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G. Feies Tota (Budapest)

It is known [7] that the density of a packing of translates of a convex
domain C cannot exceed the density of the densest lattice packing of C. It is
conjectured ([5], p. 205) that an analogous statement holds for coverings:
The density of a covering of the plane with translates of a convex domain C
cannot be less than the density of the thinnest lattice covering with C.

For a closed convex domain C let a(C) denote the area of C, §(C) the
infimum of the lower densities of all coverings of the plane by translates of C
and h(C) the maximum area of a hexagon inscribed in C. According to a
general result of L. Fejes Téth [4] (see also [1]) we have

3(C) = 9_(52_
h(C)
This proves the truth of the above conjecture for centrally symmetric
domains. For, if C is centrally symmetric then, by a theorem of Dowker [3],
there is a centrally symmetric hexagon of area A(C) inscribed in C. There is a
lattice tiling of the plane by translates of this hexagon, and the corresponding
translates of C provide a lattice covering with C with density 9(C)
= a(C)yh(C).

The proof of the inequality 3(C) = a{C)/h(C) is based on a construction
which associates with each domain from the covering a convex polygon
inscribed in the respective domain such that these polygons form a tiling.
Carrying out this construction for a lattice covering with C we obtain
congruent centro-symmetric hexagons providing a lattice tiling of the plane.
It immediately follows that the density of the thinnest lattice covering with C
is equal to a(C)/h*(C), where h*(C) denotes the supremum of the areas of all
centrally symmetric hexagons contained in C. Thus the conjecture above can
be reformulated as follows:

Comecture. For any convex domain C in the plane we have
_ a©
=G
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We recall another lower bound for $(C) due to Bambah, Rogers and
Zassenbaus [2]. They proved that

200y

where 1(C) denotes the maximum area of a triangle inscribed in C. If C is
centrally symmetric then we have h(C) = I* (C) = 2t(C), so that this bound is
also exact. However it was pointed out in [2] that if C lacks a centre of
symmetry then neither of the twe bounds is best possible, and sometimes one
and sometimes the other is stronger. In what follows we shall show that by a
slight modification in the proof of Bambah, Rogers and Zassenhaus one
obtains a lower bound for 3(C) which is never weaker than the bound
a(Q)/h(O).

We recall from [6] the definition of a p-hexagon: A p-hexagon is a
hexagon with a pair of parallel opposite sides of equal length, Opposite sides
are which are separated by exactly two other sides in each direction.
Pentagons with a pair of parallel sides, quadrilaterals and triangles will be
considered to be (degenerate) p-hexagons. We shall prove the following

Tueorem. Let h{C) be the supremum of the areas of all p-hexagons
contained in C. Then we have

90) =

a(C)

HC) = ey
The fact that this bound is not weaker than the bound a(Cyh(C) is
obvious and it will be clear from the proof that it is a sharpening also of the
bound a(C)/2t(C). The main tool to the proof is a construction due to
Bambah, Rogers and Zassenhaus which associates with a covering by
translates of C a triangulation of the plane the special properties of which

are summarized in the following

LemMA. Let C be g strictly convex domain and & a discrete set of points
such thar the domains {C+ A}, cover the plane. Then there exists a
triangulation of the plane with vertices at the points of o such that each
triangle can be covered by a translate of —C.

_ Theorem 4 in {2] has a weaker statemeni, namely it says only thal the
triangles have areas not exceeding f(C), but actually the. lemma above is
proved.

Clearly, it suffices to prove the theorem for strictly convex domains, The
genergl case is settled by approximating C by strictly convex domains
containing C. Further we shall suppose that the origin is contained in C. Let
</ be a discrete set such that the domains {C+ A}, cover the plane, and
_ consider the triangulation 7 described in the lemma. We observe th:;t the
total area of a pair of triangles from .7 sharing an edge is at most h(C). For,

icm

On «a puper of Bumbah, Rogers and Zussenhaus 121

let A4, and 4, be triangles from 7 with a common edge, and let 4% = UVW
and A, = XYZ be translates of A4, and 4,, respectively, contained in —C
such that the oriented segments UV and XY are parallel and have equal
length. Let ¢ be the total area of 4, and 4,. The inequality ¢ < R(C) will be
shown by constructing a p-hexagon contained in —C whose area is at least 7.
Let P be the parallel strip bounded by the lines UV and XY. If one of the
points W and Z, say W, is contained in P, then the convex hull of (U, V, X,
Y, Z} is a (degenerate) p-hexagon with the required property. If, on the other
hand, both W and Z lie outside of P, then a p-hexagon with the required
property is either UXZYVW or UXWYVZ, according as 43 and 43 are
separated by P, or not.

Let S be a square of side-length s, o/(S} the set of those points 4 from
o for which C—+ 4 is contained in S, and n(S} the cardinality of .«#(S). Let C
be contained in a square of side-length s' homothetic to S. We suppose that
s> 45, Let §* and §** be the squares concentric with and homothetic to §
with side-lengths s—2s’ and s—4s, respectively. From the faces of J we
consider those triangles which are contained in S*. These triangles are faces
of a cell complex % with f faces, e edges and v vertices.

Let P be an arbitrary point from $** and let 4 be a friangle from .7~
containing P. The iriangle 4 is contained in a translate of —C, which, in
turn, is contained in a square of side-length 5’ concentric with and homothe-
tic to S. It follows that A is contained in $*. Therefore the faces of % cover
§** Using the assumption that the origin is contained in C, we see in a
similar way that the vertices of % belong to &/(S). Thus we have

v < n(S).

Obviously, any connected component of the cell complex % is simply

connected, so that
v—e+f=1..

Since each face of % is a triangle and each edge in % belongs to at most two
faces, we have
' f < 2Ze.

The last three inequalities imply that
e < 3n(S).

Adding up the total areas of all pairs of triangles of 7~ which abut along an
edge of %, the obtained sum will be at most 3n(S) A(C). On the other hand,
the area of each triangle from % is counted exactly three times. Since the
faces of % cover S**, this implies that a($**) < n(S) #(C). Therefore we have

s\ s 0\ .
ats) = (g atsm < (B | i,
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. . . n(Sa(C
Thus the lower density dmhmmfi(};)(%)(—) of the covering satisfies the
8o
inequality
5 46
#(QC)

This completes the proof of our theorem. It should be mentioned that
one can further sharpen the bound 8(C) = a(CYy h(C) by considering e.g. for
each triangle of the triangulation the sum of the areas of those triangles
which are adjacent to the sides of the respective triangle, However, -it does
not seem to be possible to prove the inequality 8(C) = a(C)/A*(C) in this
way.
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1. Introduction. Let J be the set of all nonnegative integers and let 4 be
any nonempty set. With x = {(8, x;)} d=4} let

J4={x x;eJ for all (3, xz)ex}.
If xeJ* and x; =0 for all § €4, we write x = 0. For x, yeJd let

x+y = {8, xs+y)l se4}.

Assume that A, B = J4 and that 0c4, A#J% and B # @, and let
(= A+B = {at+b| acA, be B!, We obtain information about how sparse
7 is. Before describing our results more precisely, we give some more
uefinitions. ' 7

If x, yeJ4 then y—x = {8, ys—x;)| ded}. We write x =<y if y—xeJd?,
aud x <<y if also x % y. The family % consists of all finite nonempty sets
G =J* such that ¥ 1 <oo if xeG and also xeG if g, <x-<g, with

x5=0
g1, 9:,€G I SUT = J4 and T is finite, then S(T) denotes the cardinality of
S T. We obtain inequalities which give Jower bounds for C(G) where Ge 4.
The main result is Theorem 3 but attention is also called to Theorem 7
which is a companion to a theorem of Kvarda [5].
The family # is defined as {F| OcFe %}. The Erdds density ay of A is
defined by

A(F)—1
o ﬁglb{—}gz-ﬁ,ﬂ Fe, A(F) <J"(F)}.

This density is first used in Lemma 2. Later we obtain lower bounds for
certain “densities” of € one of which is a generalization of this density.



