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0. Introduction. The First Case of Fermat's Last Theorem is said to be
true for n > 2 when

(FLTL), If x, y, z are non-zero integers such that x"+ " = z" then the highest
common factor of n and xyz is greater than 2.

Terjanian [13] showed that (FLT1), is true for even exponents, so we
may take n to be odd. Furthermore, if n divides m and (FLT1), is true then it
is clear that (FLT1),, is also true. Thus, it suffices to prove (FLTI), is true for
each odd prime p. :

We shall prove a technical theorem, from which we deduce that (FLT1),
is true when n = p“ or p"g" (where p, g are distinct odd primes and a, b are
sufficiently large). We shall also obtain other interesting results, some of
which have previously been obtained using different methods. In fact, the
technical development appears in Sections 1-3 and the main results in
Sections 4-5: these may be read without references to Sections 1-3.

We note that if n is odd and x, y, = satisfy x"+)" = " then x, y, —z
satisfy the equation

{1), X' Y470 =0, _
Moreover, we may assume thal x, y and = are pairwise relatively prime.
The following results will be used:

ABELS RELATIONS ([1]). Suppose that p is an odd prime, t 2 1, and a. b, ¢

. . . . . . i '
are non-zero pairwise relatively prime integers such that a” +b" + ¢ == 0. Iif'p
divides o then p divides b+-c and there exist integers r, s such that

s
at+h=r", at+e=s". _
Poriaczexs TREOREM ([L1]). If p is an odd prime, und a.b, ¢ are

non-zero  pairwise relarively prime integers such that a"+bP+c? =0 then
p X ah=+be+ ca.
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Actually Poliaczek’s theorem was proved under the additional condition
that p #abe. However, it holds also if plabe (for if pla then plab+ca and so
p ¥ ab+ be+ca).

AzumEaTA's THEOREM ([4]). Suppose that p is an odd prime, =2 1 and

. . 4
a, b, ¢ are non-zero pairwise relatively prime integers such that a’ + b7 47

=0 If q is a prime and one of the following conditions is satisfied:

(i) gla and pra,

(i) qla*—be and p yab+be+ca,
then g” = ¢(mod p*).

Note that ab+be+ca E(ab)"r"1+(bc)"‘"1+(ca)”“[(mod pl, so, in view
of Pollaczek’s theorem, the second condition in (ii) above is automatically
satisfied.

We also need the following easy lemma:

Lemma L. Let m. ¢ = 1, and p, g be odd primes such that ¢ = 1+-mp'. For
any integer k =0, ¢* = g (mod 7 if and only if p*lm.

Proof If m=m p* then g =1 (mod p**%), so ¢* =g (mod p**'), ..., ¢’
= 4*~! (mod p**Y) hence ¢” = g (mod p**%). Conversely, let m = m’' p" with h
>0, p¥m. So q=14+m p"* and therefore g7 = 1++m ph+t+l 4 [p?hr 21 f
gP—q = up' ™% then m' p"**(p—1)+Ip** ¥ = up'tk Hence t+k < b1, so
that k < h and p* divides m. =

1. The first theorem.

TrEOREM 1. Let p, g be odd primes such that plg—~1; ler t =1 be such
that p'tY yq—1. If there exist non-zero pairwise relatively prime integers
x, v, z such that x" +y¥+2" =0 with q|x then pg|y+z.

Proof. Let g = 1-+mp" where ptm and 1 <n<r

By Azuhata's theorem, p|x, otherwise ¢” = g (mod p*}, so that 1 --mp"*!
=14+ mp" (mod p?) and p|m, contrary to the hypothesis.

Since x+y+z =0 (mod p) then p|y+z and, by Abel's relations, therc
exist r, s such that x+y =" x+z=s" Since g|x then g.tfzy and y
=¥ (mod q), z = s* (mod g) and y”l—l-z”‘ =0 (mod ¢). Let k be an inleger
such that kz = —y (mod g). Then K = (u_v/z)"t = [ (mod ¢} But g—1{mp'
so Y= P =1 (mod g), and, similarly, 2" =1(mod ¢) so that k"
= 1 (mod g). Since p4'm we have kK =1 (mod ¢) so that g|y+z. m

2. Preparation for the second theorem. For any field K and aeK let

Ngjolo) denote the norm of a.
‘ Let m be an even positive integer and let & be a primitive mth root of 1;
A=Z[L] '
if i, j are non-negative integers, let h = h,,; ; = ged(m, i, /). Define N,,;
as follows:
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If m*ru{_]w let Nm,f_j = NQ@)!”Q(I‘FF:!‘}'C_,:J)
If mli+j, let Npii = NQ(&"+§‘h)|Q(1+fi+§j)-
Let T, = {(i,j}l 1+&+& =0, 0<i,j <m!. For every prime g, let

Im.q = max [Uq(Nm,i,j)I 0 < [*j <m, (1=J)¢ Tm]i

{here v, denotes the g-adic valuation). Note that if (i, ji¢ T,, then Nyij 7 0:
therefore f,,, is a non-negative Integer as (0, 0) is clearly not an element
of T,.
Let §(m) = g prime| ¢ =1 (mod m) and t,,, = 1]. Thus
Sm= ) l{gprimel ¢ =1{modm) and gIN

€Ty
Osi,j<m

Ll
miE,f 1

so that S(m) is a finite set.
LemMa 2. (i) If 3.km then T, = @; if 3|m then
T. = {m/3, 2m/3), (2m/3, m/3)}.

(i) If q is any odd prime then t,_{,> 1.

Proof (i) If a;, «; are roots of unity such that 1+a, +a, = 0 then oy
=, o, =% or ¢y =% o, = w, where w = cos(2n/3)+isin(2n/3). (For if
oy = x+iy and o, = a+ib then y = —b, so |a| =|x| and a+x = —1; thus g
=x=—-1/2 and y= —b = i\.@/?.). So, if (i, )e T, then 3|m and so &
— C*m/J, éj — élm[B, or é::‘ —_ é:lmf.’o’ {j = gvm[:i‘

(1) We calculate N,,,, where d|m; by definition

Npoa = Nopayo 2+ =[] (2+&4).
l<ag<mld

pedadmid)=1

Then '
m

[[Nmou =TT TI @+&9= T @+H=2"-1,
dim dim 1 €a$mid h=1
godie,mfdi= 1

since m is even. Taking m = g—1 there exists d such that ¢|N,_ 4, since
927" —1; and so this implies that t,-y , > 1, a5 Npgo=Npon. @

LemmMA 3. If m is even and ¢ is any prime, then
tmq < [0 (m)log 3/logq].

Proofl. To begin we note the general fact: if Q S K 'S K, K|Q and
K'|Q are Galois extensions of finite degree, and ae K', then Ny, (a) divides
Ngjgla). Thus, for every (i, }¢ T, 0<i,j<m,

Ny divides Nggo(1+E+E) = ] {H< (14 &4 4 &%)
. gcd(:,am);nl
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and so
SR S
g < (N | <37,

Hence

vy (Npig) € @(m) fog 3/log g,

so Lhat
< [p(m)log3/logq]. e

The following is well known and it is included only for the sake of
completeness:

Lemva 4. Let m,t be positive integers and q be a prime with y
= 1 (mod m). There exist exactly @(m) integers r, Suc hthat 1 sr<y —1 amd
order (r mod ¢*) =m.

LEMMA 5. Let m, t be positive integers, with m even, and g he a prime with
g =1(mod m. Let r be an integer such that l<rLg' —1 and order
ir mod ) =m. If i and | are non-negative integers and ¢ |14 r+r then
¢ le [

Proof. Since ¢ = 1 {mod m), we know that Ag is totally decomposed as
the product of @(m) distinct prime ideals of A4; that is

@y

Ag = 1] Q.
K=1

Thus
@lm)

4q = [1 Qi
h=1

Now, for each k, Z/Zg = A/Q,, so that Z/Zg' ~ A/Q}. But, by Lemma 4,
there are exactly ¢ (m) elements of order m in Z/Z¢', and so the same is truc
for 4/0,. We claim that the set of elements of order m in A/Q} is precisely
the set

Fr0ga<m (¢, m=1%

H!

It suffices to show that if &= (mod Qf) then & = &,
Now suppose that & = “"+cx where x €0} <U’1d oc:,séO Then X'”—l
= (X~ X - —a)y(X) with g(X)ed[X] Taking derivatives at X =
we get
”h‘;:u(m* S

= — oy (&) €0,
which is clearly impossible as ¢ fm and ¢ is a unit.

Now r has order m (mod ¢), so that there exists an integer o, 0 <
(¢, m) =1 such that

o5 m,

_ r = &7 (mod Q).
Thus 149+ =14+ +# =0 (mod Q}), and so Qi|1+E&Y + &% which di-

icm
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vides N, ;; (in the ring 4). But this holds for each k=1, 2, ..
as the ideals Q) are pairwise relatively prime, we have:

., p(m) and,

()
Ag' = H @ divides N, ;.

LemmMa 6. Let g be an odd prime and m, uz 1, r 2 0 be such rhaz m is
even, u is odd, with (q—1)g'|mu and m|(q—1). Assume that x, v,z # 0 are
such that g kxyz and x*4 '+ =0. If t =1, then 3Im and there exists
w, 0 w<yqg such thar order (wmodg) =3, (yWx)*=w(mod ¢), (z/x)"
= w? (mod g).

Proof. We have 1+[y/xW+{z/x) =0 (mod ¢'™). Note that (y/x)""
=1 (mod ¢'*!) since (g—1)¢'|mu; similarly (z/x)*" =1 {mod ¢'*").

Let r be such that 1 €r <g' ™' and order (r mod ¢'**) = m; such an
element exists because m divides (¢—1I).

Therefore, there exist inmtegers i, j, 0<i,j<m such that (y/x)*
=1 (mod ¢'*1), (z/x) =rf (mod ¢'*!} and hence 1++#+# =0 (mod ¢ 7).

By Lemma 5, if (i, )¢ T, then g'**|N,,; ;, that is t,, = t+1, contrary to
the hypothesis.

So (i, j) 15 an element of T,,. Thus by Lemma 2, 3|m, and there exists w,
0< w<qg such that order (co mod gy =3 and (y/x)* = w (mod ¢), (z/x)"
=w? (med ¢). =

3. The second theorem. The following theorem, which is rather technical,
will have many interesting corollaries.

THEOREM 2. Let n=1 be odd, and ¢ be an odd prime such thar ¢
=1 (mod n) and, if n > 1, suppose that n* ¥q—1. Let m={(g—1}/n.

(@} If t,q =0 and 3|m, then, for every odd prime p, such that p km, let k
= k(p) be the smallest positive inteyer such that ¢ # g (mod p* ). fer = [(p)
=ph df x, y, 2 # 0 are such that X" + "+ = 0 then gp{x {or 4ply or 4p|=).

(b) If ty,# 0 or 3 ym then let i~ g™ If x, ¥, 250 are such that x"
+y"+z" =0 then gqlx (or qly or g|z) and if n> 1 there exists a prime p
dividing »n such that p|x (or resp. p|y. or p|z)

Proof. Let 1 =t,,. u=nl so that u is odd. Note that ¢' divides /.
(g=1)g'|mu and m|(¢—1) in both cases (a) and (b).

Assume that x, y, 2 # 0, x*+p*+:2" = 0 and g Jxy-.

Since t = t,, ., we have 3|m by Lemma 6, and there exists o, 0 w < ¢,
such that order (w mod ¢) = 3, with (y/x)" = © (mod g), (z/x)™ = w? (mod ¢},

In case (a), t = 0. Let a = x", b = y", ¢ = z", so that a'+b'+c' = 0. Now

(a?/bc) = (x*/y2)" = w? w = 1 (mod g)

and-

(@®/bey™ = (x z/yz = (x%zy)"" "t =1 (mod g).
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But [ = p* where p m, so a’/bc =1 (mod g); that is gla®—be.

But by Azuhata’s theorem 47 = g (mod p*), so we have a contradiction.

Thus glxyz say g|x. Then p|x, else by Azuhata’s theorem, ¢*
= g (mod p™).

In case (b), t >0, [ =g'; let s=nlfg, a=x" b=)" c=z" Then

a4+ =0
:;md
(b/a) = (y/x = (y/x)" = © (mod g),
and
(c/a) = (z/x) = (z/x)" = w* (mod g).
Hence

ab+bc+ca = a* (w+o*+1) = 0 (mod g);

contradicting Pollaczek’s theorem.

Thus q|xyz, say q|x.

Suppose that n > 1 and ged(n, x) = 1. If p|n then p Fx. Let | = v, (),
and n==p'n' (ptn), so that

() () () = 0
Since n is odd, so is p. By Azuhata’s theorem ¢” = ¢ (mod p*'). As
g = 1+mn' p\ we know, by Lemma 1, that p/|m, for every prime p dividing ».
Thus n|lm and n* divides nm = ¢ —1, which is against the hypothesis.
Thus there exists a prime p dividing #» and x. =
4. The corollariés.

CoroLrary 1. Let p 23 and g be primes such that plg—1.

There exist integers t, = 1, t, = 0 (hoth depending on p and q) such that if

w=ptq? and x, y, z are non-zero integers such that x“+ y*+z
divides x {or y, or z).

-Furthermore, if t; 2t =v,(q _'1}' then pyq divides x+y (or y+z or x+2z).
Determination of t, ty: ler m=(g-1)/p, t, = Ly

(@) If 3lm and t, =0 ler t; =[1+31/2].

by If 3¥mor t, >0 let t, =t

Proof. (a) If 3|m and £, =0, let ! =p""" Note that z(rlmr)>t 50
p" 7% kgP~q or else, by Lemma 1, plpit”
m. Let n=p. Then u=plyg? =

24 =0 then py

}m, contrary to the definition of
= nl. By Theorem 2(a), pg|x (or y, or z).

(b) If 3 fm o £, > O let l«: g* and n = p''. By Theorem 2(b), g|x (say)
and since n> 1 (because t; =13 1), p|x.

Furthermore, if t; >t > 1, since gjx (say) pq|y+z, by Theorem 1. w

icm
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CoroLLaRY 2. Lel p = 3. There exists an integer t =1(p), 1 <t <t

p—1,p
such that if x, y, z are non-zero integers satisfying the equation x?
= (), then p|xyz.

yﬁﬂpt

Proof By Lemma 2,1, , 2
=

Then the result follows immediately from Theorem 2, (b). =

This corollary was originally proved by Maillet [10] with very different
methods, involving the theory of cyclotomic fields, In fact, this is the first
proof by eclementary methods. References to other proofs of this corollary
may be found in [12], pages 2035-206.

COROLLARY 3. There exists an infinite sequence of pairwise relatively prime
exponents, which may be Laken, for example, to be prime-powers, such that the

21l Let!=p? ' np=1,g=pandu=nl

first case of Fermar's Last Theorem is true for each such exponent.

Proof. This follows at once from Corollary 2. &

It should be noted that using Faltings’ theorem [§], it is. possible to
obtain stronger forms of Corollaries 1, 2 and 3.

We recall that, according to Faltings’ theorem, for every nz3 there
exist only finitely many triples of pairwisc relatively prime integers
x, ¥, 2 # 0, such that x"+p" = 2"

In [6], Filaseta showed that for every nz 3 there exists an integer

M(n) > 0 such that if m > M (n) then there does not exist integers x, y, z # 0,
such that x™ 4 y™ = z™.

Choosing t,, £, ¢ such that p1 ™' g2 > M(p), p"! > M (p) we obtain the
following consequence of Filaseta’s result:

CoroLLARY 1. Let p=3, q be pnmes such that plg—1. There exist

integers t; = 1, ty > 0 such that if u = p'ly’?, then there does not exist non-
zero integers x, y, z such that x4 y'-+z" = 0.

COROLLARY 2. Let p 3 be a prime. There exists an inieger t = 1 such

that there does not exist non-zero integers X, y, z with X7 4 y"’ +z7 =0.

Once more, from Coreollary 2/, it follows:

CoroLLARY 3. There exists an infinite sequence of pairwise relatively
prime exponents, which may be taken for example to be prime powers, such that
Fermat's Last Theorem is true for each such exponent.

It is however important to stress that, contrary to the numbers t,, #5, ¢
appearing in Corollaries 1, 2, those appearing in Corollaries 1/, 2' are not
effectively computable.

COROLLARY 4. Let m be an even integer, not a multiple of 3, and t be an
integer, t3>1.If p = 3 and g = mp'+1 are primes such that 4&S(m) and p fm;
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" ' { iy oo
and x,y, z are non-zero inregers such that x4+ y¥ +z7 =0, then py divides

x4y {or z4x, or z+ V)

Proof. Since ¢¢Sim) thent,, =0 Let £, =0, t, =r=w,(¢y—1) and u

= p' so0, by Corollary 1, pg|x—+yp (or x+z, or y+z). =

Taking ¢ =1 in the preceding corollary, we obtain a form of the
classical Sophie Germain's theorem; due to Krasner [9]:

CorOLLARY 5. Let m be an even integer, not a multiple of 3. If p 2 3 and
¢ =mp+1 are primes such that g¢S(m) and pym; and x, y, = are non-zern
integers such rhat xP4+yP+27 =0 then pg divides x--y (or x+z2 or yp-+2z).

Using Corollary 5 and a recent improvement of the Brun-Titchmaish
Theorem, due to Fouvry [7], Adleman and Heath-Brown [2] have shown
that (FLT1}, bolds for infinitely many primes p.

CoraLLary 6. Let m be an even integer, not a smultiple of 3. Let ¢ be uny
prime, such that g
X, ¥, © are non-zero integers such that x"+y"+:% =0 then ged(n, xyz) 2 3,

Proof. We have (g—D¥/n* =m? < g—1 50 n®? 2 g—1; since »n is odd,
nt>g—1, so n*fg—1. Also g > 3@(m), so that ¢(m)log3/logg <1 and,
therefore, by Lemma 3, ¢, , = 0. It follows from Theorem 2(b), taking / =1,
that there exists a prime p dividing » and xyz; since p must be odd, we have
ged(m, xyz) = 3. &

Using Corollary 6 and the Siegel-Walfisz Theorem, Ankeny and Erd&s
[3] showed that the set of exponents n, for which (FLT1), is true, has density
one.

CoroLLary 7. Let m be a multiple of 6, t 21 and 1, =[1+3t)2]). If p 23
and g =mp' +1 are primes such that q&S(m), pYm; and x, y, z are non-zero
integers such that x”‘l-I~y"t1+z'“l1 =0 then pg|x+ylor x+z, or y+z).

Proof. Since g¢S(m) and g =1 (mod m) then ¢, ,=0. Let t, =0, ¢,
=[1+43t/2]1 = ¢t; so, by Corollary 1, pglx+y (or x4z, or y+z) m

CoroLLARY 8. Let m be a multiple of 6. If p2 3 and q=mp+1 are
primes such that q¢S8(m), pYm; and x, y, z are non-zero integers such thut
xr? 4 y" +272 =0 then pglx+y {or x+z, or y+2)

Proof. We use Corollary 7 with ¢ =1 so that t; =[1+3/2] =2 =

Corollaries 7 and 8 are the first such results with m divisible by 6. A
subject for further research would be to reduce the exponent in Corollary 8
to p. However, that does not seem possible with the methods used here.

5. Some computations. It is important to determine S(m), where m is
even. This is relatively easy when m is small. Thus

8(6) = {7},
5(12) = {13},
5(18) = {19, 37, 73",

=1 (mod m), n = (g—1)/mis odd and ¢ > max | 37" m> [f
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From these computations and Corollary 8, we obtain:

Coroutary 9. If p= 3 and g = 6p+1 (or 12p+1, or 18p+ 1) are prime
and x, v, 2 are non-zero integers such that xP? gy 4277 = 0, then p|xyz.

Proof. For p=23, use Corollary 5 with m=2If p= 5 (and m =6, 12
or 18) pm and ¢ = mp-+148(m). So, by Corollary 8, p divides x+y (or
x+zo, or y-z) and thus plz (or y or x). =

In the nexl resull we shall use o theorem in Ireland and Rosen {{8], p.
98) on Fermals congruence, Lo conclude that certain primes belong to S(m).

Let ¢ be an odd prime, F, be the field with g elements, and

P = # {projective solutions of X*4Y"-+Z"=0in F,]

Then
|[P~{g+ D] < (n—1)(n—2 fq

Prorosrrion 1. Let m and n be positive integers such that m 2 n? —6n*
+17n—23. If g =mn+1 iy prime then geS(m).

Proof. Choose r to be an integer, 0 < r < ¢, of order m (mod g). Define
a map E: Z — Z, as follows. For xe Z let j be the unique integer, 0 </ <m,
such that x" = ¢ (mod ¢). Then E(x)=].

Let

N =, ) 1€xy<g—1 (B, EGN¢ T all+x"+)")

and
N = # 0l 1S x p€g=1,(E®), EM)e T, qlT+x"+"].
We have
P = N+N+ # {projective solutions (x, y, z) of X"+Y"+Z" =0
in F,, with x, y or z equal to O}.
Thus, by Lemma 2,
P < N+2n*+3n.

Hence
NzP-2n?-3nz q+1--(7~—-l)(n 2)\/‘1“ n?-3n
and
N1 32 g={n—1)(n—2)/g—(2n*+3n).
Since '

mz n®—6n2+17n—3,
I NI L E VS - ) 4 _6n° +17n ——6n+4

= (n— 1P (n—2)*+2(2n* + 3n).

g=mn+l =
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The discriminant of the polynomial
' F(T) = T*~(n—1)(n—2) T—(21*+ 3n)

is
§=(m—-12(n—2*+4(2n*+3n) > 0.
If
A=(—1)n—2), B=2n*+3n
then
A242B > A JA2+4B = 4. /d
SO |
4q > 4(A%+2B) = A% +(A* +4B)+2(4* +2B)
> A* 45424 /6 = (A+./8)
so that
Ja = (A+ /o).
Therefore

N—12F(/g 20
and this concludes the proof. a
For m even, define

1+&+8),

No= I

0sijsm—1
(1.7}¢T
$0 N,,,‘;é 0. Note that, for every (i, /)¢ T,,. the conjugates of 1+ &+ & (in the
extension Q{&M|Q, or in the extension Q(&"+£7")[Q ~ see the definition of
Ny} are non-zero (else ¢, (x)|1+x'+x) so that N, divides N,,.
Now we show:

Lemma 7. (i) If q is a prime and ¢ = 1 (mod m) then g S(m} if and only if

g divides N,,.

(i) # {q_p‘rimel geS(m)} < m*log 3/log(m-+1).

_]E"roof. (1) If g S (m) there exist (i, j) ¢ T,,, with 0 < i, j < m— 1, such that
g divides N,,;;. By the above remark, ¢ divides N,,.

Conversely, suppose g divides N,,. Since N, divides [T Nws

Osi.jérrlnl "
_ o _ T

there exist (i, /)¢ T, such that g divides Npij- By the hy)pontt'hesis q
= 1 (mod m), so that g55(m).

(i) Let v = # {gprime| g eS{m)}. If geS(m), then g =1 {mod m), so

icm
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gz m+1, Also by (i), ¢ divides N,,. Therefore [] g divides N,. Hence

HeSim)

(m+ 1)< [] g <IN, <3
qe8(m)

We conclude that v < m*log3/log(m-+1). =

The computation of N, and of N,,;; (for (i, j)¢ T,) is laborious when m
is not very small.

If 3 /m (hence T, = @) Wendt [14] noted that N, is the determinant of
a cireulant matrix; however, if 3|m, the corresponding circulant is zero.

We shall recall Wendt's result, modifying the definition when 3|m, so
that, in all cases, it is equal to N,.

I F(X) = tg-+ay X+ ... iy X" it is well known that the determi-
nant of the circulant with tOp rOW dg, Uya vvvy Uy qs 18

iy ay . [
-1
Uy dg Uy 2 " ;
det | m2 Y P,
........ b e e e e =0
iy sy ven dy

The Wendt determinant W, is the determinant obtained from the
circulant defined with the coefficients of (1+ X)™— X" So

W = ] f+87=2 = [T [+2y-11.
i=0 A

As it is known, and easy to show, W, =0 if and only if 6 divides m.
So, if 6|m we shall define & modified Wendt determinant still denoted
W,,. When 6m, X2+ X +1 divides (1-+X)"—X"; so let W, be the determi-
nant obtained from. the circulant defined with the coefficients of the polyno-
mial
(1+X)m— X"
1+X-+X2

F(X) =

We prove:

Levma 8. (i) IF 3. m then N, =W,

(ii) If 3|m then N, =m>W,.

(i) {f ¢ is o« prime, g =1 (mod m) then geS{m) if and only i g
divides W,

Proof. (i) IT 34m then T, =@ so

m 1 m—1
Np= [] Q+&+&) =[] [(1+&"—1] = W,
Lj=0 i=0

(i) If 3|m then T, = |(m/3, 2m/3), 2m/3, m/3)}. Now
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No= J] +&+&)

0L j€<m—1

EDET,,
m—1 ' V
= 1—[ n (1+ff+fj). H (1—}—6!_'_‘;:"1/3). H (1+éz+q2mﬁ)
i=0 j#m3,2m/3 i#2Zmf3 iEmi3

m=1 ziym
(1+&)"—1 v 2m}3 i mi3 _ ui
- - — T @me-ay IT @mi-g
iI](J(1+§‘)2_(1+'Sl)+1 i#Iz—;[tj.’s zﬂfa
mOLLAE) 1 X1 Xm—1

aled §2i+6i+1 X__é:.’lm;‘3 x:élmﬁ X_ﬂ_ém/a

X=|:m,‘3

m~1

m—1
= H F (&Y Z X"‘“I"Jf(zmﬂ)"‘xacms' Z an1~.1gtmm.fh(m‘:mf3

i=0 j=0 j=0

=W - ”’15:(?"_ 1(2mf3) . mé(’"_ Iim/3) — 2 W

nir

(i} By Lemma 7(i), geS(m) if and only il ¢/N,. If 3.km, this is

equivalent to ¢|W,. If 3|m, this is equivalent to ¢|m*W,. But il g|m then

q <

m< g—1, which is absurd. So g|W,. =
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