverse mappings. According to (5) T is a v.d.p.
transformation if and only if

=16 (3) =G (O +]Go (-G, O) = G, (9} =G, (M + 1.
Now if G, (y) will be increasing with 0 < G (y) <1 for ye(0, 1) then
G2 () = G, (»)—y+1

is the required complement. Thus for instance, for G(y) = y*/2 we obtain

icm
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G,{(y) = y*2—y+1 and therefore T given by

T =/2% T, =1—/2x—1

is a ud.p. transformation,

3. Piecewise linear transformation. A little calculation using simple
geometrical devices shows by means of Theorem 4 that the “saw-functions” on
I with the height of the all teeth equal to 1 are u.d.p. transformations.
Motivated by this observation we shall characterize in this section the u.d.p.
transformations which are piecewise linear (pl). Then we show that the
condition of Proposition 4 is not sufficient even for the p.l transformations.
Finally, we find a necessary and sufficient condition for a pl. transformation T
with the property that the orbit x, T{x), T®(x}, ... is w.d. in I for some (and
consequently for almost ally xel.

Let T be a surjective p,l. transformation of I onto I. Let

0=y <y <y <

be the sequence of ordinates of the ends of the line segments of the graph of T
in the unit square I xI. Let

L<y,=1

Ji=-uy) J=L2,.0.n

be the corresponding system of open disjoint subintervals of 1. Then for every
j=1,2,...,n the set T"l(.fj) can be written in the form

7-1() = U L
where I;; i=1,...
T =J;
For the sake of brevity we shall say that the system of intervals
8.1 {JplI<j<n}
form the ordinate decomposition of I and that the system of intervals
(8.2) Lol

form the abscissa decomposition of I w1th respect to T.
The connection between both decompositions of I with respect to a pl.
and wd.p. transformation is given in the next result.

ProposiTION 7. A pl map T of I onto I is a wd.p. transformation if and
only if

, n; are disjoint open intervals such that

and  T/I;; is linear foi every i=1,2,...,n;,

,1<j<n}

[l = a0+ Tpal+ o+ 1l

for every j=1,2,....n

3 — Acta Arithmatica t. 49, z. §
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For the proof use Theorem 4 with the fact that given an interval I* « J,

we have
Hpal+ ...
Bf

+ 1l
A

|74 (%) = |1
provided T is p.l
Now it is not difficult to give a general rule for the construction of the all
pl. and w.d.p. transformations, provided the ordinate or the abscissa decompo-
sition of I ig given. For instance, given an arbitrary decomposition of I into
disjoint open intervals, grouping them arbitrarily into » groups we obtain the
initial abscissa decomposition (8.2). After dividing I into open disjoint
subintervals {J,}}- L with

[J|= Zlel, i=1l..,n
we can construct T as a map wh‘u;h graph in I » I consists of arbitrarily chosen
diagonals of rectangles I;;xJ; (endpoints of diagonals can be assigned
arbitrarily). The above mentioned saw-functions or the u.d.p. transformation
{kx} with integral k correspond to the case n = 1. (This construction can be
generalized to a certain extent o in every rectangle I;; xJ; we choose a map
which transforms ud. sequences in [;; into u.d. sequences in J;.)

We now turn to the iterations of p.l. transformations T of I onto I. Let

JP and 19 for (2

P 1,0 j=1,...,n®
be the ordinate and abscissa decomposition of I with respect to the second
iteration T® of 7. Then

(S 1<j<n®}
is formed by the minimal (with zespect to the set inclusion) nonzero
intersections - of intervals from the ‘system

{(TUn L) Jnl# 0, 1<s,j<n, 1<i<ng}
and

TR 1<i<n®, 1<i<nP) = (T72(0P): 1<) <n®).

Generally, for the kth iteration T%® we have

(8.3) {J#) = {minimal " T(J*~ Y~ I, ) 5 &)
= {minimal n T (JY) ~ I8) B}

and

(84) ) = (T (I}

with e+f = k.

One of the simplest examples of p.l. transformatlons with respect to 1he
iterations we obtain when the ordinate decomposition of I is the same for the
all iterations of T We shall call such p.l. transformations of I onto I simple.

icm
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PROPOSITION 8. Let T be a p.l. transformation of I onto I. Then T is simple
if and only if one of the Jollowing equivalent conditions is satisfied for its ordinate
and ahscissa decomposition (8.1-2) of T

(2) the intersection J o lI;; equals either I;; or it is empty for all
I<s,j<nand 1 <i<ny

B [T =¥ M+ X M+ ..

I,ied; I3,0=d;

+ Y Ll forevery j=1,2,...
In,isJdy

Given a pl transformation T, let (8.1) and (8.2) be the ordinate and
abscissa decomposition of I with respect to T. To formulate our next results
assign to T the following n-dimensional vectors and n % n matrices (vectors will
always denote column vectors and the row vectors we shall write as their
transposes):

a' =(ay, a,, ..., a,) where a;= |J |,

b =(b,b,, .. b)threb —IJI(FJ|+IJZI+ C+3T)D,
¢ ={c;, €5, ..., ;) where ¢; —(Z D/ I,
=(1,1,...,1),

A = {(a;) where a; =

B = (b;} where b, =
Q = (pjs) where pjs =

(2 LI,

Ity
12, by=1if j<sand by=0ifj>s,
( X I)AJ] (note that p, is the conditional

Iji=Jds

‘probability that T(x)eJ; for xeJ),

diaga = diag(|J,|, [ /5], ... [J]),

diag™'a = diag(|J,|™% [ 1,7, .., [0,

As usual, diag ¢ denotes the diagonal matrix whose only nonzero elements
are elements of vector a on the leading diagonal.

In the analogous way we can define the corresponding vectors and
matrices, say, a®, etc. for the kth iteration T® of T

We can immediately characterize some properties of a transformation T'in
terms of matrices A and Q as follows.

ProroSITION 9. (a) A plmap T: I — Iis simple if and only if 1' Q@ =1, i.e.
if Q is a Markov matrix.

(b) A simple pl. map T: I -1 is a udp. fransformation if and only if
A-1=1, ie if A is a stochastic matrix.

{©) Q=diaga-A-diag™'a, b =a’'-B-diaga, c=A4'1, diaga-1=a.

ProposiTION 10. If a pl map T: I —1I is simple then A® = A% O™ = Q*
and

1

[T®(x)dx = a’' BQ*a
0

for every k=1,2,...
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Proof. To establish the first part of the proposition note that
afd =( 3 WA

(%)
IjieJds
n

=L X

i= (k-1}
' le,t o J

n

= (k—1).

= Z aji Qs
i=1

je. A® = A%*~1. 4 We can similarly prove that Q® = Q%

For the proof of the expression of the integral note first that a similar
reasoring as above leads to the relation ¢® = Ac¢*~%).

The direct computation of the area under the graph of T gives that

Y VAT

lIi,r‘-_-Js

1
{T(x)dx = b c.
a

If T is simple then we similarly obtain

1
[T®(x)dx = b'c® = b’ A* T e = b A*1.
]
Proposition 9 (c) finishes the proof of the theorem.
More can be proved in general. Namely, given a simple pl. map T: I =1,
we have
1

fg(T® (X)) dx = (f gx)dx, [ g(x)dx, ..., | g(x)dx)e®
gy J2 Jn

[

= ([ g(x)dx, [ g(x)dx, ..., | g(x)dx}diag™* aQ*a
J1 Ja

In

for every Riemann-integrable function g: I — I. This relation vields another-

i
proof of Theorem 1 for simple p.l. transformations T because [g(T (x))dx
: o]

1
= [g(x)dx is true for all these ¢ if and only if ¢= 1.
2 ‘ :

Note that also the expression for the integral in the proof of Proposition
10 implies another proof of Proposition 4 for simple p.l. and w.d.p. transforma-
tions T: I~ I For if A is a stochastic matrix then b 4%l = b1 = 1/2.

We now show that the conditions of Proposition 4 are not sufficient for a
map T: I =1 to be a ud.p. transformation. The point of departure for the
remainder of this section are some basic results of the theory of Markov
matrices which enables us to determine under which conditions the sequences

1
AfT® )y dx}y, - { Y M,
0 IF:}::J’S
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converge. It is known [5] that if Q is a Mérkov matrix then either
lim @* = Q% or there exists a positive integer h such that lim O" = (0. In

ko
- K+
either case the sequence of the averages

{1 N~1 o0

— Z Q"}

Nk=0 N=1

converges. In particular, if Q is an irreducible and primitive Markov matrix
then

lim @* = Q=
k=0
where Q" =pl', Qp=1p, Pl =1 and p>0fori=1,.., n
Suppose # >3 is given. Let p be one of the solutions of the system -
(9 aBx=172, 1x=1,
The set of these solutions is infinite and a is one of them. Then for the matrix
Q = pl’" we have :

@' BQ%a = 1/2.

x; = 0.

13

Proposition 10 implies that a simple p.l. transformation T: I — [ correspon-
ding to the just chosen Q fullfils Proposition 4 for all n. However, if p # a then
this T is not a u.d.p. transformation for the corresponding matrix 4 is not
stochastic what can be readily verified.

To be concrete, let n=3 and J; ={((j~1)/3, j/3) for j=1, 2, 3. Then
a’ = (1/3, 1/3, 1/3) and one can take p’ = (1/4, 1/2, 1/4). Let further n, = n,
= ny = 3. Then the intervals

Ii,p = (0, 1/12), Lo = (1112, 1/4),
L ={173.512), I, =(512,712), I ,=(/12, 8/12),
Iz =(8/12,9/12), I 3=1(9/12,11/12), I5,=(11/12, 1)

form the abscissa decomposition of a (unique) continuous p.l. function T for
which '

I3, =(1/4, 1/3),

1
(10 JT®(x)dx=1/2 for all k=1,2,...
2

but
T4 #17,

and so T is not a wd.p. transformation.

Note that in the case n=2 the vector a is the only solution of (9).
‘Therefore if T is p.l. and simple with 7 = 2 then T is a u.d.p. transformation if
and only if (10} is true.

We conclude this section with a characterization of simple p.l. transfor-
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mations T with a ud. orbit
an x, T(x), T (x), ...
for at least one xel.

TiuorEM 5. Let T be a simple pl. transformation of I onto [ with the
ordinate and abcissa decomposition (8.1-2) and A the matrix assigned Lo T ahove.
Then there exists an xel for which the orbit (11) is ud. in I if and only if

(2) A is a stochastic and irreducible matrix,

) {Jp1<jsnt#{e I<isn, 1<j<n}

Moreover, if (11} is w.d. for one er then this is true for almost all xel.

Proof. TIf (11)is a u.d. sequence for a simple p.l. map T of I onto I then
Proposition 5 (b) implies that T is a u.d.p. transformation. Proposition 9 (b)
yields in turn that 4 is consequently a stochastic matrix.

Using the known reformulation of the notion of irreducibility of a matrix
([57, p. 281) in term of directed graphs it is enough to show for the irreducibility
of A that for every couple of intervals J;, J, there exists a positive integer k and
a teJ, with T% (z)eJ,. But this can readﬂyr be seen for the orbit (11) is dense in
Iand therefore there exist positive integers s, k with T® (x)eJ; and T® (x)eJ ;.

To see (b) note that the equality between the ordinate and absmssa

decomposition implies that the ordinate decomposition splits into ¢ycles of the -

form

(12) J‘leJ‘iZL”'L’Jjg:JJl

with the property that the contraction T/J; is linear and T(J;)=J;  for

i=1,...,58~1 This in turn implies the existence of a positive integer k such

that T® (x) = x for all interior points x of intervals (8.1). This contradiction

with the density of orbit (11) finishes the proof of the necessity.
Conversely, suppose that (a) and (b) are satisfied. First of all we show that

(13) lim max [ = 0
k= o

A look on the graph of T® shows that

|I-:k lll

|IJ,1|H—II1“| I‘Il

where I;; < J. Thus we can write

G _ Mol Mol Mol

T T T
where I;; < J, I,;, = J,, ... and the product on the right-hand side contains
exactly k factors of the mdmated- form. Since A is a stochastic, none of these
factors exceeds 1. Then the relation (13) will follow if we prove that the number
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of consecutive factors equal to 1 cannot be greater than n. To see this note that

the equality |1, | = |/, implies n, = 1 and this undoubtedly the existence of a

cycle (12} if the number of consecuttve factors equal to 1 is greater than n. The

existence of such cycle exhausting all the system (8.1) leads to a contradiction

with the assumption (b). A shorter cycle contradicts the irreducibility of 4.
Secondly we show that

AnL]_AnTE)
TR 7o R
provided 4 < I'is a Lebesgue-measurable Finvariant set (le. T~1(A4) = A)and

I a subinterval of I on which T is linear. To prove this suppose that the

endpomts of I, are o, § and that T/T, = ax+b. Then thh % the indicator of A
we have

(14)

fx(ax+b) dx = l—aﬂfbx(t)dt

S |a] ac+b al

AT
and (14) follows. : ‘

- We now derive from (14) that if Al is a Lebesgue-measurable
T-invariant set with a non-zero measure, then A is of the full measure. This
would imply that T is ergodic (more precisely the ergodicity is equivalent to (a)
and (b)) and this in turn implies that (11) is y.d. for almost all xel.

Suppese therefore that |4] > 0. It is kmown that for a measurable set
almost all its points are density poiats {8]. This means that one can find a
point xe1 not an endpoint of the intervals (8.1-2) such that to every £ > 0 the
relation (13) implies the existence of an interval I¥) containing x and satisfying

l4nIH)

|I"‘? >1—g

Since T® (1%) = J; and T®/I% is linear, this together with (14) gives that also

And,

An >1—z.
1 ‘

To this J; there exists &, = ¢, (¢) > 0 such that lime, =0 and
g—+0
4N :
T >1—¢;  for every I;; = J,.
8.1

This together with (14) imply that

for every J, connected with J ; through a directed edge in the directed graph of
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matrix 4. Similarly there exists an &, > 0 such thal lime, =0 and

1]

AnT, .
> g,
[l }

for every J,, which is in the above mentioned graph connected with J; through
a directed path of length 2, etc. After a finite number of steps we find, say, an &,
with lime, = 0 and
e—+0
And
Aodd e,
1

for every k=1,2, ...,
finished.

Note that the conditions (a), {b) are satisfied for instance if A4 is a stochastic
irreducible and regular matrix.

Let T: I =1 be a simple p.l. transformation. Let X denote the set of all
those points of T which are not endpoints of any of the intervals in (8.3-4) for
all k. On X we can define a function which assigns to every xe X a sequence
{k;}{%, of positive integers defined through

(15) T (x)eJ,,

One sees immediately that the image of X under this function is the set of such
sequences {k;}/2, for which the sets

{16) {s: 9=1,..

n. Consequently j4| =1 and the proof of theorem is

for every i=1,2, ...

o By with Ik,H..s < Jk-i}

are non-empty for every i=1,2,... (ie. py, ., > 0)
The system of all such sequences {k;}{2, together with the shift transfor-
mation

{ki}im=1 - {kf}?l—z

is the subject of the theory of symbolic dynamical systems. Motivated by the
standpoint of this theory, we shall characterize the behaviour of orbits of
elements of X under the simple p.l. transformations which satisfy the following
additional conditions:

{i) the cardinality of the set {i:
every j,s=1,2,...,n,

(ii) lim main |-0.

k—r

For the sake of simplicity we shall call simple p.l. transformations of I to
itself satisfying these two conditions (i), (i) strictly simple. Plainly, if T is strictly
simple then the function defined in (15) is injective.

Given a strictly simple transformation, we can reindex the intervals I,; in

Lield, i=1,2,..., n}is at most 1 for
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such a way that
The same can be done for intervals I} co:respondmg to the kth iteration 7™
of T. More precisely, we can assume that 1%, - . I® . I,}‘m feegs e
are the dividing subintervals of 1%71 . =~ 7®/q®, ., is linear and
) (8 (k= 1) J) -
T (IJx RETS .]k-n) = Jj1’ T (Ih W2eeeadick 1) = I.h:.fz’ etc.

Using this notation we have

(11 xelfh ..
¢(T(k)(x)ejjl and xeI§ M . )

Janjas

«{T®(x}eJ, and T* Y(x)eJ,, and...and xeJ, ).
Therefore
‘ (18) { J!. J2.. Jk+1| e |Ij1,j:[ |IJ§ J:l.--,.rknl - I‘Tj:,jzl, |Ijz-i3| B |I,ik Jk+1|
|JJ.'1| IJJII |J121 IJJII | 'IJZ[ . I'IJkl

We shall apply the foregoing to explicit determination of points of X in
terms of I;’s and the sequence {k;}j,. If T: I =1 is a strictly simple p.l.
transformation and if (16) holds then

ki—1

(3)
x= L Ii+Y, |1..k,|+z‘2’|1£%22,k1|+25 Wbl + .

for every xe X where {k;};2; is determined by (15) and E denotes the sum

over those intervals I,,, which lie on the left of Iy, ,,, Z( ) over those I3, ;,
which lie on the left of I{%,, .., etc. Then (18) gives

(19 x=1J+Jal+ oo Tl + 2 Ll

1'[]‘1 kxl |Ikz k;l |I.k k
kil I kakai I
T 7ol sz z,k1|+“""“"’“ij A Z | sk3]+

+
Here in the summation Z’ the intervals run over those I, which are on the
left of I, 4, if the slope of Tinl kot % J, 18 positive, otherwise the intervals are
taken from the right of I, ,,. Similarly, in Za the intervals I, ,, are taken from
the left of I, ;, if the product of slopes in I, , xJy, and I, x, X J;, is positive
and from the left otherwise, etc.
We can now state the following two results:

{a) An xe X is a fixed point of a strictly simple p.l. transformation T if and
only if the sequence {k;}2., defined through (15) is constant. If, moreover, all



476 § Porubsky, T. 8alat and O. Strauch

the slopes of T are positive then the fixed points of T belonging to X are given
through the formula

| il
Pl o+ o H T Y |,
' : [ Tis | Tl = il M

with k=1, 2, ..., »n satisfying the condition py, > 0.

(b) An xe X is a periodical point of a strictly simple p.l. transformation if
and only if the sequence {k;}{Z is periodical. If, moreover, all the slopes of T
are positive then the periodical points from X of order s are of the form

[Job+]Tol+ o+ T ol

+ |Jk1['|Jk2|---|Jks|
il Il - T =1 Mgl - Mg - o gl
L il ikl Wil
{3 el 205 Ml Rl 5 )
(il 35, EAIFAIREL

where the sum in the parentheses has s terms and the s-tuple k,, k,, ..., k,
satisfies the conditions py,, 4, >0 for i=1,2, ..., 5s— 1L

The characterization of xe X with u.d. orbit is more complex. To do this
we shall denote by d(4) the asymptotic density of the set A.

ProrosiTioN 11, Let T': I — I be a strictly simple p.l transformation. The
orbit x, T (x), T*(x), ... of an element x e X is ud. in I if and only if for every s
and every (s+1)-tuple . f,, ..., Jo+1 of positive integers satisfying p ey = 0 for
i=1,2,...,5 we have

(0)  d({n: kyrs =], knrs-y =Jaseer Ky =fox1 D)
= |J! | ' in]_,jzl JI}Z’J-"I . |Ijs=fs+1{
! IJ}Jl IJJZF ,stl

Proof. Since {I¥;, ., |—0 for s— co, the standard approximation
argument shows that the uniform distribution of our orbit is equivalent with
the equality

d ({J’l ™ (x)e I.(fsl]:flr---vfx v 1}) =

for every sufficiently large positive integer s and every (s -+ 1)-tuple j,,
Jasevos Joen with py . > 0. But then using (17) and (18) the assertion of
proposition follows immediately.

Note that in the case of simple pl. transformations the intervals J ; are
uniquely determined by lengths of I, s, so that in the foregoing formulae the
lengths of Js can be eliminated. '

We close this section with the following application. Let T: 1] be a
strictly simple pl. transformation for which

®
le::.fzn-.-js-% l|
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(i) nj=nforevery j=1,2,...,m |[[;j]=1/n* for every i=1,2,...,n
(consequently |J| = 1/n for every j),

(i) the graph of T in every rectangle I;;% J; has a positive slope.

No assumptions are made about the location of intervals I, ;, I»;, ..., I,.;
within J; which can be arbitrary for every i =1, 2, ..., n. However, let n;;
denote the number of them which lic on the left of I;;. Then owing to (19) every
xeX with {k;}72( defined in (15) has the following representation in the
scale of n

x = 0.k — 1) Mg, ko, Ty Mgy -
According to (20) the number x has a u.d. orbit if and only if the number
o= 0.k, — 1)k, — ) ks;—1) ...

is normal in the scale of . : :

One interesting prototype of a transformation satisfying (i) and (i) we
obtain when the intervals [+ ;, I ;, ..., [,; are ordered from the left to the right.
Then namely,

Tx)={mx} and x=a.
4. Two topological properties. In this section we endow the set of the all
transformations 7: IxI with the supremum metric

d(T, G) = sup| T (x)— G (x){.

From the topoelogical point of view it is known that every n.d. sequence in
I is dense in I. In the next lines we shall construct a map of I to itself which
preserve the all dense sequences in I but which is not a u.d.p. transformation.
To do this we shall modify slightly a function of [9]. Let {(r,, s,)}ix; be a
one-to-one sequence of the all distinct couples of rational numbers from I.
Define

x if. x=0o0rx=1,
if xe{l/(m+1),1/n) and x is rational,

5, if xe{l/f(m+1),1/n) and x is irrational. .

It can be shown (see [97 for details) that G transforms every dense sequence of I
into a dense sequence whereas G is discontinuous at every point of J and
therefore not Riemann-integrable.

THEOREM 6. The system of the all w.d.p. transformations is nowhere dense in
the space M of the all maps of I to itself.

Proof. Let FeM and x,el, F(x,} # 1. Let K(F, g) be an open ball in M
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with 0 < & < 1-F(xg). Define the map G: I -1 as follows:

_ JF{xo)+ef3 il [F(x)—F(xp) <¢f3,
Gl = F(x) otherwise.

Plainly,
IG(X)—F(xo)l 263 and |G)—F(x)] < 283

for every xel.
We claim that the open ball K(G,&/5) does not contain a udp,
transformation. Let He K(G, ¢/9) and :

I, = (F (eo)—8/9, F (xg)+5/9).

Then H™'(I,) is an empty set which is impossible for u.d.p. transformations
according to Theorem 4. The proof of theorem is thus finished.

Note that by Theorem 4 the u.d.p. transformations F share the following
property: for every open subinterval I, = I the condition F~'(I,) # & implies
that the interior Int (F~* (I,)) is also non-empty (i.e. that the u.d.p. transforma-
tions are somewhat continuous [3]).

THeorEM 7. The system of the all u.d.p. transformations is a perfect set in
M, the space of the all maps of I to itself.

Proof. We have to verify two conditions:

{a) The system of the all u.d.p. transformations is closed in M. But this the
content of Proposition 2.

(b) It is an everywhere dense set in M. Given a w.d.p. transformation F, we
have to construct a sequence {F,};2,, F, # F for all n, of u.d.p. transforma-
tions converging to F in M. But this can be easily done. Let x,& I be such that
Fixg) # 1.

Let {g,}s; be a sequence of positive real numbers with

lime, =0 and F(xj)+¢, <1 for all n.

| (v}

Then define

F _{F(x) if xel and x 5 x,,
n() = Fixg)+e, if x=x,

and the required conclusion follows immediately.

References

[L] Ch. Binder, Uber einen Satz von de Bruifn und Posi, Osterrsich. Akad. Wiss, Math.-Natur,

KL S.-BII 179 (1971), pp. 233-251.
(2] N G.deBruijn-and K. A. Post, A remark on uniformly disiributed sequences and Riemann
integrability, Indagationes Math, 30 (1968), pp. 149-150.

Transformations that preserve uniform distribuzion 479

[3] K. R Gentry and H. B. Hoyle, Somewhar continuous functions, Czech. Math. J, 21 (1971)
pp. 5-12.

[4] L Kuipers and H. Niederreiter, Uniform Distribution of Sequences, . Wiley, New York
1974, '

[3] P. Lancaster, Theory of Matrices, Academic Press, New York 1969,

[61 S.Marcus, La superposition des fonctions et l'izométrie de certaines classes de Jfonctions, Bull,
Math. Soc. Sci. Math, Phys. Roumaine (N.S.) 1 (49) {1957), pp. 69-76.

[7] — Remarque sur les fonctions intégrables au sens de Riemann, ibid. 2 {50) (1958), pp. 433439,

[8] 1. P.Natanson, Theorie of Functions of One Real Variable (Russian), 3" ed., Moscow 1974,

[93 J. Smital and T. §alat, Remarks on two generalizations of the notions of continuity, Acta
Fac. Rer. Nat. Univ. Comenianae 34 (1980), pp. 115-119,

1

* MATEMATICKY USTAY SAV
ul. Obrancov mieru 49
81473 Bratiglava, Czechoslovakia
** KATHEDRA ALGEBRY A TEORIE &TSIEL MFF UK
Miynska dolina
84215 Braiislava, Czechoslovakia

Received on 20.5.1986 . (1639)



