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Singularities of analytic functions in a differential ring

by

E. G. Straus | (Los Angeles, Cal) and A, H. Cayrorp (Vancouver, Canada)

1. Entroduction. In previous papers [4], [5] we characterized differential
rings # of functions of a complex variable and functions of a non-Archimed-
ean variable. In this paper we prove that these functions have no essential
singularities. _

The ring & is closed under differentiation and if 2, is a subring of & we
can define the ring % = #,[D] of linear differential operators with coeffi-
cients in 92, and consider # an Z-module.

DsrmvimioN 1.1, The elements f;, f, ..., f, of # are linearly dependent
over & if there exist L,, ..., L,c %, not all 0, so that L, fi+ ...+ L,f,=0
and linearly independent over % otherwise.

The dimension of # over ¥ is the maximum number of linearly
independent elements of % over #.

Let % = C[D] denote the ring of differential operators with constant
coefficients.

Let &(f) denote the set of essential singularities of f.

Let &(R) = U &(f).

Je .

2. Functions of a complex variable. In this section we prove the result for
differential rings of analytic functions of one complex variable.

DermiTioN 2.1, Let & be a differential ring of single valued functions
which are analytic except on a denumerable set S = {z,: n=1, 2, ...} with
no limit points. ‘

TaeoREM 2.2. If R is finite dimensional over ¥, then &(#) = Q.

Since the conclusion is based on the properties of the individual
elements, we may restrict attention to the differential subring

Sr=CLLf.r...1

generated by an element of #. Without loss of generality we may assume
that f"has a singularity at z; = 0.
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Lemma 23, If fed® is such that (f> is finite dimensional over &
= C[D), then the singularity at z, =0 is not an essential singularity.

Lemma 24. Let [ be analytic for 0 <z} < R with a singularity at z =0
and let, as usual,

M(r, f) = max|/f{z)-
|z| == r
Then for every d >0 we have
M, f®) <K!M@F—M(r, [y, f)

if v is sufficiently small.
Proof. We have

J ()
(K) 4
f (Z) 215! J‘ (C_Z)K+1 g
[{—~z]=¢
provided ¢ <lz|. If we choose z so that |z| =7 and [f® ()| = M(r,f®) we

have
M, f5) =

If M@l = dt . -

Kt 1
2mi (—z)%*1
E-zl=¢

Now since f(z) has a singularity at z = 0 we have, for sufficiently small r,
M@u—e, f) = |f () for all { on the circle |{—32] = ¢ so

Kl Mir—o.f) _ o Mi—0f)

M(r,fm)gam;{ZTtg P = K! o

Set g = M(r,f) ¢ and for small r we have

o Mg T
M, f® < K\M(r—M{r, f)7°, f) aJK[M(r-—M(r,f)"":f)jl
—M(r, )%, ),

Proof of Lemma 23. If {f is finite dimensional over .%, let n be the
least positive integer so that there exists an L,e.%* with
20 L(f =Ly f+L(f)+ ..+ Lpey (f7 ) =g

where Ly, L;, ..., L,-je % and #* = #\{0}.

If nes1, ™ is an exponenual polynomial and so f* and hence [ is
bounded as z— 0.

If n=>1, write

L,= (D-,il)..

<K!M(r

(D—Ap) = (D= A" .. .(D— 4™
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where A;, ..., 4, are distinct. If we set g = P(f, f", ..., f") we get

(22) fr=L"yg

112 (Ag—2q) T a-i ol
— 1% 27 41)=1 —Azk e
=h+e [e Ylda, [T 2z, 0 [ 7'

& a a

"G (Z) dzpn,

where 0 < |a| <|z| < R, and L, h = 0. Hence there exist constants {all generi-
cally denoted by c¢) with
M, fY' =M@, ) <c+cM(r, g)

unless g = 0, in which case f™ and hence f satisfies the lemma.

However, we can estimate M (r, g) directly from the definition of g in
(2.1) to get

M(r,g) <c max M(r,D/f) where N = max degl,.
1€iga—1 1sign-1
J<N
Thus by Lemma 24 we get
(2.3} M(r,q) <c¢ max M(,._M(r’fi)—a:fi)l +N3

1€ign—1

=c max M(r—M(r, fi70, ffON9

1<ign—1

< CM(rﬂ-M(r,f)"‘s,f)"*“"’Na.
If we choose &6 = 1/2nN and substitute in (2.3) we get
M{r,fY <c+eM(r—M(r, f)”

B,f)n—llZ < M(r_M(r,f)—é,f)n—IM

for sufficiently small r. Hence
1
(24) M(r=M(, )7, 1) > MG, fi=T8 > M(r, ) 735,

Now if the lemma does not hold, there exists arbitrarily small r for
which

(2.5) ofrt < M(r, f)4?.

Now choose r so that r <1 and an inequality

(2.6) Mr,f¥ 1+L
) ' AV >TSS

slightly stronger than (2.5) holds, and so that

27N : M(r, f)f—n > 1/r2.
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We now take r =rg, F1, 'z, ooy Py - SUCCESSiVely where
_ 5 , 2
(2.8) ryq = rs—M(rs,f)_” > k;}(rz"”mrl"”) > ATk e >0
and
(2.9) M(ryey P > 2 Mg, [P > 272 M, ).

We get these properties by induction as follows: If s = 0, (2.8) and (2.9) are
true since by (2.6)

=M ) r=lr—r?)
and

My, )=MFr—-M@F. /%)) > Mr, [YM(r, Y s (1/r2 M (r, f)

by (2.7). Now assume (2.8) and (2.9) for s. Then

s—1
Z (r2k+£ _r2k+2)_r2;“M{r,f)wé

k=0

Fs+1 = rs_M(rsaf)_a >r—-

s—1 :
> F— Z (]‘Zk+1 _r2k-l-2)___rzs(rmr2)
k=0

by (2.9) for s and (2.6). Hence

K} 2
2k+1 2k+2 F r
_ — ] >0
Tst1 > T ;Z‘g(r ’ )>r 1+r 1+r
Also
M(rge 1, f) > M(rg, f) 7147 (by (24))

= M{rs, [YM(ry, )14

> M{rs, )10

S B2 My, 1)

= r—(ls+2)/6 M(F,f)
which completes the proof of (2.8) and (2.9). However (2.9) implies

rZ i 1 2s
M(m7f)>M(rmf)> (’;) M(r:f)

for all s, which is impossible.

In other words, ¢/rf < M(r, f)¥* cannot hold for all r small enough to
satisfy '

(by (2.7))
(by (2.8))

M{r—M(r, /)78, f) > M(r, Yt TH49,
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3. Functions of a non-Archimedean variable. In this section we prove the
result for functions of a non-Archimedean variable. The domain of our
functions is an algebraically closed field of characteristic 0 with a non-
Archimedean valuation and complete with respect to that valuation. Func-
tions analytic in a region are represented by power series or Laurent series
that converge for all values of the variable in the region. '

DermniTion 3.1, Let 2 be a differential ring of functions, analytic and
single valued, of one non-Archimedean variable x, except at x4 = 0, xy, x5, ...
without limit points.

THrOREM 3.2. If & is finite dimensional over &, then &(H) = Q.

Once again, we can resirict our effort to consideration of a single
function f.

LemMa 3.3. If fed is such that <[> is finite dimensional over %
= C[D], then the singularity at x, =0 is not an essential singularity.

DEFINITION 34. Let f(x)= 3. ¢,x"e % be analytic in 0 <7 < q, then
T

M(r,f) =sup {|f(): r <|x| < a},
m(r, f) =max e, 1" n=0, +1, £2, ...} =max{leJ/r": n=—1, =2, ..}
for small r.
The degree of m(r,f) is the integer n for which the value of m(r, f) is
taken on (written degmf(r, ).

The function p(g) where y = log M({r,f) and ¢ =logr is the maximum
modulus diagram of f.

LEmMa 3.5. For small v, we have

Mir, f} = m{r,f).

The proof as well as other useful definitions is given in [1].
Thus the maximum modulus diagram of f is a convex polygonal curve
with pegative integral slopes for all small r, and

du 1 .

Lemma 3.6. For small v and all fe R analytic in 0 <r<a,
M, f)<r ' M, f).
Proof. By Lemma 3.5 we have
M@, f) =m(r, f) = max {|n||c)r" "t n=—1, ~2, =3, ...}

(3.1)

<rim@)=r MO,
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Proof of Lemma 3.3. Assume that f is an element of & with x; =0
an essential singularity of f. Since # is finite dimensional over %, f must
satisfy a differential equation of the form

L(f) =Ly fALy(f3+ ... + L1 (/" ) =y
where Ly, Ly, ..., L,_,e.% and Le 5*.
Hence if
L=cp(D—a;)..(D—a,) = cp(D—o;)" ... (D—ay)™

where o, ..., a, are distinct, we have

(32 fr=L1yg
=P () T+ . P (x) ™"

+etx1x.|~e(a2—a1)x1 jv e(ua—az)xz . j~ e—mmxm(l/c"i)g(x”l) de .“dx1

* *1 m— 1

where P;(x) is a polynomial of degree at most m;~ 1.

o
Let g(x)= Y ax' and estimate M(r, ") using (3.2) and the non-
j=—w H . '
Archimedean property, max |a+b| < max(lg|, |b]). We find that, for smali r,
the terms with negative exponents dominate and the polynomial and

exponential terms are bounded so that for sufficiently small |x| = r we have

la_j|r=/m
63) Gl IS B KD (S FmT)

<m(r, g)r(jo— 1"

for a fixed integer j, depending on r. Since we are inverting the differential
operator L, applied to f”, the integer j = —j, for which this maximum
occurs is the sarne integer —j, for which the value m(r, f) is taken on. That
is, jo is —degm(r, "), We are now able to rewrite (3.3) as

el M, )" = lenl mir, £ < mr, @)™ (o—1)" < M(r, g) (‘ZZ)

if r < 1. Hence

n\1/m
(3.4) LN (IchM(r,f) ) _
dg M(r, g)
However, we can estimate m(r, g) directly from the definition of g to get
(3.5) M(r,g)=C max M(r, D'f)
1<isgn—1

JEN
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where
N= max deglk;
1€ign-1
and

C = max

isisn-1

of |the coefficients of the L.

Thus by Lemma 3.6
M(r,g) < Cr "Mir, f)~!
and putting this in (3.4) gives

M r du . (M(r, fyre?

T MT T dgT T\Me T

1fm

s0 we obtain
dM o
o F —CiM )

if we assume r to be decreasing.
Since 0 is an essential singularity of f,

M(r,fY > 1jr
for any § > 0 if r is sufficiently small. Hence

dr dM dM
_Cl—r—g ML T Lim  Nm < M1 T im=Nojm

and if we choose § so that N§ < 1 we have, since M increases as r decreases,
r=0 .

aM dr
o > Wm> —CIT:OO,
Mo

r=rg

which is absurd, and the proof of Theorem 3.2 is complete.

4. Concluding remarks. In this paper we have only considered the case
for which the subring %, is the ring of complex constants. It might be useful
to consider other choices for #, in both the complex and the non-
Archimedean cases. In both theorems we have taken # to be finite
dimensional over % as an hypothesis. It might also be interesting to look
for conditions which would give £ this property. Alternate choices for the
ring % seem to be more limited but rings of functions of several variables
could have theorems of a similar type.



154 E. G. Straus and A, H. Caylord
References

[1] W.W. Adams and E. G. Straus, Non-Archimedian unalytic functions taking the same
values at the same points, Hiinois J. Math. 15 (1971), pp. 418424, MR 43 # 3504.

[2Z] A Cayford and E. G. Straus, Differential rings of entire functions, Trans, Amer. Math.
Soc. 209 (1975), pp. 283-293. MR 52 # 3553,

[3] A H. Cayford, A cluss of integer valued entire finctions, ibid. 141 (1969), pp. 415-432.
MR 39 # 5800.

[4] E. G. Straus, Differenrial rings of meromorphic functions, Acta Arith, 21 (1972),
pp. 271-284. MR 46 # 7532 ‘

[51 — Differential rings of a nomnarchimedeun variable, in: Diophantine Approximation und its
Applications, Academic Press, New York, 1673, pp. 295-308. MR 50 # 10309,

Editor's note. The proofsheets sent to the second author have not returned in time, thus the
paper has been printed without author’s correction. In Lemma 2.4 it is tacitly assumed that
Mr 1% <

UNIVERSITY OF CALIFORNIA
Los Angeles, California

UNIVERSITY OF BRITISH COLUMBIA
Vancouver, Canada

Received on 6.12.1985 (1572)

icm

ACTA ARITHMETICA
L (1988)

&

Nouvelles caractérisations des nombres de Pisot et de Salem
par

ANnETTE DECcoMps-GuiLLoux (Paris) et MarteE Granper-Hucor (Caen)

1. Introduction, rappels. Soit S 'ensemble des nombres de Pisot, cest-a-
dire Tensemble des entiers algébriques supérieurs & 1 dont tous les conjugués
(autres que Iui-méme) ont un module strictement inférieur a 1 et soit T
l'ensemble des nombres de Salem, c'est-d-dire lensemble des entiers
algébriques supérieurs & 1 dont tous les conjugués (autres que lui-méme) ont
un module inférieur ou égal & 1, 'un au moins étant de moduie 1.

Si 6 est un élément de S ou 7, 1 un entier algébrique de @(f), s désigne
le degré de 6 et Ton note:

g0, i=2 ..,5,
A i=2,...5,

les conjugués respectifs de 0 et 1 (antres queux-mémes) alors le nombre
) 5
My A0 gt
i=2
est un entier rationnel. Ainsi, si 'on note pour x réel, |{x|| la distance de x a
entier le plus voisin, on a, pour feS, a partir d'un certain rang:

130°] = | %, 296"
i=2

et la suite {||16%]) tend vers zéro comme une progression géométrique. Si 4
est un élément quelconque de Q(8), alors il existe [e N tel que I4 soit entier
algébrique, et la suite (]287) a, au maximum, ! valeurs d’adhérence toutes
rationnelles (les smites extraites convergent vers ces valeurs d’adhérence
comme des progressions géométriques). ' :
Réciproquement, Pisot a montré [4] que, pour un réel £ > 1, Texistence
d’un réel 1 non mul tel que soit réalisée 'une ou l'autre des conditions:

(1.1) Y 148712 < + oo

n=0
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