ACTA ARITHMETICA

L (1988)

Singularities of analytic functions in a differential ring

bу

E. G. Straus (Los Angeles, Cal.) and A. H. Cayford (Vancouver, Canada)

1. Introduction. In previous papers [4], [5] we characterized differential rings \mathcal{R} of functions of a complex variable and functions of a non-Archimedean variable. In this paper we prove that these functions have no essential singularities.

The ring \mathcal{R} is closed under differentiation and if \mathcal{R}_0 is a subring of \mathcal{R} we can define the ring $\mathcal{L} = \mathcal{R}_0[D]$ of linear differential operators with coefficients in \mathcal{R}_0 and consider \mathcal{R} an \mathcal{L} -module.

DEFINITION 1.1. The elements $f_1, f_2, ..., f_n$ of \mathcal{R} are linearly dependent over \mathcal{L} if there exist $L_1, ..., L_n \in \mathcal{L}$, not all 0, so that $L_1 f_1 + ... + L_n f_n = 0$ and linearly independent over \mathcal{L} otherwise.

The dimension of \mathcal{R} over \mathcal{L} is the maximum number of linearly independent elements of \mathcal{R} over \mathcal{L} .

Let $\mathcal{L} = C[D]$ denote the ring of differential operators with constant coefficients.

Let $\mathscr{E}(f)$ denote the set of essential singularities of f. Let $\mathscr{E}(\mathscr{R}) = \bigcup_{f \in \mathscr{R}} \mathscr{E}(f)$.

2. Functions of a complex variable. In this section we prove the result for differential rings of analytic functions of one complex variable.

DEFINITION 2.1. Let \mathcal{R} be a differential ring of single valued functions which are analytic except on a denumerable set $S = \{z_n: n = 1, 2, ...\}$ with no limit points.

THEOREM 2.2. If \mathcal{R} is finite dimensional over \mathcal{L} , then $\mathcal{E}(\mathcal{R}) = \emptyset$.

Since the conclusion is based on the properties of the individual elements, we may restrict attention to the differential subring

$$\langle f \rangle = C[f, f', f'', \ldots]$$

generated by an element of \mathcal{R} . Without loss of generality we may assume that f has a singularity at $z_1 = 0$.

Singularities of analytic functions

LEMMA 2.3. If $f \in \mathcal{R}$ is such that $\langle f \rangle$ is finite dimensional over $\mathcal{L} = C[D]$, then the singularity at $z_1 = 0$ is not an essential singularity.

Lemma 2.4. Let f be analytic for $0 < |z| \le R$ with a singularity at z = 0 and let, as usual,

$$M(r, f) = \max_{|z|=r} |f(z)|.$$

Then for every $\delta > 0$ we have

$$M(r, f^{(K)}) < K! M(r - M(r, f)^{-\delta}, f)^{1+\delta K}$$

if r is sufficiently small.

Proof. We have

$$f^{(K)}(z) = \frac{K!}{2\pi i} \int_{|\zeta-z|=\rho} \frac{f(\zeta)}{(\zeta-z)^{K+1}} d\zeta$$

provided $\varrho < |z|$. If we choose z so that |z| = r and $|f^{(K)}(z)| = M(r, f^{(K)})$ we have

$$M(r, f^{(K)}) = |f^{(K)}(z)| = \left| \frac{K!}{2\pi i} \int_{|\zeta-z|=\varrho}^{-\varepsilon} \frac{f(\zeta)}{(\zeta-z)^{K+1}} d\zeta \right|.$$

Now since f(z) has a singularity at z = 0 we have, for sufficiently small r, $M(r-\varrho, f) \ge |f(\zeta)|$ for all ζ on the circle $|\zeta - z| = \varrho$ so

$$M(r, f^{(K)}) \leq \frac{K!}{2\pi} 2\pi \varrho \frac{M(r-\varrho, f)}{\varrho^{K+1}} = K! \frac{M(r-\varrho, f)}{\varrho^{K}}.$$

Set $\varrho = M(r, f)^{-\delta}$ and for small r we have

$$M(r, f^{(K)}) \leq K! M(r - M(r, f)^{-\delta}, f)^{1 + \delta K} \left[\frac{M(r, f)}{M(r - M(r, f)^{-\delta}, f)} \right]^{K\delta}$$

$$\leq K! M(r - M(r, f)^{-\delta}, f)^{1 + \delta K}.$$

Proof of Lemma 2.3. If $\langle f \rangle$ is finite dimensional over \mathcal{L} , let n be the least positive integer so that there exists an $L_n \in \mathcal{L}^*$ with

$$(2.1) L_n(f^n) = L_1 f + L_2(f^2) + \dots + L_{n-1}(f^{n-1}) = g$$

where $L_1, L_2, ..., L_{n-1} \in \mathcal{L}$ and $\mathcal{L}^* = \mathcal{L} \setminus \{0\}$

If n = 1, f^n is an exponential polynomial and so f^n and hence f is bounded as $z \to 0$.

If n > 1, write

$$L_n = (D - \lambda_1) \dots (D - \lambda_m) = (D - \lambda_1)^{m_1} \dots (D - \lambda_k)^{m_k}$$

where $\lambda_1, \ldots, \lambda_k$ are distinct. If we set $g = P(f, f', \ldots, f^{(m)})$ we get

(2.2)
$$f^{n} = L_{n}^{-1} g$$

$$= h + e^{\lambda_{1} z} \int_{a}^{z} e^{(\lambda_{2} - \lambda_{1})z_{1}} dz_{1} \int_{a}^{z_{1}} e^{(\lambda_{3} - \lambda_{2})z_{2}} dz_{2} \dots \int_{a}^{z_{m-1}} e^{-\lambda_{m} z_{m}} g(z_{m}) dz_{m},$$

where 0 < |a| < |z| < R, and $L_n h = 0$. Hence there exist constants (all generically denoted by c) with

$$M(r, f)^n = M(r, f^n) < c + cM(r, g)$$

unless g = 0, in which case f^n , and hence f, satisfies the lemma.

However, we can estimate M(r, g) directly from the definition of g in (2.1) to get

$$M(r,g) < c \max_{\substack{1 \leqslant i \leqslant n-1 \\ j \leqslant N}} M(r,D^j f^i) \quad \text{ where } \quad N = \max_{\substack{1 \leqslant i \leqslant n-1}} \deg L_i.$$

Thus by Lemma 2.4 we get

(2.3)
$$M(r,g) < c \max_{1 \le i \le n-1} M(r - M(r,f^{i})^{-\delta}, f^{i})^{1+N\delta}$$

$$= c \max_{1 \le i \le n-1} M(r - M(r,f^{i})^{-\delta}, f)^{i(1+N\delta)}$$

$$< cM(r - M(r,f)^{-\delta}, f)^{n-1+nN\delta}.$$

If we choose $\delta = 1/2nN$ and substitute in (2.3) we get

$$M(r,f)^n < c + cM(r - M(r,f)^{-\delta}, f)^{n-1/2} < M(r - M(r,f)^{-\delta}, f)^{n-1/4}$$

for sufficiently small r. Hence

(2.4)
$$M(r-M(r,f)^{-\delta},f) > M(r,f)^{\frac{n}{n-1/4}} > M(r,f)^{1+\frac{1}{4n}}.$$

Now if the lemma does not hold, there exists arbitrarily small r for which

$$(2.5) c/r^c < M(r, f)^{1/2}.$$

Now choose r so that r < 1 and an inequality

(2.6)
$$M(r,f)^{\delta} > \frac{1}{r} + \frac{1}{1-r}$$

slightly stronger than (2.5) holds, and so that

$$(2.7) M(r,f)^{\frac{\delta}{4n}} > 1/r^2.$$

We now take $r = r_0, r_1, r_2, ..., r_s, ...$ successively where

$$(2.8) \quad r_{s+1} = r_s - M(r_s, f)^{-\delta} > r - \sum_{k=0}^{s} (r^{2k+1} - r^{2k+2}) > r - \frac{r}{1+r} = \frac{r^2}{1+r} > 0$$

and

$$(2.9) M(r_{s+1}, f)^{\delta} > r^{-2} M(r_s, f)^{\delta} > r^{-2s-2} M(r, f)^{\delta}.$$

We get these properties by induction as follows: If s = 0, (2.8) and (2.9) are true since by (2.6)

$$r_1 = r - M(r, f)^{-\delta} > r - (r - r^2)$$

and

$$M(r_1, f) = M(r - M(r, f)^{-\delta}, f) > M(r, f)M(r, f)^{1/(4n)} > (1/r^2)^{1/\delta}M(r, f)$$

by (2.7). Now assume (2.8) and (2.9) for s. Then

$$r_{s+1} = r_s - M(r_s, f)^{-\delta} > r - \sum_{k=0}^{s-1} (r^{2k+1} - r^{2k+2}) - r^{2s} M(r, f)^{-\delta}$$
$$> r - \sum_{k=0}^{s-1} (r^{2k+1} - r^{2k+2}) - r^{2s} (r - r^2)$$

by (2.9) for s and (2.6). Hence

$$r_{s+1} > r - \sum_{k=0}^{s} (r^{2k+1} - r^{2k+2}) > r - \frac{r}{1+r} = \frac{r^2}{1+r} > 0.$$

Also

$$M(r_{s+1}, f) > M(r_s, f)^{1+1/(4n)}$$
 (by (2.4))

$$= M(r_s, f) M(r_s, f)^{1/(4n)}$$

$$> M(r_s, f) (1/r)^{2/\delta}$$
 (by (2.7))

$$> r^{-2s/\delta} r^{-2/\delta} M(r, f)$$
 (by (2.8))

$$= r^{-(2s+2)/\delta} M(r, f)$$

which completes the proof of (2.8) and (2.9). However (2.9) implies

$$M\left(\frac{r^2}{1+r}, f\right) > M(r_s, f) > \left(\frac{1}{r}\right)^{2s} M(r, f)$$

for all s, which is impossible.

In other words, $c/r^c < M(r, f)^{1/2}$ cannot hold for all r small enough to satisfy

$$M(r-M(r,f)^{-\delta},f) > M(r,f)^{1+1/(4n)}$$

3. Functions of a non-Archimedean variable. In this section we prove the result for functions of a non-Archimedean variable. The domain of our functions is an algebraically closed field of characteristic 0 with a non-Archimedean valuation and complete with respect to that valuation. Functions analytic in a region are represented by power series or Laurent series that converge for all values of the variable in the region.

DEFINITION 3.1. Let \mathcal{R} be a differential ring of functions, analytic and single valued, of one non-Archimedean variable x, except at $x_0 = 0$, x_1 , x_2 , ... without limit points.

THEOREM 3.2. If \mathcal{R} is finite dimensional over \mathcal{L} , then $\mathscr{E}(\mathcal{R}) = \emptyset$.

Once again, we can restrict our effort to consideration of a single function f.

LEMMA 3.3. If $f \in \mathcal{R}$ is such that $\langle f \rangle$ is finite dimensional over $\mathcal{L} = C[D]$, then the singularity at $x_0 = 0$ is not an essential singularity.

DEFINITION 3.4. Let $f(x) = \sum_{n=-\infty}^{\infty} c_n x^n \in \mathcal{R}$ be analytic in $0 < r \le a$, then

$$M(r, f) = \sup \{ |f(x)| \colon r \leqslant |x| \leqslant a \},$$

 $m(r, f) = \max\{|c_n|r^n: n = 0, \pm 1, \pm 2, \ldots\} = \max\{|c_n|/r^{|n|}: n = -1, -2, \ldots\}$ for small r.

The degree of m(r, f) is the integer n for which the value of m(r, f) is taken on (written deg m(r, f)).

The function $\mu(\varrho)$ where $\mu = \log M(r, f)$ and $\varrho = \log r$ is the maximum modulus diagram of f.

LEMMA 3.5. For small r, we have

$$M(r,f)=m(r,f).$$

The proof as well as other useful definitions is given in [1].

Thus the maximum modulus diagram of f is a convex polygonal curve with negative integral slopes for all small r, and

(3.1)
$$\left| \frac{d\mu}{d\varrho} \right| = \deg m \left(\frac{1}{r}, f \right).$$

LEMMA 3.6. For small r and all $f \in \mathcal{R}$ analytic in $0 < r \le a$,

$$M(r, f') \leq r^{-1} M(r, f)$$
.

Proof. By Lemma 3.5 we have

$$M(r, f') = m(r, f') = \max\{|n| |c_n| r^{n-1}: n = -1, -2, -3, \ldots\}$$

$$\leq r^{-1} m(r, f) = r^{-1} M(r, f).$$

Proof of Lemma 3.3. Assume that f is an element of \Re with $x_0 = 0$ an essential singularity of f. Since \mathcal{R} is finite dimensional over \mathcal{L} , f must satisfy a differential equation of the form

$$L(f^n) = L_1 f + L_2 (f^2) + \dots + L_{n-1} (f^{n-1}) = g$$

where $L_1, L_2, ..., L_{n-1} \in \mathcal{L}$ and $L \in \mathcal{L}^*$. Hence if

$$L = c_m(D - \alpha_1) \dots (D - \alpha_m) = c_m(D - \alpha_1)^{m_1} \dots (D - \alpha_k)^{m_k}$$

where $\alpha_1, \ldots, \alpha_k$ are distinct, we have

(3.2)
$$f^{n} = L^{-1}g$$

$$= P_{1}(x)e^{\alpha_{1}x} + \dots + P_{k}(x)e^{\alpha_{k}x}$$

$$+ e^{\alpha_{1}x} \int_{x} e^{(\alpha_{2} - \alpha_{1})x_{1}} \int_{x_{1}} e^{(\alpha_{3} - \alpha_{2})x_{2}} \dots \int_{x_{m-1}} e^{-\alpha_{m}x_{m}} (1/c_{m})g(x_{m}) dx_{m} \dots dx_{1}$$

where $P_i(x)$ is a polynomial of degree at most $m_i - 1$.

Let $g(x) = \sum_{i=-\infty}^{\infty} a_i x^i$ and estimate $M(r, f^n)$ using (3.2) and the non-

Archimedean property, $\max |a+b| \leq \max(|a|,|b|)$. We find that, for small r, the terms with negative exponents dominate and the polynomial and exponential terms are bounded so that for sufficiently small |x| = r we have

(3.3)
$$|c_m| m(r, f^n) \leq \max_{j=m+1, m+2, \dots} \frac{|a_{-j}| r^{-j+m}}{|(-j+1) \dots (-j+m-1)|}$$
$$\leq m(r, g) r^m (j_0 - 1)^m$$

for a fixed integer j_0 depending on r. Since we are inverting the differential operator L_n applied to f^n , the integer $j = -j_0$ for which this maximum occurs is the same integer $-j_0$ for which the value m(r, f) is taken on. That is, j_0 is $-\deg m(r, f^n)$. We are now able to rewrite (3.3) as

$$|c_m| M(r,f)^n = |c_m| m(r,f^n) \le m(r,g) r^m (j_0 - 1)^m \le M(r,g) \left(-\frac{d\mu}{d\varrho} \right)^m$$

if r < 1. Hence

$$(3.4) -\frac{d\mu}{d\varrho} \geqslant \left(\frac{|c_m| M(r, f)^n}{M(r, g)}\right)^{1/m}.$$

However, we can estimate m(r, g) directly from the definition of g to get

(3.5)
$$M(r, g) = C \max_{\substack{1 \le i \le n-1 \\ j \le N}} M(r, D^{j} f^{i})$$

where

$$N = \max_{1 \le i \le n-1} \deg L_i$$

and

$$C = \max_{1 \le i \le n-1}$$
 of the coefficients of the L_i .

Thus by Lemma 3.6

$$M(r, g) \leqslant Cr^{-N} M(r, f)^{n-1}$$

and putting this in (3.4) gives

$$-\frac{dM}{dr}\frac{r}{M} = -\frac{d\mu}{d\varrho} \geqslant C_1 \left(\frac{M(r,f)^n r^N}{M(r,f)^{n-1}}\right)^{1/m} = C_1 M(r,f)^{1/m} r^{N/m}$$

so we obtain

$$\frac{dM}{M} \geqslant -C_1 M(r, f)^{1/m} r^{N/m} \frac{dr}{r}$$

if we assume r to be decreasing.

Since 0 is an essential singularity of f,

$$M(r, f)^{\delta} > 1/r$$

for any $\delta > 0$ if r is sufficiently small. Hence

$$-C_1 \frac{dr}{r} \le \frac{dM}{M^{1+1/m} r^{N/m}} < \frac{dM}{M^{1+1/m-N\delta/m}}$$

and if we choose δ so that $N\delta < 1$ we have, since M increases as r decreases,

$$\infty > \int_{M_0}^{\infty} \frac{dM}{M^{1+1/m-N\delta/m}} > \int_{r=r_0}^{r=0} -C_1 \frac{dr}{r} = \infty,$$

which is absurd, and the proof of Theorem 3.2 is complete.

4. Concluding remarks. In this paper we have only considered the case for which the subring \mathcal{R}_0 is the ring of complex constants. It might be useful to consider other choices for \mathcal{R}_0 in both the complex and the non-Archimedean cases. In both theorems we have taken R to be finite dimensional over $\mathcal L$ as an hypothesis. It might also be interesting to look for conditions which would give R this property. Alternate choices for the ring & seem to be more limited but rings of functions of several variables could have theorems of a similar type.

icm

References

- [1] W. W. Adams and E. G. Straus, Non-Archimedian analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), pp. 418-424. MR 43 # 3504.
- [2] A. Cayford and E. G. Straus, Differential rings of entire functions, Trans. Amer. Math. Soc. 209 (1975), pp. 283-293. MR 52 # 3553.
- [3] A. H. Cayford, A class of integer valued entire functions, ibid. 141 (1969), pp. 415-432. MR 39 # 5800.
- [4] E. G. Straus, Differential rings of meromorphic functions, Acta Arith. 21 (1972), pp. 271-284. MR 46 # 7532.
- [5] Differential rings of a nonarchimedean variable, in: Diophantine Approximation and its Applications, Academic Press, New York, 1973, pp. 295-308. MR 50 #10309.

Editor's note. The proofsheets sent to the second author have not returned in time, thus the paper has been printed without author's correction. In Lemma 2.4 it is tacitly assumed that $M(r, f)^{-\delta} < r$.

UNIVERSITY OF CALIFORNIA Los Angeles, California UNIVERSITY OF BRITISH COLUMBIA Vancouver, Canada

Received on 6.12.1985

(1572)

ACTA ARITHMETICA

L (1988)

Nouvelles caractérisations des nombres de Pisot et de Salem

par

Annette Decomps-Guilloux (Paris) et Marthe Grandet-Hugot (Caen)

1. Introduction, rappels. Soit S l'ensemble des nombres de Pisot, c'est-à-dire l'ensemble des entiers algébriques supérieurs à 1 dont tous les conjugués (autres que lui-même) ont un module strictement inférieur à 1 et soit T l'ensemble des nombres de Salem, c'est-à-dire l'ensemble des entiers algébriques supérieurs à 1 dont tous les conjugués (autres que lui-même) ont un module inférieur ou égal à 1, l'un au moins étant de module 1.

Si θ est un élément de S ou T, λ un entier algébrique de $Q(\theta)$, s désigne le degré de θ et l'on note:

$$\theta^{(i)}, \quad i=2,\ldots,s,$$

$$\lambda^{(i)}, \quad i=2,\ldots,s,$$

les conjugués respectifs de θ et λ (autres qu'eux-mêmes) alors le nombre

$$\lambda \theta^n + \sum_{i=2}^s \lambda^{(i)} \theta^{(i)n}$$

est un entier rationnel. Ainsi, si l'on note pour x réel, ||x|| la distance de x à l'entier le plus voisin, on a, pour $\theta \in S$, à partir d'un certain rang:

$$||\lambda \theta^n|| = \Big| \sum_{i=2}^s \lambda^{(i)} \, \theta^{(i)n} \Big|$$

et la suite ($\|\lambda\theta^n\|$) tend vers zéro comme une progression géométrique. Si λ est un élément quelconque de $Q(\theta)$, alors il existe $l \in N$ tel que $l\lambda$ soit entier algébrique, et la suite ($\|\lambda\theta^n\|$) a, au maximum, l valeurs d'adhérence toutes rationnelles (les suites extraites convergent vers ces valeurs d'adhérence comme des progressions géométriques).

Réciproquement, Pisot a montré [4] que, pour un réel $\theta > 1$, l'existence d'un réel λ non nul tel que soit réalisée l'une ou l'autre des conditions:

(1.1)
$$\sum_{n=0}^{\infty} ||\lambda \theta^n||^2 < +\infty$$

4 - Acta Arithmetica 50.2