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1. Introduction.

1.1. Denoting complex variables by s = o-+it (¢ = Res), and writing { (s)
for Riemann’s zeta {unction, it is well known that if the remainder term of the
prime number formula is given by

if n=p~,
otherwise,

1) AX=¥x-x= Y An~-x, A@= {1051)

nax
then its Dirichlet-Laplace transform is

ow - C/ s

This function is meromorphically continued to ¢ > 0 and its poles are the
nontrivial zeros of { (s). The connection between these zeros ¢ = f+iy and 4(x)
is even more clear in the formula

: Xt
(L.3) dx)=— Y —+0(log’x).

ww Iy Q
in(’gx}

This explaing that the best estimates of A(x) from above depend on
zero-free regions of §(s). E.g Riemann’s Conjecture (ie. f = 1/2 for every g)
implies 4(x) = O,(x"*"%), In turn, if we know or suppose the existence of a
nontrivial zero g, = fi,+iy,, then 4(x) must show some oscillatory pheno-
mena. A detailed history of early results in this direction can be found in [2].
For its generality we quote only a theorem of Phragmen [3] stating for any
g >0 in this special case that

(1.4) 4(x) = Q(xP9.
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This also gives the equivalence of Riemann’s Conjecture with  A(x)
— OE(JC1/2+E).

Despite the results listed in [2], an irritating ineffectivity occurs in all
these methods, and Littlewood's [7] problem of finding an effective form is
much harder. P. Turan [217, [22], was able to prove the first effective result{')

log X log, X)

max |4 (x)} > XPo exp(—'C(@o) Tog, X

x%X
This breakthrough was reached by using Turan’s power-sum method. Subse-
quent developments aimed at the sharpening of (1.5), localizing the large value
of x, and proving large oscillations in both directions, i.e. 2, results. A glance
at (1.4) shows that if the interference of the term x%/g, with the contribution of
the other terms is not too dominant, then we should have a one-sided
oscillation (i.e. oscillation in both directions) as large as x*/lg,|. J. Pintz built
up a new method, which combined TurAn’s power-sum theory with the
technique of kernel functions, and obtained the following very satisfactory
result.

TreoreM (J. Pintz [8], [11]). Ler 0 <e<1 and [(go) =0 with g,
= Bo+iyy. Then for any Y > ¢ e, @), in the interval

(1.5)

(1.6) I = [, Y®logleol +69]
there are some x and 'y for which

(1—g)xfo —(1—g)yfe
1.7 A > A <« ————
7 ® lool+4 ) lool+4

Now, in what follows we investigate the question of the size of the
oscillation, and leave out of consideration the sign. To that we shall return later
and here we shall refer to (1.7) as if it merely stated that

14 (x)| > (1—e)x"/(lgl +4).

1.2. Landau [6] proved, in the case of the prime ideal distribution, a
sharpening of the quoted theorem of Phragmen. Effective generalization needs
a careful application of the analytic method, in combination with explicit
estimates in the theory of the Dedekind zeta function. Turdn's pioneering work
was extended to algebraic number fields by Stas [17], and even Pintz’s method
could be adapted (see [12], or in a stronger form [13], Corollary 1)

1.3. Since the old result of Phragmen, quite general oscitlation theorems
were proved for certain classes of functions. We mention the only if part of
Wiener’s [23] Tauberian theorem as an example. But if we want some offective
generalizations of the number field case, we have to introduce some conditions

{') log, x and log,x denote loglogx and logloglogx, respectively.
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using parameters corresponding to the parameters of the fields. In this line,
W. Stad and K. Wiertelak [19] introduced a class .«¢ of number-theoretic
functions, which contained the special cases of interest. A much wider class of
complex-valued functions was introduced in [13]. Slightly changing the
definition given there, we may take € to be the class of functions satisfying
conditions I, IL, TiT and IV of Section 2.1, but with R in condition I replaced by
C (i.e.'in (2.1}, « is a complex measure), Then (2.6) defines the corresponding
;‘lrelnimmdcr term™. With this notation and the notatién of (3.7) the following
olds:

TurorRTM ([13]). Let the remainder of some function in 4 (defined in (2.6))
be denoted by r(x), and let O < & <1 be given. If Z (0,) = 0 with 9, = fo+iv,,
By = 1/2 and

(1.8) Y > max {c;, e, exp(12/2), K, K, %2+ 0* K},
then in the interval

(19) [Y, yeseslos Ko,

there Is an x for which

(1.10) [r(x) 2 (1—2) xP/|g .

Thjs theorem gi\'f_es back as a special case the corresponding result for
algebraic number fields, and also Pintz’s theorem with some other constants
{and without the prescribed sign).

1.4, As easy examples show, this theorem is optimal for %; 1 —e¢ in (1.10)
cannot be 1+e¢ in general. However, in all the quoted special cases we have
real-valued functions, and so instead of & we can work in %. By the reflection
principle Z (g,) = 0 implies Z(¢,) = 0if f & &, and so (1.3) suggests that a larger
oscillation occurs, perhaps even 2x#/|g . This problem of improving his
theorem by the use of the conjugate zero was proposed by J. Pintz. The present
work gives a somewhat surprising answer to this question, since 1 is improved
to =/2 in Theorem 1, but Example 1 shows that in the very general class # we
cannot prove more. Then we define a much restricted class 2, with properties
very similar to the case of the prime number theorem, and we show in Theorem
2 that even in # wo cannot state more than in Theorem 1. This means that for-
any further improvement we have to get much more information about the
location of the zeros of the Riemann zeta function, e.g. we should exclude the
configuration given in the proof of Theorem 2. As for the proof, we emphasize
the underlying extremal problem, which seems to be new and nontrivial. In
fact, the method of its solution can be adapted to other problems concerning
Fourier series. '

On the other hand, our Theorem 1 is quite new in all the special cases, and
gives an improved estimate of the oscillation of the remainder in the prime

4 - Acts Arithroelica t. 49, z. §
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ideal theorem too. That is the content of Corollary 1. Corollary 2 specializes to
the original case of ¥(x). Applying the results to the zeros having the least
imaginary part, we get some effectively localized oscillatory estimates (without
any assumption on the existence of some hypothetical g,}. These estimates are
not optimal, but their effectiveness makes them interesting, and so we state
them as Corollaries 3 and 4.

1.5. Finally we state some effective estimate from below for the mean
value of the remainder. Since here we have a much stronger localization,
Theorem 3 yields at once a general, effective, and localized form of (1.5) with
even a smaller factor in the denominator. Here the special case of Corollary 6
has earlier been worked out by J. Pintz [9]; the proof in the general case is very
similar, so we omit it. In fact, sharper results for the important special case of
¥ (x} have recently beenn obtained by Pintz [10].

1.6. My thanks go to J. Pintz, who turned my attention to the problem
and discussed the matter with me several times during this work. T am even
more in debt to G. Halasz, who communicated me several ideas on the
problem — in fact, I regard this as a joint work with him, though he chose not
to be named as a co-author.

2. The definition of the function class %

2.1. Let u be any locally finite real {or complex) Borel measure on (1, o).
We use the term “distribution function™ for

(2.1) f )= a((l, x),
whatever « is. Since by (2.1) a distribution function is left continuous, we fix the
b

convention that j means | . Also, [ means upward integration on the vertical

[a.b) (o)
line {o+it, teR} We introduce for any complex z
(2.2) Logz:= max {log|z|, 2}.

We denote explicit numerical constants by ¢, ¢,, ... and use the O and <
symbols as a substitute for those. Any dependence on the parameters K, ...

., K; will be handled explicitly, while other constants depending on them will
be denoted by K, ... and will be defined at proper places.

DEFINITION We say that fe# if the following conditions hold:

I f(x): [1, )= R is a distribution function, and
IS ()| < Ky xlOgKIx (K, 21, K, 20

II. The Dirichlet-Laplace transform of f,

F(s)= clj?x_sdf(x) ma moff(x)dx“ c>1)
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can be represented as
Zf
b T e —
Fis)= =20,

where Z is regular for ¢ > 0 except for a possible pole at s = 1.
Il For 0<o<4

1Z{s)(s—1)l <
IV. For —oo <t <
|Z{(Z+it) > K; (0<K;<Kj).
2.2. Define the order of the possible pole of Z at s =1 as

Ky(ld+ 1% (K 20).

if Z has a pole at s=1,
if Z is regular at 5= 1.

23) v =n(f) = {é

‘We remark that if in Tfl we suppese to have the estimate only for Z(s) (s— 1)%¢
where K, is another parameter, then every item of this paper remains valid
with the corresponding medification. of (2.3). We take K, =1 here only for
simplicity, all the applications fitting to this.

For nonnegative f we infer from a classical theorem of Landau [3] that
% # 0, whence »x = 1. By the well-known method of de la Vallée Poussin it can
be proved that for nondecreasing f

(2.4) Z(4+it)#£0 (teR).
Then by the Wiener-Tkehara theorem [23] we are led to
(2.5) Fx)~x  (x— o0).

When f is not so, we do not have the corresponding assymptotics as a
consequence of our assumptions, but nevertheless we can prove the same
oscillation for the “remainder term”

(2.6) rx):= f(x)—

23. We present here some lemmas from the theory of prime and prime
ideal distribution. As forecasted, we prove that ¥e&, P e® with explicit
parameters.

~ Let K be an algebraic number field, with degree n and discriminant 4.
P denotes any prime ideal of K and NP is its norm. We write

logm
(2.7) Ag(m):= T loghNP= ¥ —22
Pk Pk k
NPk=m NPk=m

The remainder in the prime ideal theorem is defined by
28 Ag ()= Prx)—x:= 3 Ag(m}~x.

m<x
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For the Dedekind zeta function of K we have

Rk _ 24
29 K= 3, A

= n

m=1

LemMa 1. For nz 2 we have Wye#, »(W) =1 and we can take
K, =nflog2, K,=2, Ky=cijdl, K,=n+1, K,=(6/m)"
Proof. These values of K,, K, and K, can be found in [17], where there

are also estimates of K5 and K, of a similar type. For exactly these values of
K, and K, take ¢ =1/2 in [24], Lemma 2.

LeMMA 2. Y e, x(P) =1 and we can take
K, =2, K,=0, K,=5/2, Ks=6/n"

Proof. These values of K5, K, and K, are well known, see [20]. K, = 0
since ¥ (x) ~ x. The best value of K, = 1.03883... was computed in [ 14]. Also,
the trivial K, = K, =1 weuld suffice.

Now, write for the-enumerating function of the nontrivial zeros

KS = Cs,

(2.10) Ng(Ty:i= 3 1.

g=p+iy

Lgle)=0

Ivt<T
Then the following explicit version of an ineffective theorem of Landau [4]
holds,

LemMma 3.

logldl—n—nlog2
log |4 ”n nlog "T+o(nlogT+logiAf)-

@11) Ng(T)= % Tlog T+

The proof of an even more general fact can be found in [18]. In [[12] hints
for a more transparent proof were given,
We collect all the special information we need about the zeros as:

Lemma 4. For all K, if ¢ = f+1iy is a zero of {x, then so are § = fi—1y,
12— = (1/2~f)—iy and 1/2-§ = (1/2— P +iy. For K = Q, the least zeros
are go = 1/24-1 14.13 ... and its conjugate, and there exists a constant &g Such
that for any K

(2.12) Nyleg) > 0.

Proof. That the location of the zeros of {, is symmetric about the line
o = 1/2 follows from the functional equation [4], and the symmetry about the
real axis follows by the reflection principle. The first zero of the Riemann zeta
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function is well known [20], and the last statement evidently follows from
Lemma 3.(%

3. Lemmas.
3.1. The following propositions hold in view of definition (2.2).
PrROPOSITION 1. For D21, 0<a<1 and x =1 we have

(3.1) LogPx < P/ +D? ya
PROPOSITION 2. For arbitrary complex numbers u and v we have
(3.2) Log(u+1v) < Log(u)- Log (v).
The following easily computable formulas will be used.
Prorosirion 3. For any B> 1/2

(3.3) Je ™ dx < e,
B .

PROPOSITION 4. For a > 0, b complex and ¢ > 0 we have

2
j‘ &% +bsds =

4
34) 2mi Gy

1 b?
- ﬁe,(p(_@).
PROPOSITION 5. For any complex z and 0 < o« < 1 we have
(3.5) Joett =92 4 (1 — ) e ™| < el

Proof. For |z] > 1 this is trivial, and for |z| < 1 the Taylor expansion
around 0 gives the estimate 14z for the lefi-hand side.

ProrosiTION 6. For A > 0 and real B we have

3 2 2
[ leos{Ay+B)le™dy € =t ="
e NE:

Prool. Integration by parts gives

4] oy
[ lcos (Ay+ B)e™*dy = | [|cos (At+ B)| dt 2ye™" dy
O 00

el n 2 ™ 2% .
< {{Zp+Z)ayerray = Tl 2p2e 4
\g(ny+A)2ye v A+n£ Ve v
S.m 2R, T 1
=i e ray =S4
A+nje Y A+.\/E

o]

(*) Thanks to a remark of W. Narkiewicz, I learned that before the appearence of {18], the
coroliary Ny (T4 cg)—Ny(T) > 0 was kpown, even in a more general form (see [16]).
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0 .- e
Estimating [ in the same way, we get the proposition.
- 00

3.2. In the proofs we will use the power-sum method.
LeEmMa 5 (The continuous form of Cassels’ power-sum theorem [11}. For
h>1 and o; arbitrary complex numbers (j=1,..., n) we have

n
max Ie—alu z eaju| > 1.
hsus(2p- 1)k Ji=1i

LemMa 6 (A modified form of Cassels’ power-sum theorem). If w, =
cmw =1, Wepgy = Weaaj—: (=1, ..., (n—k)/2) aren complex numbers with
w,=re® (gl <n, =1, ..., n), then

IngE

max  Re(Y rfe™) = k.

efvE(n—k+ L 14

1

Proof. In the proof of Cassels’ power-sum theorem (see Cassels [1]) it is
deduced from the Newton formulas that if z,,..., z, are the roots of the
polynomial :

Z+a, 2+ . ta,
with real coefficients, and the power-sums are denoted by

si== gt 4+ L. 2,
then for these real numbers we have

max s = 0.
Ispusv+1

For arbitrary complex z,, ..., z, we can take z,,;=Z; (j = 1, ..., v) and the

real polynomial
v v
[[e-z)= [TE—z)(z—E)
i=1 J=1

to obtain for the corresponding power-sums

max  s27 2 0.

1seps2vi1
Applying this to v={(n—k)f2, z;= Wirap Zys)=Weszp-1 G=1,. o V), we
deduce
max  s¥H 2 0.
1Zpsn—k)+1
Since wi =1 for j=1,...,k and all p, this gives

max ()
1€ lr-lo+1 1=1
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This is a discrete form of the statement to be proved. Since we have a real
number under the maximum, we can take real parts, and deduce the

continuous form stated here in the same way as it is done in [21] for the case of
Lemma 3.

33. In this subsection we collect some lemmas which are natural
extensions of known facts of the theory of the ¢ and [y functions. Special
emphasis is on the explicit handling of parameters. In the following, Z always
denotes a “zeta-type” function, that is, Z (s) is an analytic function in & > 0 with
a possible pole of order % at s = 1, and satisfying our conditions IIT and 1V.

For the zeta-type function Z we fix some notation as follows. The complex
nurmber ¢ = ff-+iy represents a zero of Z. ¥ is extended over all zeros satisfying

o N . @
the conditions indicated under the summation symbol and counted with
multiplicities. For any real numbers T;, T, T and O <a<1

(3.6) Nia, T, )= Y 1, N(@T):=N(, —T,7T).
ﬂ;a
_T;SwSTz
For easier writing put
(3.7 K6:=log& (= 0).
Ky
Lemma 7. For 0 <a <1 and T real
1
Nia, T-1, T+1) <E(K4log T+ K).

Lemma 8 For O<a< 1,121 and any real T we have

z
(3.8) Nl@, ToL THD < (K Log (T +)+K),
and

T
(3.9) N, T) <. "“(K Log T+K,).

LemMma 9. For 0 <o, 20 b <1 we have uniformly in hb<o<4

Z 1 “ 'K, Logt+K
e {8) = - O & 6 .
A() %‘ 50 P ( a(b—a) )

lg—~s|%b—a

Lemma 10. For 0 <b <1 and real T there ex:sts a T with [T-T'[< 1
such that we have uniformly in b<o <4

’

z —(oe+iT") <

1
= (K Log T+ Kg)2.
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LemMa 11. Let 0 < b < 0.25. There exists a broken line L, symmetric about
the real axis, whose upper part L, is given by

= U Lk
k=1

Jor k odd,
Jor k even,

L, =[oy+ity—y, oy t+itgs 1]
Lk = [O—k-l +iti¢’ O'k+1+itk]

W}iere t0:= 0, fkml < tk+1 < tk—1+2 ﬂnd b é Uk \{_ Zb, and /br Whi(,'h the
Jollowing holds: Uniformly for all se L and all se[b+it,, 4+it, J{k=1,2,..),

——(s) (K4 Logt+ K.

As for the proofs, Lemma 7 uses Jensen’s inequality 2[1/a] times on the
circles centered at 2--i(T+ja) (j= *1, ..., £[1/a]) and with radii R =2,
r=./2—a?+a* Lemma 8 follows from Lemma 7, and Lemma 9 uses (3.8)
and the Borel-Carathéodory Lemma with s,:= 2-+it, R =2—a, r=2-b,
F{5) = Z(s)(s—1)*. Finally, Lemma 10 and the construction of L in Lemma 11
can be done in view of Lemmas 7 and 9 by staying as far off the zeros of Z as
possible. Compare [19].

4. Large oscillation of the remainder term.

4.1. THEOREM 1. Let f € & and let r be its remainder term as defined in (2.6).
Let Z(gy) =0 with 0q = By +ivg, Bo 2 0.5 and y, > 0.
If 0 <e <1 is arbitrary and

41y  logY > max{c,, loyl, 100/e*v§), K3, iogKl, logK,, log K},

then there exists an x in the interval

(42) I = [K YEB{K4LUE?D+KE):I’
Jor which
Ao
(4.3) Ir (x)] > (Le> .
2 leol
4.2, Proo_f . We introduce the parameters
=510, mzlog,
@) ni==gf g

M =16m, u=12m,

A = eM—,u — e‘l-m B = eM—I'u = eZSm]

L]

so that only m remains to be chosen. We postpone it but suppose that it will be
done so as to fulfill

{4.5) [A, B] e I.
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rix
(4.6) Ci=sup !—%;,n
xel X

so that (4.5) implies
(4.7) xe[4, B].

Having the Dirichlet-Laplace transform of f defined and meromorphically
continued according to [, we also define

lr(x)| < CxP  for

(4.8) R{s) = (S)m——n— = — [ r(x)dx"s.
1
For some w=u+iv, 0.5<u<1 put
1 ,
(49) U=UWw):=z— [ R{s+w)em M4y

i g,
1 X 14] d
— — —s—w ms2 -+ Ms
- | ( !r(x)dx(x )dx)e ds

“ d 1
= - | (X)—— {x“’-—w g (M~ loga)s ds} dx
.Jl dx 2ri {g)

o T d ) 1 _(logx—M)* _
= {r(x)dx{x Zﬁ.n;exp( i )}dx

1 ““r(x) - logx—M (fogx— M)

2\/Trm 1

where we have interchanged the order of the integrations and the derivation
and applied the integral formula of Proposition 4. Split up the last integral as

A H oy
(4.10) Ui=[, U,={, U,=/[.
1 A B

Suppose that
@.11) am > wl
and choose o = 0.5, D == K,+1 in (3.1) to infer from I that
(4.12)

|U1|<-2w~1—~- § (K, Logh* x+%) x '"{M Zrln +w 1} («————Gc’g"'m)dx

4m
— 2
xp (_M(l____ogx M) —ulog x)dx
2./m

LK, (@ )MSm v

s 2\/1-rm 1
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— 64/
<K erZ J’ e—y2—u(2me+M) 2me+Mdy

*81/»1
< Kexp(M(1.5—u)+m(l—u)?) e~ dr
6v/m+ (1 —um

< K, exp(M (15 —u)—12m (1 —u)—36m) < K, e~ 2",

where we have substituted y = (log x — M)/(2 ﬂ), t=y—(1—u ﬁ , and used
Proposition 3, u 2 0.5, (4.4), and the abbreviation

(4.13) K,:=K, ¥ (> K, 82(K1+1)+(K2+1;1).
Since for x > B by (4.11) and (4.4)

logx—M

- +iw| < logx,

we infer similarly that

j2K1L0gK2(x)x““logxexp( (Ing M))
ﬁ/nt 2./m

K, ® log x—M\? .
¢ —L. | exp{—(f-g-x—> +(1.5—u)1ogx}ldx
2l 2 ;

=K, :fﬁexp{—y2+(1.5wu)(2ﬁy+M)}dy
6vm

(4.14) |U; <

oo

= K, exp(M(1.5—u)+m(1.5—u)?) e dt

Gm~ (1.5 —a)m

< Kyexp(M(1.5—~u)+12(1.5—w)ym—36m) < K, e™ ™.

These calculations prove that if (4.11) holds, then we have

(4.15) U+ Uyl < co Kyt

Now (4.1) and (44) show that for w = g, or w = §, the inequality (4.11) is valid,
and so if we define

{4.16) S:=Ulgg)+U(d,),

then (4.15) applies to both quantities on the right-hand side. Splitting up S
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according to (4.10) we can write in view of (4.7) and (4.9)

@17 IS,
n —
= : _‘.M{xwau@u‘l‘xmé” Q_0+2x—fiﬁw}
2. mma X m

— 2
xexp<_(1°gx_M) )dx
2./m

log x— M|
logx-—M)z)
exp|l —| ———| Jdx
p( ( 2 /m

» I-’C WP plrgen +xh’“ & ll‘ﬂﬁ’u{ ]Q |_|_
C

A

i

A x2

[log x — M]|

2l gl lcos (v log x— @g)| +

x2\/;1

2 2 % o
My y—0o+roMe™’ dy+T § lyle™ dy},
M-

§ 2|ggtlcos (2

C B
= TI
A
C { x1
N
where we have denoted arge, by ¢,. Now by Proposition 6 we compute

1
@18)  |S,] < < %|Qo| C{H—[M}.

2(:1@](2 . 2n )+ 2C-
\\/E 0 \/E 2./myg \/Tc_m\ 2}!0\/;1
By (4.4), m is large enough to satisfy

\/E(“‘*'”m‘/?“;“"'l)z<\/n(n+1)2n2<4n.

4.19 -
@19 2\/-m}10 §dm 4
Now (4.1), (4.5), (4.16), (4.18) and (4.19) yield
4
(4.20) 18] < ~ledl C(L+4n)+n.

4.3. Now we caleulate § by using the first form of U in (4.9). We fix
b= 1/16 and for 0.5 < u € | we transform the line of the mtegrdtlon in {4. 92
By the residue (heorem, Lemma 11, and the estimate emITMs = 0 (77)

(0= e <4), we gel '

l ] +My g —w)2- —w
(4.21) U(w)m.éw._. [ R(S+W)enls2 + M. dS+Z*e (@~ W)+ Mg —w)

L R [
where * indicates that only the zeros to the right of the broken line L are to
be considered,
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By Lemma 11, the definition of R in (4.8) and condition [I the integral can
be estimated as follows. Let
(4.22) Ky=K,w:=K,Logv+Kg.
Then we have, using also Proposition 2

7§

TEIL w

(4.23)

o

< | (KyLog(t+v)+Kg) exp {m(u—b)*—

halt +-¥1

)+ M (2h—u)} dt

23]
e ™ | Log¥tre ™ dt < Kje ",

o)

< K3

As for the sum, the contribution of those zeros which lie far from w can
also be estimated via Lemma 7 and Proposition 2 as

| =

e
le—w|=4

{4.24)

em(:_) ~w)2+ Mg - w)i

< Y MO MU AN (b e[ ], Do D)k N (B, 0L, v 14 1)}

I=4

=4}
<Y Kglogl

=4

e”m™ < Kye ™,

Now, what remains of U/ is a finite sum with not more than
(4.25) N, v—4,v+4) < K,
terms. Moreover, if we write

(426) U, (w):=

z* amio—wi+ Mig=w) _ Z* {ele Wt 16— wnm

0 e
le—v]<4 lo—y| <4

we see at once that this essential part of U is a pure power-sum.

Now returning to S as it was defined by (4.16), we obtain from (4.21),
(4.23), (4.24), (4.26) and (4.1), (4.4)
4.27) 15T 2 U@} + Usl@o)l—1.

Here the power-sum on the right has the form described in the hypothesis of
Lemma 6, and by (4.25) for the number of terms we have

(428) n= T* 14 3

e ¢
le—ool<4 le—8ol <4

Since we have at least two terms in the power-sum equal to 1 {those for e =2y
in Ulgy) and ¢ = g, in U(3,)), Lemma 6 immediately implies that in any

1 <egKyleg)
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interval of the form
(4.29) [H, ¢ 1o Ky H)
there exists some m for which
(4.30) NEY =

Now let H=logy,
¢y = 28¢;, so that

Y, from which m 2 log¥ follows at once, and put

B = eZBm £ GZSHOKBH YLBKB

which means that our choice of m fits (4.4) and (4.5) as well. Now from (4.20)

and (4.30) we deduce
Sialon(x )
leal 21+4n = \2 /oo’

2—=2n =
~ lool (1+4n)4

5. On the sharpness of Theorem 1. The accuracy of Theorem 1 is shown by

the relation

whence the theorem.

inf .sup—n_%f(x)wx‘x] =z

(5.1 inf FT 2

Q0
T8 2iqor=0 ¥ 1

To show (5.1} choose 0 < s < L. Ifp = B+ip,0 < f < 1 and y is large then
arge must be around m/2, and

. xt x€ i
5.2 - 22 — 2 sin (ylog x). :
52 e ¢ v i
Now, put '
1, Ine < y< 2n+ 1), nel,
E 3 [ N
(5:3) s (y): {-1, Q4 <y<(n+m, neZ.

This function has the Fourier series

&4 sm(2k+1)y
5 e

k=g T
so the following construction works.
Examrrr 1. Take some 05<B<
I" =T (g) = 10/e. Let

1 and define for the given e,

5.9 (x): }%{xok ! x“ﬁ} 0.:= B+(k+ )T
: X)i= — — =
O Op @y G ¢
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Then for the function

im £, (),
(5.6) fx)=2°

0] x =1,

we have fe @ with »(1=0, ie r(x)=f(x)—» x = f(x), and
B

T X
lr (JC)| < (54‘ E) m

We omit the somewhat lengthy computations of the verification, since we
will prove even more later on, but we give some hints. Note that (5.6) is ouly to
make f left continuous and f (1) = 0, which is unimportant here, but belongs to
the definitions of a distribution function, and so is necessary for Jed We

will have
o $ § ® B2 (w (S—B))
= =2 =TT (1-=5 e ,
Z6 kl;lo (I Qk) ( ék) k1=_Io ( |Qk|2) ¢ 2

and with some continuous function g(x), for which |g{(x)| <1 for all x,

nx® X = 2B
= e s * o ——— e -
fx) s sen* (logx)~—— g(X)+k§,0 ol

.7

(5.8)

8.2

(5.9) (x> 1),

so (3.7) follows immediately, since »(f} =0 15 obvious. For
(5.10) K,=1 K,=0, K;=06, K,=1, K;=nj4l)

conditions I-IV can be computed too.

Now let us analyse a little what that all means in the case of Chebyshev’s
function ¥ (x). If Riemann’s Conjecture is true, then Theorem 1 is not optimal,
since there are results of Littlewood with estimates

Q(\/J_clog3 X)
in this case (see [3]). Similarly, if ‘
(5.11) 0:=sup{f: {(o) =0, 0= fi+iy}

is not attained, especially il = 1 and the Quasi Riemann Hypothesis is false,
then we can choose some g, with #, > f, and apply Theorem 1 to this ¢, to
obtain the larger estimate

Ax) = Qx").

Thus for ¥(x) the optimality of Theorem 1 would imply the existence of
some ¢, with

(5.12) Qo=0+iys, yo=mmin{y>0: {(0+iy) =0}
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and also
(5.13) 12<0<1.

In this case, however, the previous counterexample does not work, since

~ choosing B =0, we find that for the zeros of Z

NO, )~ 1T

(5.14)
though for { any density estimate excludes this in the case of (5.13).

Note that the asymptotical formula for the number of the zeros of ¢ could
be satisfied by a small modification of Example 1. Indeed, we can take some
fairly arbitrary g = 1/2+1y, with changing /' (x) at most by O (x> where
n < B—1/2, and by means of thes¢ zeros we can ensure the asymptotical
formula for N (T)). Also, to include a pole at s = 1 (i.e. % = 1}is no problem, and
the symmetrizing of the zeros about s= 1/2 can be done easily, Finally, to
include the trivial zeros is easy, and since (5.8) is a-regular function on the
whole plane, these modifications will lead to a somewhat more sophisticated
example, where the corresponding Z (s) has the same analytic character as {(s)
should have (we may even take the first “few” zeros on ¢ = 0.5 to be equal to
the known zeros of {, and choose I' > 10!, Since the concrete values of the
residues of 1/Z{(s), or the functional equation characterizes the entire function
{s— 1) { (s), we cannot do more without explicitly determining the exact location
of all the zeros. Since all these considerations show that the only problem
regarding the analytic character of our example is that (5.13) and (5.14) are
excluded by density theorems, we proceed further in this direction. Let us
introduce the conditions:

V. For the zeros of Z(s) with the notation (3.6)

N(a, T) € K, T*@
where for a > 1/2
Ala) < 1.

V1. The total number of the zeros of Z(s) with real part exceeding 1/2 is
finite. _

Now we may say that fe2 il fe# and satisfies V, and also fe# if it
satisfies VI too. By (5.12), (5.13} and VI it can be deduced (cf. Lemmas 7-10 and
the standard proof of (1.3)} that for any /&4 and 2n <8172

- )
(5.15) rlxy=— ) E+of‘,,(x" ",

'3
p>8-2n
r<x

whete in these considerations we use the O and < symbols with nonexplicit
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and nonabsolute constants too. Now defining @ in the analogy to (5.11) as

(5.16) 0=0(f):=sup{p: ¢ =p+iy, Z(e) =0},
in case 6> 1/2 we have, by V and (5.15),

+Z

Iv\<7

1}

(5.17) R T

for a fixed but large T. Choosing g, with minimal imaginary part as in (5.12} we

are led to
e 2 g
rx+ 3 (ic"“*i——'—) < —
=0+ e

5.18
©-18) lgol
a<y=< T M)

x> xo (/s )

if we suppose Z () # 0. Now (5.18) points out that to find an f with fittle
oscillation is not easier in 2 than in 2! Moreover, by (5.2), at least for large y,,
this is equivalent to finding an almost periodic polynomial

N
P(y)=27Y

where 1o = 1, 4, < 4; < ... < Ayare reals and || P| ,, is small. This leads to the
extremal problem of Section 6, but before solving it, we summarize the present
considerations as

(5.19)

(y = yologx)

THEOREM 2. Let 0 < &< 1 be given; then we can find an fe@ such that
={, Le. f(x) =r(x) and

xho
) “( “) P
= Bo+ive of Z{s).

Proof, Let some almost periodic polynomial of the type (5.19) be given
with

(5.21) Pl (n:= &/10),

This will be justified by the next section; we suppose the existence here. Now
take some B with 1/2 < B< 1 and also some I' > 10/, Define

2 (f)
(5.20) (x=1)

for some nownreal zero g,

<inty

(5.22) g,=B+il, I {k=0,1,..., N),
and take thf: continuous function
N ax |
(5.23) f=-3 {i—+—+f—+ } (x> 1),
k=0 L0 ¢ & &y
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extending it with f(1) = 0. The corresponding Z (s) is

il §
Z(s) = R—— 2
(s kl;lo( Qk) (1 ék)

so we have at once fe# (and so obviously fe#) with

(5.24)

(5.25) K;=2N+2, K,=0, Ky=1, K,=2N+3, K,=1r"",
Let us denote
(5.26) @, = arglg).

Then by (5.22) and A, > 4,, 1/2< B <1 and T > 10/n > 100,

(5.27) I = ¢, 2 @g = arcsin

r o e 1
\/-—]:—ﬁ 2 arc sm —EF »
and for any weR
(5.28)

Now compute with 9, = 8,(f, x) where |9, <

[cos (31 + ) —cos (g, + )| < tn—p, < 2T

< 1 that

2k /31 B iV p ek . FiVK Hiek
(529) _(x X )__ 2x° xte g + Kk g
e 2

—t—=]=
Qr O
—2x8
= cos (g, —y, log x)
lexl B

2x8 4x% 9
= _sin(y, log x) +—-%,
g nlogx)+ 1 T

so from (5.19), (5.22) and (5.23) with some 8 = 3{f, x), |9/ <1

¥ —2B 2x¥ X sin{i,(yologx)  4x® N+1 N+1
(5.30) f(x) = Y RS ST 9.
) /() k§0 leu* ool o Ay ool T
Now by (5.19) and (5.21) for any x > 1 we obtain

;;/{Ix l) <Pl 4(F+1)N+1)+2(N+ 1) LI

r: rx? "2

if we choose I' > (N + 1)/n. This proves (5.20) since %(f) =0.

We note that similarly to the remarks following formula (5.14), this
example can be modified to have %(f) = 1 and the zeros of Z satisfying the
known properties of { (s). This really means that proving more than Theorem 1
implies that certain configurations of zeros — which fit all the informations we
have up till now — are impossible.

5w Acia Arithmetica t 49, z 3
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6. The extremal problem. Let N be the set of nonnegative integers (so
including €). Define

n

2, sin (4, y)
kgl Ay

3

Cn) = inf{suplP(y)[: P(y) = s EN, A, >0, 4 =a, = 1}
¥

n

(6.1) C’(n)=inf{sup]P(y)|; P(y=7Y akSikllky
Y k=1

ya, =1, akeN},

n in (2K + 1
C*(n)winf{sup PO POy = 3 Gensin@HDY) akeN}.
, R P

Since @, = 0 is possible, these sequences are nonincreasing, and obviously
(6.2) C2n+1) < C'2n+1) < C*(n).
We are interested in the determination of

(6.3) C:=1limC(n), C:=1limC(n), C*:= lim C*(n).

H—+aoo B o0 koo

Now, for any almost periodic polynomial in the definition of C (n) write

i 1
=40, [ =
~Z+0,(3).

T
[ P(y)sinydy

(6.9 1P, > _ 38 T+0,(1)

T {2/my T+ 0(1)

fIsiny| dy
0

which shows together with (6.2), (6.3) that
(6.5) C*2C =z Cznj.

The trivial estimate for C* from above would be

™ sin X

. sinf(2k+1)y) j-—dxw093

2

6.6
(6.6) 2 2kt

C*F g

o

which is strictly between 7/4 and 1. This would be sufficient for proving that
Theorem 1 cannot be improved to 2—& in place of i —e¢, but we want more,
therefore we must avoid the Gibbs phenomenon for the partial sums of ( 5.4).
This is the essence of the difficulty in the proof (carried out below) that

(€.7) A =C*¥=C = C.

For this we take some ¢ with 0 < &< 1/2 and write for short
K:=2k+1, N:=2n+2, .M:: 2m+-2,

where k denotes any integer between 0 and n, and n satisfies

(6.9) n>1/et°,

(6.8) m:=[en],
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We write
Q={0,1}""" 0= {Dgma3serer Opseer Wayy1)EQ
and
sm(2k+Du
(6.10} Pw Z ”)Zkl 1 ( ((01 = o FWayr1 = 1).

2k+ I
Taking the Fejér polynomials of tmsgn® (u),

d 2k 4+ 1\ sin (e +1)u ( K)sinKu
r— — = 1**'— ,
o= X (1 2n+2) T ubl) VA U vy

k=0

(6.11)

we know by the positivity of the Cesaro-1 summation method that this Fejér
mearn satisfics

(6.12) lo (u) € /4 (ueR).
Now it will suffice to find some wef2 for which
(6.13) IFy, (W) —a, ()] < 3e.

Trivially by the definition of m

_ sin (Zk+1)u 2 2k 1\ sin(2k+ Lyuj _ m-+1
(6.19) 2 One =y~ 2\ ) et | SR
Write

sin Ku

(6.15) G,w= ) wg T

M<K<N
To find a good we 2, we introduce a probability measure in 2 and prove that
the probability of the good w’s is positive. More precisely, take

K K

P)i= T] Pelly=1-3, Pl =%

M<K<N

and observe that Py depends solely on wy and that the random variables
X 0140, 1},

are totally independent. In this setting (6.15) is also a random variable on Q,

and its expectation is

K\ sin Ku
1= .
s - fo.mire= T (1-3)%

Py (wy),

Xy lw)i= wg

Take

M .
(6.16) u, = L==- (>10N);

!
— (I=0,1,...,L),
L ! )

w213
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then for any fixed u, Bernstein’s inequality gives for any 4> 0

P (Gm (%)'“E(“r) = 5) < e A E(e"l (Gw(“!)"ﬁ(ul)))

:e—la H

K\ sin Ku,
L P (=155

R (e e Y )
B M<E<N N)PANT K N P N K ’

and similarly
P(Gw () —E(u) < ‘“8)

: K KisinKu\ K K\ Asin Ku;\)

o Lol - )

MJ,LN N N K NPT TR

Asin Ku, .

K

in these inequalities,

K
Applying Proposition 5 with o = Y and z = +

we obtain

12 : 2K 2
P(IG, (u)— Eu)| = &) < 2% exp( Y M) < 2exp (—;—M——M)

2
M<K<N K

so trivially
2
(6.17) P(G,m)—E) <e, 1=0,1,...,L) = 1-2(L+ l)cxp(é%iwﬁc)

Now take 4 = &M in {(6.17), and call an o “good” if
(6.18) G, w)—Em)i<se (I=0,1,..., L.

Hence (6.17) combined with the choice of 4, L in (6.16), and with (6.8), (6.9)
yields
2

2
P(wgood) = 1 —MZexp (;—M—al) > lﬁexp(ZlogM—%M) > 0.

This ensures the existence of at least one w e Q satisfying (6.18), Since G, and E

are sine polynomials and with odd multiples only, for every ye R there is some
ue R for which

(6.19) ID{W)| <& D@W)i=G (w—E®M), fu—y|<nidl).
Now we can apply the following well-known inequality of Bernstein:

(6.20) 1], < NID| .
Combining (6.20) and (6.19) we get for any yeR
D
D) < D@ +ID] iyl <+ Pl
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that is,
1D
DI, < o+,
S0

1D ()l = G () — E )]l < 2e.
Now this and (6.14} give (6.13), whence (6.7) is proved.

7. Large oscillation of the remainder in mean. As we mentioned in Section
1.3, % is defined very similarly to %, but omitting the condition that f is
real-valued, and simply taking complex-valued functions. Just as the theorem
from Section 1.3, the following theorem is also true for the class %.

Treorem 3. Let €%, Z{pg) =0, 0q = fot+ivg, By =05 and
(71) logy 2 max {Cllv lQDIs logzKl’ Kg: IOg K4= KB/KS}
Then

] y
720 Sy=Mm=z=- |

vexp (-~ 7+/Togy)

rix)dx > yPoexp(—c,, K, /logylogs y).
Here we have used the abbreviations

¥
(7.3) S(y)i=maxlrx)l, M(y):=(1/3}]lr()dx
x5y 1
for the supremum and the mean value of the remainder.

8. Number-theoretic corollaries.

CoroLLARY 1. Let 0 <& <1 and suppose that {g(py) =0. Then for
log ¥ > max {c,, lgol, 100/(* ¥3), ¢,3m, log |4I}

there exists an x in the interval
[Y, Yclq(rrLogyo-Hogldl)],

T xﬂl’)
Ap (X)) > |=—e)—.
4k (x) (2 )|Q0|

CoroLLary 2. Let 0 <& <1 and suppose {(p;) =0. For any Y with

Jor which

log ¥ > max {¢, s, [eol, 1/6%}
there exists an x in the interval
[Y, yeualogleol]
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for which

T xﬁo
|4 {x)] > (E—-a) w.

CorROLLARY 3. Let O <& <1 be arbitrary and let K be any algebraic

number field. Then for any
Y > max {|d], ¢%s, exp(1/¢)}
we have at least one x in the interval
[Y Ycu,(n+}ug|A|)]

satisfying

1Ax (] > €14 /%.

COROLLARY 4. Let 0 <e < | be arbitrary and Y > max {¢,, exp(1/e%)}.

Then in every interval of the type [Y, Y*®] there exists an x jor which

40 > TAE
leol

where g4 is the first zeta~zero. In particular, taking & = 0.1 we get
4 () > 0.1 /%
CoroLLArY 5. Let {g(00) =0 and suppose that

IOS}’ } max {IQOI'» c;On .Al}’

Then we have

1 ¥
max |4 (x)| = — { |4 (x)| dx > yPoexp(—¢, n./logylogs y).
1€xsy yyexp(—'w'@)

COROLLARY 6 (Pintz [9]). Let {{0,) = 0 and take y = max (e, ¢,.). Then

we have

1 ¥ -
max 4@ Z— [ J4(ddx > yPexp(—eyy flogylogdy).

l€xsy Y yeap(— 1vTogy)

The proofs rely on the explicit calculstions of Lemmas 1, 2, 3 and 4.
simtlarly to Corollaries 3 and 4, unconditional estimates are valid for the mean

of the remainders — here we omit them.
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