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Case (ii): n=2p, s =1, p=15, 7. Again, since [2%, [K|] = n it follows

i n
_ - < H.
S(Z) 2-|-8 nom
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An effective order of Hecke—Landau zeta functions
near the line ¢ = 1. |

by
K. M. Barrz (Poznan)

1. Let K be an algebraic number field of finite degree n and absolute
vakue of the discriminant equal to d. Denote by f a given nonzero integral
ideal of the ring of algebraic integers Rg. Let x(C) be a Dirichlet character of
the abelian group of ideal classes C {mod f) in the “narrow” sense.

Denote by {x(s, x), s = o+it, the Hecke-Landau zeta function associa-
ted to yx, defined for ¢ > 1 by the series

Le(s, )= ) x(a)Na~*
HERK

" where a runs through integral ideals of K and () is the usual extension of

¥{C) (see [5], def. X and LVI).

Basing on some estimates connected with the applications of 1. M.
Vinogradov’s methods to the theory of Hecke-Landau zeta functions we
shall prove the following theorems.

TueorEM 1. For 1—1/n+1) <o <], t2
holds:

(L) Lelo+it, ] < A, NP2 1028 00 40 Nft=In N
where Ay = exp(e, Jd Dr), d; = 14-103n25(n+2), A; = JdIn?d-n' ¢y,

‘ S5lnd !
¢y are pure numerical constants and D = | 2o

1.1, the following inequality

<d denotes the con-

stant from Siegel's theorem on the fundamental system of units {see [10]).
For the Riemann zeta-function the strongest estimate of the form (1.1} is
due to H. E. Richert [8] and for the Dedekind zeta-function to W. Stas [12].
Theorem 1| permits us to exhibit zero-free regions for {g (s, ) such that
the dependence of the shape of the regions on the parameters of K and y is
explicit.
As an application of (1.1) we get the following
TuroreM 2 (compare 2] and [3]). There exists a positive constant
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¢y > 1 independent of K and y such that in the region
1

2 2 - 3
(1.2) o1 cymax {In Nf, 4, n?° (| +3)(InIn (|} 4 3))'%}

- <<,

where Ay = ﬁDnS the function (g(o+it, y) has no zeros except for the
hypothetical real simple zero of (¢ (s, x1), X1 real.

The methods used to prove Theorems 1 and 2 are generalizations of the
Kubilius-Sokolovskii method used by A. V. Sokolovskii to obtain a zero-free
region for the Dedekind zeta function (see [11]). The main difficulty of the
present paper was to estimate some special trigonometric sums connected
with [ (s, ¥) by expressions which do not depend on the norm of the ideal {
(Lemmas 4, 5, 6).

2. For Res > 1 the Hecke-Landau zeta function is equal to

Lels, 0= 2(C} Y, Na™*
Cify [1=28ii]
where the inner sum is taken over all ideals of Ry belonging to an ideal class
C (mod ) and the outer sum is taken over all k(f) ideal classes. It is well
known that {x (s, y) has an analytic continuation as a meromorphic function
having at most one pole. This pole is a simple pole located at s = 1, and is
present only when y is trivial.
It is easy to verify that

Jep®) =Y Na*=NW Y  |Ng™*
aeC(f) '] lﬁfnl:odﬂ
-0

where the last sum is taken over a system of pairwise not associated totally
positive algebraic integers (all of the real embeddings of K into the complex

field are positive) belonging to the ideal b from the inverse class C ™' (f) and
congruent to 1 modulp f. :

In the following we can assume that
2.1 ND < 271 g2 gNT.

This follows from Rieger’s estimate (see [9]) which we state in a slightly
completed version, because its original version depends in an undetermined
way on n.

Since b is relatively prime to f the conditions ¢ = 0 (mod b) and &
=1(mod f) are equivalent to the condition &= ¢, (mod bf) where &,
= 0 (mod b) and £, =1 (mod f). We choose &, so that
(2.2) 9] < AW THNBYY  for

i=1,...,n
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(see [Z], Lemma 4). Then
(2.3) Jepls) = (NBF ¥ [NETS
@E{O(mcdbﬂ
(g ]

where the sum is taken over a complete system of pairwise not associated
totally positive algebraic integers congruent to ¢, modulo bf.
Let ay, ..., 0, form a basis for bf such that

(2.4) A5 BINDHY < Jod} < A5 (NBHY

where A5 = \/Z’ n*and k, i=1, ..., n. The estimate (2.4) is a corollary from
Mahler’s theorem (see [7] and [1], Lemma 2). Then each algebraic integer £
= £, (mod bf) can be written in a unique way as a sum

E=ay 0+ ... +ayo,+E

with rational integral coefficients aq, ..., @,.

Let f— Y (1 <j< n) denote the embeddings of K into the complex
field, ordered so that the first r, are real and the jth (j > r;) and (j+r,)-th are
complex-conjugate. Then each algebraic number § can be considered as an
element of the n-dimensional real space R,

x(ﬂ) =(X1, v

where x; = g for 1 €i<r, and s = y; iz for 1€ <rs.

Denote by 9 the n-dimensional lattice in R" formed by images of
algebraic integers from the ideal bf and denote by ¥ the fundamental domain
of K. Then the summation in (2.3) reduces to the summation over rational
integers aj, ..., &, such that x(£—<&o)e M V. We get

(2.5) Jop®) =NbB* Y .0 INx(©)™*
.v:(;—- éo)e';iurﬂ/ '
&)

L] xrlr Yis &gy - oo yrzw zrzju

rq vk}

Denote by ¥ the set which we get by multiplying the elements of V _by
the images of all roots of unity belonging to K. Then we can write the series
(2.5) as follows: '

: : . |~ F iy
(26) .ﬁ'(i] (S) = -;1'1“ ND¥ Z . ‘Z |Nx (f)l ezm'f(l 1 y

@ n
wE— Eglelil nP
§-0

where m denotes the number of roots of unity belonging to K and

F(al,..,,an):—g;t—ln\Nx(ﬁ)i. |
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Now, for any ideal a we define the set K¥ in the n-dimensional real
space R" as follows (see [117], p. 324):

(2.7) Kf= {(ul, cooy U)e R max |yl €

1€ign

X, x(u)e V‘

and x(u) = vy x(e;)+ ..
satisfying (2.4).

cAu, x(2,), where «,, ..., o, form a basis for a

3. The proof of Theorem 1 will rest on the following lemmas.
Lemma 1. For each ideal o of K there exists an integral basis oy, ..., Oy
such that for any point (uy, ..., u,) of K2\ KX

(3.1) As(NQMX < Juy o+ ... +u, o] < 244 n(No)'n X

s hoand Ag =exp(—3 \/&Dn“), As = \/fhi’n" as in (2.4).
Proof (compare [11], Lemma 1). Owing to (24) the estimate from
above is obvious. Now, we consider the system of n linear equations

where i=1, ...

u =y P ol

where 1=1, ..., n. By Cramer’s rule

W = ()“u(”"f‘ . +(' 'u(")
and ¢ = Dyy/Dy where (Do) =| det [af] = /dNa.
1€i,kgn

By (24) and by Hadamard’s inequality we have
Dy < (n— 1)~ W2 g2=1 (N g~ in,
Hence
[Cul < 0™ “ldulz I(Na) tn_

Putting [u®] < 4, X, where A, = n~ "4 "2+1(Nglin i=1,
get [w| =< X. This means that all solutions (uy, .
inequalities (u® < A, X, i =1,
Hence for any (u, ..

. H, We
..s tiy) of the systcm of
, n, belong to KX is x(ue¥

. u,,)eK“” \K¥ there exists j (1 </ < n) such that

(3.2) [ty a&iw 12 -
Furthermore, for each u = (uy, ..., u,) béionging to V we have
In |u®®| =—~1n}Nu|+ kZ & In e
=1
where i=1,..,n 0 & <1 and &1y .--» & are fundamental units of K,

satisfying Siegel’s theorem (see [107):

Inlef|| <3./dDn*, k=1,...7 =1, ..,n
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Hence puiting i =j we get
91 = [Nl [T 1 < 1N exp 3 /2D,
. k=1

Now owing to (3.2) we obtain |Nu| = A% exp(—-—fDn“) X" and finally

) N
[ = i EL zexp(—3 \/;an“)(Nn)”"X

This completes the proof of Lemma 1.

CorovLLary. For each ideal o of K there exists an integral basis «y, ..., a,
such that for any point (uq, ..., w,) of K2*\KZ¥ and for any ay from the class C
modulo a satisfying (2.2) and for X = A7 \/;fn."“ we have the inequality

(3.3) gAf,(Na)”"Xf.luloc + ot el 4ol < (2nds+ (N X

Jor i=1,...,n

Using (3.1), (3.3) and Turan’s second main theorem we obtain the next
two lemmas.

Lemma 2. If
f
Flu) = —~;)—-]n|Nx(u)]
n

then for any u="{(uy. ..., u)e KF\K} and X 2 A; A5

o F

LAFm-DlgX™"
a m

134)

where Ay = exp(4 \/an"'

LeviMa 3. Let i be a natural number, 1 <i<n, and let X > A5 Ag".
Then for arbitrary fixed w; (1<j<n j#1i) such that (43, ..., wy,) belongs fo
K¥O\KE and for any rational integer my > 1 we can divide the interval in
which u; is determined into at most Ag! vt exp(5 \/an subintervals in
such a way that for cach subinterval there exists m, my+1 < m < m+n, such
that

”mF

0u Z AT (m-DHy X"

(3.5)

with Ajp =d Y2n™ ™ for every point of the subinterval.
Lemma 4. Let

1<t1/(n+2)<x <A- (n+1){n

& .~ Acts Arithmetica 502
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amd write
n+2 Int
mF[“TW]-
Then .
: e
6o Isi=| T ETrtcag,x U

a<a;&a’

2X\p X
(al,....an)el(hr \Klﬂ

where A, = exp(lO'S\fD.

Proof. We use Vinogradovs theorem (see [13], p. 210) with =
=10"%*n"!, Lemma 3 and apply the method presented by Sokolovskii in
[11], Lemma 5.

Int
LemMMa 5. Let 1 < X < Y% gnd write m = [1 X]I—l Then
_ 1
3 a 107 whm2
(37) |S£’ :l Z EZ"“F('JIN-- ")l s 4A!2X [0/ n*m
n<al<a

(81 1eenrity) sKi?rX \KX

where Ay, =(3"1107% ﬁl\[m
The proof of this lemma uses essentially the same method as that

presented in [1], Lemma 11. We use Vinogradov’s theorem (see [14], p. 55)
and Lemmas 2 and 3.

The next lemma is a simple corollary of Lemmas 4 and 5.
LemMa 6. Let 1 < X < AZM " V5 ¢~ 1 and wriie

i
m =11 n+2 In
n InX
1
‘ 1_1(2!5n4rr12 )
(38) 1S] < A X "I, where Ay, =exp(1075./d D).
Since the estimate (3.8) does not depend on the norm of the ideal §, our
main objective is attained.
The next two lemmas are Landau’s theorems in which the dependence of
the constants on the degree n of the field K is explicit,
Lemma 7 (Landau [6] If 0 <8 <1, then

(3.9) Y Na~® sg—:—‘gwal-ﬂ

ey 1
Nasx

Then

where Ay = n*" dY" 010" 1d and ¢, is @ numerical constant.

Lemma 8 {Landau [6]). For any nonzero ideal | from Ry, if x modulo | is
not the principal character, ie, X # Yo, then
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2
(3.10) H (x, y)| = ‘ Z X(a)| < Ap, X't
No€x

where Ayg = 13" (@NHY" VY In"(dNT) and cs is a numerical constant.

Denote by u(b) the generalized Mdbius function and write o

= 1es (g {s). If y is the principal character, y = y,, then
sy 1

2

(3.11) H (X, 1o) — ok xz\ K Ays X' TArT
P Nb
where A,s = 1" d¥"* D n*d and ¢g is a numerical constant.

Lemma 9. In the region o2 1—1/(n+1), t > 1,
(3.12) |Ce (s 00— Y F(m pm™| <" 'd+ B,

1smsp !

where By Bit1 = p8"0 Y g2 1p20 0 g NfIn®0 D (NF41) and ¢, ¢g are pure
numerical constants, F(m, )= Y. x(o).

No=m

Proof, Let

0 for X # X0,

g(x) = u(b)
LA =

Otx% NG or ¥ =1xqg
Then by partial summation we obtain for o > 1
® — x!'70 Hx, g x Hu, ) —g(x)u
Y Flm )m™7+gtd— =~ e +s e du.

x

Putting x = B, "*!, by Lemma 8 we get the estimate (3.12) in the region o

> 1_,..,.;1_..”1 t>1.
n+1

4, Proof of Theorem 1. Setting
B, = o g2 It U g N It DN 1),
from Lemma 9 we get the following estimate in the region 1-—-1/(n-+1)
o<1, t>1:
@1 lxls, 2 €| b F(m, )m™ |+ cjoln"" 1 d
L & AN+ TN 1) Lot |

where A, = P 2 2 i g,
Write K = K“O, where t, = A5 AZ Lexp(In®® 1), so that X =1, satisfies
the assumption of (3.3).
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We have
|2k (s, 0l < | )

1023 = 34(,nln2f’3r

(4.2) Fm, yym™
IS_m‘SA”Nh-”
H ¥ Fim, x)m”"{—lwc'{oln"'ld
B4enlnzl'3r<m$53tn+1
= Sl +Sz+0201n"'_1 d
where A, =27 """+t Vg2 The second sum is taken over m which do not
belong to K,. The first sum in (4.2) is estimated trivially by partial
summation using Lemma 8:

4.3 ISd< X o3, F(m)m = 7m™?

mSB4E"I“
< (ncl = I d)(n* L dri2)i e (N1 T et —a)n /3y (1112/3 t+1In NF).
The second sum in {4.2) is estimated as follows. We have by (2.6)
ﬂl an
x(E—Egemni

Bg_ijE"l"z"a‘ <|NZ} 533 Nl!j!"+ 1
&0

1
S22 L HONY Xl

c

where b; are ideals belonging to the inverse class €' (f) and chosen in the
same way as in Section 2, Nb; < 2" ! n"? dNF,
- Hence we obtain the estimate

1 M ‘o
ISo] <= 3 (NBy)” ¥ | )
mi=1 i=1

= (e, apdeKi\Ky— g

(4.4) INx ()]

B4_ije"1“2/3‘ <|N&| < ByNn a1
0
where i; can be estimated by using Lemma 1. For the class number k(f) we
use the simplest estimate
h(f) < 2V Nfh < ogp/dIn™ 1 d 2" N (see [4]),

Now we write the outer sum in {4.4) as follows:

(4.5) INx ()
[CTIIT ML ) S
=0
B4ije”]“2/3l<ij(‘;’)|$.B3ijx"+1
2n 2n
= ) 2. [N ™7 = 3 Sy
k=1 (aI....,un)EBM k=1
&0

By Mg /31 <N x| < Nopn+ 1
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where By; is the set of points (ay, ..., ¢,)e K;\K;_, such that

27Ny <a, €ty ~2r<a_, < =21
=

—dy < a| % Gpooy <0 K — oy

Tl e Kl Upon Clyuyoy & — Oy

Tl K Uy <y oy S Uymgpt < — Uy

............................

—y K iy <oy, ey L 4, < —tlhy

k=1,...,n k=n+1,...,2n

Now, we have to split the sum S;; into at most three sums in such a way
that ouly one contains all totally positive £s and the remaining two sums
contain all non-totally positive &s. This can be done since if a is totally
positive and o+ f§ is not totally positive then a+28, a+ 34, ... are not totally

positive either.
Writing m; = | 11 —— | where X = 20" ¢,, we get by partial sum-
n InX

mation using Lemmas | and 6

n+2 Int

1S4 < m2vtH p? - Ag" A (Nb:§)™° gnit = ayn 3¢ 208 2—(“18/1“2/3:)!'
where A5 = (106 112(1’1+2)2712)_1 and for 1 i<,

Ay 3 A 4 2

- JRPERFTE)
T TRl S S (n(1—a)?Int.

o) = n(l —0)i—
18

For the temaining S, k=2,...,2n we get similar estimates and
summing over i, since ‘

O 24 Lam0r & =2 A3 In?73 ¢
2 <3y 2 e
=1 i=1 2In24;4
we obtain by (4.4)

{4.6)
IS4] € exples \/c“iDns) (Nf)l"rrtn(l_n')f‘lllzl'3l t13.75-103n(n+2)(u(1-fr))3f2 3¢,

By (4.2), (4.3) and (4.6) we get the following estimate in-the region

, 1 .
> 11., ]m;t_l.ﬁ?ﬁg_t i 1:
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@7} [Lx(s, 1) < explera/dDn) (N "7 In¥ ¢

+n 13 2" d /A (N 7 In (Nf+ 1),

1
and in the region 1—— <o < | —
n-t+1 :

. 3t a2
(48)  ILk(s, 20 < expleg/d Do) (N 7 410k 2ats = 2 272

because in this region, by Lemma 7,

15,] < n"17"1nn~1d\/a'en(1—a)tn2/3: (Nf)l “o 23y

(4.7) and (4.8) prove Theorem 1.
The method of the proof of Theorem 2 is standard. Our starting point is
the well-known inequality

3%(0', xo)+4Re~CC—(a+ir, x)+Rc%

valid for & > 1. After cumbersome calculations we obtain Theorem 2 just as
the Thecrem in [1].

(o+2it, 7)< 0
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