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On sign-changes in the remainder-term of the prime-number
formula, IV

by

1. Kaczorowskl (Poznan)

1. The subject of this paper is to pursue some further questions concern-
ing the oscillatory nature of the “Abel mean” of the remainder-term of the
prime-number formula:

o

(1.1) As(x)= Y (Am—1)e™¥, x>0

n=2

In contrast with part III of this cycle [3], our main results are
unconditional.

Let V;(T) denote, as usual, the number of sign-changes of 45 in the
interval (0, T].

Tuporem 1. For T tending to infinity we have the estimate
(1.2y Vs(T) = o(log* T).

Let us remark that (1.2) cannot be much improved without an addi-
tiopal information about the distribution of zeros of the Riemann zeta-
function near the line

(1.3) : o=0:= sup Reo.
lg=0

For example, if ® > 1/2 and there exist a positive-valued function g,
monotonically decreasing to zero, and a sequence of zeta-2eros g, = fp+ ivm,
m=1,2, ..., such that

(1.4) fo— @, yu—o0 8S m—r o0,
and if region s = a+Ii,

(L.5) Ba—glim <0 <O,

{1.6) 0 <t < yn/g(ym)

contains only one zero g, then

(1.7) _ Vi(T) = Q(g(log Tlog® T).
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This follows easily from the well-known explicit formula

(1.8) ds(xp =3 I'(@)x*+0(1),

where I' denotes the Fuler gamma-function.
We shall deduce Theorem 1 from Theorem 5.1 of [3] and the following

THEOREM 2. Suppose @ > 1/2. Then for every & >0 there exist two
positive constants ¢y and T, depending on ¢ such that, for every T > T,

(1.9) max  |ds(x) =c, T2
TSxS(+HT

Our main tool in the proof is the power sum method due to P. Turén.
According to the considerations in Sections 11-14 of [3]-we have, under
the Riemann hypothesis, the inequality

(1.10) max  [d5(x) = ¢, (s) /T,

TExs(1+aT

satisfied for every positive & and sufficiently large T Thus we can formulate a
completely unconditional theorem concerning “large values” of As:

THEOREM 3. For every positive ¢ there exist two positive constants ¢,
and T, such that '

{(1.11) max

TEx&(1+aT

sl 2 e, /T for TzT,

This theorem is for. large 7" much stronger than the result of §.
Knapowski and W. Sta§ [5], with regard both to the localization and to the
lower estimate. However, our estimate (1.11) is. ineffective.

2. For the reader’s convenience we now state all necessary lemmas.

Lemma 1. Let m be a non-negative number and Zys 22 ..., Zy cOmplex
numbers such that

(2.1) 1=|Zli?Izzfz---Zth,?---?IzNL
(2.2) lzyl 2 2ZN/m+ N).

Then there exists an integer v with

(2.3) . m<ysm+N
such that -
N ' IN v/ N ¥
24 bzl 2 |z — = | {——1 ) i ot by
(2.4) li; IZ{‘_ (Iz"l _3(2N+m)> (24‘& 2N+m> _hsmfélnibﬁ b

_ - 'This is Turdn’s second main theorem in the form given by S. Knapowski
[4]. Let us notice that Knapowski has formulated a somewhat less precise
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inequality, with the factor (z,//2)" in place of (Iz,,|v~
his proof leads to (2.4).

2N *
Tm—— t in fact
3(2N-|—m))’ but in fac

Lemma 2. Let &;=o;+it;, j=1,..., N, denote complex numbers such
that
(25) . 0'1_20'22.‘.;0']\;.
Let further
N
(2.6) fw=73 b’ ier,

i=t
where b; are arbitrary complex numbers.
Suppose » and a are real numbers satisfying

(2.7) Oy —0xn S X,
and ‘ .
(2.8) d = 2e",
Then for every d, 0 <d <1, and every h, 1 < h< N, we have
opd — d ] a -N *
2.9) max |f(t) = e™ (24e1+3" (2+~‘)) min | Y by
a<i<atd d RSKSN [=1

Proof. To prove (29) it suffices to apply Lemma 1 with

. aN
zj:=cxp(%%1d) and m:=%—.

Let us only remark that, by virtue of (2.5), condition (2.1} is satisfied.
Further, (2.7) and (2.8) imply (2.2) for all h.

Moreover,

o 2N v
Tyl d

X b, L) .
(ﬂm) > (157 ) > en (2205 cup e,

e 3a 3a
~N
)) |z4l*
)"
-N .
)) eo'ka—xde—'o'la

- 80 thav

g =Y

1N Y N .
R P 2 24 1+3e 2_+_
(24e 2N+m) (‘ W 3(2N+m)) ( ¢ (

= (2431“23 (24-

—(oy —opatd)
e (o1 —opatad)

Sl o

> (2481 +3e* (2+

e

and the assertion follows.
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LemMa 3. Let 02 1/2, T>0 and let N(o, T) denote the number of
zeros 0 = B+iy of the Riemann zeta-function in the rectangle o <f <1, 0
<y < T. Then

2100 N(g, T) €, T+

This is a well-known density estimate, first proved by F. Carlson [1].
Much better estimates are also known, but {2.10) is sufficient for our
Purposes.

Jor every ¢ > 0.

3. Proof of Theorem 2. It suffices to prove the theorem for & small
enough. Let us assume that

(3.1) D<e<@®—-1/2

and let us fix a real number @; with

(3.2) 1/2<@—s<@ <6,
There exists A,e(0, ¢/2) such that

(3.3) | T I@)e*™® =3u>0,

B>8y

o depending on &
"Let g4 = By+iy, denote a zeta zero with

(34) @, <fo<@
salisfying the condition

(3.5) 3

& <B<fp

I () " < .

Using (1.8) we can write
01t

(3_6) A I-i-i.o ZF( ) L’(I-E-/'lo) (1)—F(f)+0( )
where
3.7 ‘ F(t)y = Y et
: : P f?),”.ﬁ.f’éq'
(3.8) a, = T(g)e™.

In order to find “large values” of F we apply Lemma 2 with the
numbers ¢ = B+iy, B> @y, |yl < T, taken-for A's (arranged according to
decreasing real parts), with the numbers g, as b's, and with N = N(6,, T),
a=T d=g2 »=1/2. Moreover, let h, 1 £ h < N, be the integer for which
),,, Co- Then owing to Lemma 2, we get
(3.9) © max [F(r)i > e"OT T2V

eg”
TSIST+42
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where
(3.10)

B,, = rmn]z nl

geAd

and the minimum is taken over all sets of zeros contained in the rectangle
o > Oy, Iyl < T and containing all zeros g = f+iy with § = f,, W < T
Lemma 3 implies that, for sufficiently large T

(3.11) N=N(©, ' <T%ogT with 0<& <1.
Thus

Bo- 8y
(3.12) T Nz 2 ' ne ™3 7

for T large enough.

Further, (3.3), (3.5) and (3.10) imply

(3.13) OB Y - Y lal- Y al
N >0 91 <p<phgy
iz =T

>3—-0 " —aza
for large T

Estimates (3.9}43.13) yield

@1 +8g

(3.14) max (F@@)>e¢ 2 "
TEt£T+e2
Hence, using (3.6} and (3.14) we get
(3.15) max |ds(¢)) > max |ds(e )
TE1<T+e TE1€T+2/2

81 +8p

BT -0

> e(E“‘E)T’
and the result follows.

4. Preof of Theoremn 1. We may assume that & > 1/2, since otherwise
our assertion {and even more) follows from Theorem 5.1 of [3].

Let us fix ¢ > 0. We shall prove that the function 45(¢") changes sign at
most ¢ T times in, every interval of the form [T, T+ 1], for sufficiently large T
The theorem hence easily follows.

We shall use the same method as in the proof of Theorem 3.1 of [3]

As in [3], we consider the function

(4.1) G(z) = 45(),

which is regular in the strip {Im z| < /2.
Then for every z = x+iy, |v| < n/4, we have

4.2) |G (2)| <e®.
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From Theorem 2 we know that there exists x, in the interval [T, T4+ 1],

T = Ty(s), such that
(4.3) |G (xo)] = cole) ' o7
Let © denote the conformal mapping defined for |w| <1 by the formula

1+w
1-

44 (W) = xo—l— log

Then there exists a real number r, 0 <r < 1, independent of x, and e,
such that

(4.5) [T, T+1] < (K (0, r).
The number of sign-changes of A5(e') in the interval [T, T+1] is less
than or equal to the number ny(r) of zeros of the function
{4.6) G, (w) = Glt{w) -
in the disc |w} <r. Using the Jensen inequality and (4.2), (4.3), we get

4.7) ne(¥) <, log!{ max

w| <(¥+ 1)/2

G (wW)l/|G1 ()]}

< log {es (1) e®/co(e) e®~2T} <5 T+ 0(1).

The proof of Theorem 1. is thus complete.

Remark. The author wishes to avail himself of the opportunity to
correct some misprints in part I of this cycle of papers (see [2]): in formula
(3.10)  max has to be replaced by max ; in formula (3.20) replace lim

1€pgk, 1SpSky
BEY

by lim , and on page 73 (lines 2 and 7 from below) rep]ace R* by R*
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