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Discrepancy estimates for the value-distribution
of the Riemann zeta-function ITI

by
Konn Matsumoro (Tekyo)

1. Introduction. In the previous papers of the author ([7], [8], see also
[9]), we discussed the value-distribution of the Riemann zeta-function { (s) in
the half-plane Res = ¢ > 1, and obtained some refinements of Bohr—Jessen's
classical results which were proved in [2]. In this paper we will consider the
value-distribution of {(s) in a more significant region: the strip 4 <o < 1.

Since the Riemann hypothesis is not yet proved, we cannot exclude the
possibility of the existence of zeros of {(s} in this strip. Hence, to secure that
log{ (s} is single-valued, we restrict our consideration to the set

G=li<ol— {J {s=c+itlt<a

Sjﬂa'j'i-ltj

< a5,

where 5/'s (f = 1, 2, ...} run through all zeros of {(s) in the region 4 <o < 1.
For any s, = o4+itee G, we define log{(s,) by the analytic continuation
along the path {s = g+ite} 0o < o).

First we fix a o4e(3, 11, and discuss the value-distribution of log £ (s) on
the line 6 = g4. Let R be any closed rectangle in the complex z-plane with
the edges parallel to the axes, and L(7, R) the (Jordan) measure of the set
{te[l, T]| oo+iteG, log{(cy+itje R}. Then, Bohr-Jessen [3] proved that
there exists the hmit

(1.1 W(R) = lim L(T, R)/T,

T—w

which depends only on ¢, and R. In this paper we will prove the following
sharpening of (1.1):
Tureorem 1. For any oge(3, 1] and & > 0, we have
(12) - LT, R) = W(R) T+0{(m(R)+e) T(loglog T)” *7°~V/***%)
where m(R} denotes the measure of R, and the O-constant depends only on a,
and e. .
In [7], the author proved a similar result in the half-plane o > 1. We

r
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have shown

(13 L(T, R) = W(R) T+0((m(R) +¢) T(loglog T) 0~ """

for any o, > 1. If o > 1, then {(s) has the Euler product expansion

o

Ls) =1 A—-p"

n=1

where p, is the nth prime number. Hence, if we put
' N
fu(®) = =% log(1-p,"),
n=1

then it is obvious that
(14) _ lim fy(s) = log{(s),

N-—ao
and the proof of (1.3) depends essentially on this fact. The basic structure of
the proof of (1.2) is an analogue of that of (1.3), but in case 4 < g, < 1, the
simple relation (1.4) holds no longer. So we must develop additional argu-
menis concerning Carlson’s mean-value theorem.

Next, let 3 <o, <o,, and g an arbitrary complex number. We denote
by N,(T) the number of the elements of the set {s = oc+ite G| 0y < 6 < oy,
1 <r<T log{(s) = a}. We remark that, in the definition of N,(7), and also
throughout this paper, a-points are counted with multiplicity; an a-point of a
function f(s), that is, a zero point of f(s)—a, of order m is counted m times.
It was proved by Bohr-Jessen [3] that there exists the limit
(L5) G(a) = lim N,(T)/T,

. T~
which depends only on oy, ¢, and a. The second result of this paper is the
following sharpening of (1.5):

Tueorem 2. For any 4 <a, <o,, we have

0(T(loglog T)™*)
O(T (loglog T)~ MesloziosieeT)

l:fd.l>1:
ifalgla

where A and B are positive constants which depend only on oy, o, and a, and
O-constants also depend only on o,, 0, and a.

In [8], we have shown a similar result only in the half-plane ¢ > E,
where the number E has the properties that if E < o; < a,, then |{/{(s)| = C
= C(g;, 03) > 0 in the strip o, < o < 0;, and that 2 < E < 3 numerically. If
o, > E, a lower-bound estimate of |log{(s)—a| can be easily obtained in
g, < g <0,. (See § 6 of [8]) On the other hand, in case o, £ E, we will
deduce such a lower-bound estimate from Hilfsstitze 3 and 4 of Bohr—Jessen
[3], which are based on Jensen’s theorem in complex function theory. And if

N(T) = G(a) T+{

icm
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o, < 1, in addition to the application of Jensen’s theorem, we need rather
delicate arguments concerning several mean-value lemmas.

At first we show auxiliary mean-value results in Sections 2, 3. Next we
shall prove Theorem 1 in Section 4, and Sections 5-7 are devoted to the
proof of Theorem 2.

In the following sections, & denctes a small positive number, C a positive
constant, and are not necessarily the same in each occurrence. The letters C,,
C,, ... also denote positive constants. By the symbol #S we mean the
cardinality of the set S. For any subset X of the complex plane, we denote
the Jordan measure of X by m(X), and the boundary of X by dX. And
dist(X, Y) =inf{|x—y|| xe X, ye Y] for any two subsets X and .

The author expresses his gratitude to Professor Akio Fujii for constant
encouragement and valuable advices; he first suggested to the author that
Jensen’s theorem is useful to our present problem. The author is also
indebted to Professor D. R. Heath-Brown for pointing out an error in the
original argument, and to Professor Leo Murata for useful discussions, both
are concerning Carlson’s mean-value theorem.

2. Mean-value Jemmas. Let 3 <a, <1, 1 €£d <2, § a small positive
number, N a positive integer, H{d, to) = {s = o +it] 0 > a,, to—3d <t <1,
+4d) for any real t,. In this and the next section, except for the statement
and the proof of Lemma 7, the letter C and O-constants depend only on «,,
d and &, and the letters C,, C,,... denote positive absolute constants.
We put

Ry (5) = log { (s)—fy(s)
for ¢eG, and define

0 if H(d, 1) G and {Ry(s)) <3 for any se H(d, t),
1  otherwise.

ot = {

We first prove the following
Lemma 1. We have

7! IJ: % (toydto €872 (A; +(Nlog N)".“” log(6™ )+ T71,
i
(= X(T, N, 5), sa)
where A, = N' 72078 L 71720  exp (CNY2). | _
This lemma is a refinement of Bohr-Jessen's Satz A in [3]. This Satz is a
direct consequence of Hilfssatz 5 of Bohr [1], and the proof of Hilfssatz 5

developed in [1] is based essentially on a mean-value theorem of Bohr—
Landau [5].
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In [1], Bohr considered the function
N
In(9) =) IT (1—pa9)
n=1

In 6 >1, {y(s)—1 can be written as the Dirichlet series

(2.1) Iy —1= ; a,n"’,

‘where |a,| < 1 for any positive n, and a, = 0 for any n < py,,. For the proof
of Hilfssatz 5 of [1], Bohr required a mean-value result for the function
{x(s)—1. But the Dirichlet series (2.1) is not convergent if ¢ < 1, so in this
case we cannot apply directly Bohr-I.andau’s theorem, which holds only for
convergent Dirichlet series. Hence, Bohr applied Bohr-Landau's theorem for
the function ({y{s)—1)(1—2'7%), which has the Dirichlet series expansion,
convergent in ¢ > 0. (See Hilfssatz 2 of [1])

Now, there is a more general result of F. Carlson [6] (see also
Titchmarsh [10], § 9.51). Using Carlson’s mean-value theorem, we can avoid
this detour. Furthermore, the proof of Carlson’s theorem is more convenient
to refine than that of Bohr-Landau. In Section 3, we shall prove the
following refinement of Carlson’s theorem for {y(s)—1:

Lemma 2. Let o, be a real number which satisfies max(§, ao—2) <oy <.
Then,

T
T {[in(o+it)—12dt €A,
1

holds uniformly in a; <o <3.
Besides, for o = 3, we can show the following
LemMa 3. Let 8, > 3. Then

T

-1 “CN(G'-i-ft)— 1]2 dt < (NlOgN)zng*—a/(ZO'—Z»—s}

holds unifermly in 36 <f,.
Proof. By using the cxpressmn (2.1), we have

2.2 T'lflt;’N(crHt)—wll’dt
115w

uMg

=T7T"! i a a,(mn)” j(m/n)“dt

—(1-T"Y ); wz«+o( T'YY a,, a,(mn) = (logm/n) ).

m>n
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We can evaluate the double sum in the error term of the above by the
method similar to the proof of (7.2.1) of Titchmarsh [11]. The result is the
inequality

oo

23) ¥¥ apa,(mm(logmm) " <(T a,,n"’)2+ § a,n'~*logn.
m>n n=1 n=1

Since a, = 0 for any n < py,. . it follows that

o0 o
LoaanT? < [ x"*dx < (Nlog N)' ™ 29/(20 - 1),
n=1 Py
and a similar estimate holds for the right-hand side of (2.3). These estimates
with (2.2} imply the result of Lemma 3.
Now we deduce Lemma 1 from Lemmas 2 and 3. We put

Dy =[] |tw(s)—1*ded: for any 73> 3.

Xy \'(.a"éﬁl
t—d<tsr+d
Then, using Lemmas 2 and 3, we have

T-2
[ @y(rydr € J[ [x()—1]*dod:
3 a) So€f

1<tsT

€A 3—ay)+ [(NlogN)z 2etefd6—2—5)do

< A, +(Nlog N)"***log 8, .

For any small positive &, we put b =mlte[3, T—2] ®y(t) = &} Then it
follows that

T-2
[ @nl(r)dr,
3
and therefore,
(2.4) b <l (A +(Nlog N)"**log §8,).
This is a refinement of Hilfssatz 3 of Bohr [1].
Next, let
SﬂO <ﬁl> Q(da IU).ﬂH(d, fo)n{‘7<ﬁo}’s
and

P(d, to) = ‘{S 20""‘“' [+ 5] S_ Uﬁﬂl,' ro’—dg L é_ to"""d}.

It is easily shown that, for o > 2, the inequality |[Ry(s)] < Ci(6—1)"" holds
(for any N) for some constant C,. Hence, if we choose f, ={(1+C,;47") 2 2
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and B, = 28¢, then |Ry(s)| <& in the reg1on ¢ = B,. Under these choices of
the values of B and f;, Bohr has shown, in the proof of Hilfssatz 5, that
@3 (te) = 0 if |{y(s)— 1| <46 holds in Q(d, to). Now we quote the following

Lemma 4 (Bohr [1), Hilfssatz 4). Ler T, I be two closed curves in the

complex s-plane, and D, D' the open regions surrounded by I', I'', respectively.
We assume I''wD = D'. If f(s) is holomorphic in D' and

j [If (2dedt <n(hdist(l, )’ ()

then | f(s) <38 for any se "L D.

We apply this lemma to I'= d0(d, to) and I'" = 0P(d, to) undet the
above choices of the values of B, and #;. Then we have that ¢%(te) =0 if
By (to) <nG A1) where A= dist(0Q(d, ), 0P(d, to)). Hence, applying
(2.4) with ¢ = (3 )*(35)%, we have

-1 2 —4+g 1 -
j'(pN(tO)dto b+4T "t «é~ (A +(N-logN) log{é~ ))+T
This is the estimate of Lemma 1.
Our next aim is to show- refinements of Sitze B and C of Bohr—Jessen

[3], which we shall use later in the proof of our Theorem 2. We first prove
the following

LevMa 5. Let f,(s) = exp{i"fx(s)) (m =0, 1, 2, 3). Then we have
. .
T [( [ Uulo+it>dodt)dty < T~ exp(CN*" 704,
i Pldig)
Proof We denote the Dirichlet series expansion of f.(s) by
Y Crn~® (o> 0). Then it is easily shown that |CT| < C{ for m=1, 2, 3.

Hence,

(25) @l Crn™ < fo(o) H (1—-p7 )" ! <exp(C Z J RS

n=1 =1

< exp(CN'™7)

holds uniformly in o; € 0 €
Lemma 3, we have

3. So, by the argument similar to the proof of

T
T [|f (o +if*dr < 14+ T~ exp(CN? ~7F7)
1

in o; <0< 3. On the other hand, in ¢ > 3, the estimate
; ‘
T [ fulo+it)?dt <1
1

is ‘obvious, These inequalities lead to the assertion of Lemma 5."

icm
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Now we take a constant C, > 2 and choose f, = C, and f, = C;+1.
We note that there exists a constant C, > 0 for which | fx(s)] < C3 holds in
o > C, for any N. Let K be a large positive number, and define

belto) = {0 if H(d, ty) =G and |log{ (s} < K for any se H{d, to),
K¥OP 11 otherwise.

Bohr—Jessen’s argument in the proof of Satz B implies that for any K > C,
+C, with another positive constant C,,

T
(26 T7' j Y (to)dig

3
-1 M (t9dtg+e™ 4T (3 sup Ufulo] seQd, tol)dty

1 m=0

holds. We apply Lemma 4 again to obtain
@ < ] (sl dodt

P{d,1)

for any se ({4, ty), so with Lemma 5, the secoznld terin of the rlghE-}land side
of (26) is estimated by Of{e *(T~ exp(CN( 0+ 4 1)) (=e *Y(T, N),
say). Combining with Lemma 1, we have

T
T™ [yx(to)dte €« X(T, N, Ch+e XY(T, N)
1 .

< N1—210+5+T1"Iuo+a exp(CN‘“)
—i—e"‘(’f"“e:xp(CNl(1 "o L),

Now we specify N = [log T]. ([x] denotes the integer part of x.} Then,

T Ot b (CNYY) <« T~¢  and T 'exp(CN™' 707 < T"€
so we arrive at the following
LEMMA 6.
Tt }'.t’x (to)dty <(log T)lhzaoﬂ+e_x.
1

This is a refinement of Bohr-Jessen's Satz B.
Lastly we show a refinement of Satz C. We put

o =lseGl logl(=a), dy={0>%iKO=al,
na(d to) = # (H(d, t) ") and  n}(d, 1) = # (H(d, 1) O St y).

We remark that in the statement and the proof of the following lemma, the
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constants Cs and Cg depend only on a, and O-constants depend only on a,,
d, a and ¢. '

Lemma 7. Let y(to) be an arbitrary function defined for any real to, which
only assumes the values 0 and 1. If

T
T [to)do < O(T) <1,

i

then
T
T~ {na(d, to) 2 (to)dto < 6(T)*
. 1 »

and

T
T [nf(d, to)x(to)dte < O(TY*Y(T, N2,
1
Proofl. We first note that there are constants C; > 1 and Cg > 0, for
which the following properties hold:
(1) On the line ¢ = Cs,

llog {{s)—al = [fx(s)—al 2 Cq

(2) In the half-plane ¢ > Cs, log{(s) and fy(s} (for any N} do not take
the value a. {Hilfssatz 14 of Bohr-Jessen [3]).

Now we choose f, = Cs and f; = C5+1. In the proof of Satz C Bohr-
Jessen showed that

C¢ and for any N,

27) mad, to) <1+ || [C(Sdodt
Pld;tg)

and _ .

(2.8) ni(d, tg) <1+ if lexp (fx ()| do dt.

Pidwg)

From (2.7), Bohr-Jessen’s argument deduces that

T T
T~ [n,(d, to) x(tohdte < T [xito)dto
i 1

T ’ T
T ([ 2 (o) dio)* {f (P, to)( [V (> dodr)dto} ™.

PidIg)
By using Theorem 7.2(A) of Titchmarsh [11], we have

1J"( A5 L) dode)dto < i~y <1,.

1 Pl1g)

icm
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so it follows the first assertion of Lemma 7. Similarly, the second assertion
can be shown from (2.8) and Lemma 5.

3. Proof of Lemma 2. In this section we show the proof of Lemma 2.
Our proof is a refined version of the proof of Carlson’s theorem, described in
Titchmarsh’s book [107], § 9.51. We remark that the following argument can
be applied to many other Dirichlet series.

Let X 21,0, <0<3,c>max(0, 1—o0), and f(s) = {y(s}— 1. Our start-
ing point is the following formula (Titchmarsh [10], § 9.43):

o
Y byn*
n=]

where b, = a,exp(—(nX"")°"'?). We move the line of integration to Rew
= (3+¢&—0. Then we get

ctico

| TWloe—3)f(s+w)X"dw,

c—im

= (2mi(c—H)~"

3.0) Z by —f(s) = (0—H " R-T{(1—o—it)fc—H) X1~

(1{2+8)—o+iw

+(2mi(c—%) ! {

(1/2+&)—o—iw
where R is the residue of f(s) at s =1. Since |R|
formula we have

6—H " R-T{1 ~a—if)flc—HIX1 """ g X1~ 0N,
Also, using Stirling’s formula again, we have

r(wio~3)f(s+w) X" dw,

< 1, by using Stirling’s

{(1j2+e)—a+im

] I'(wio =) f (s+w) X*dw

(1{2+e)—o—iwm

@X(1/2+2)—o‘ T
—'w
-2 2T ®

= xURTOTo( [ 4 4 )=
0 -2T 2T

e | f(G+e)+i(t+v))dv

xwizra-ar 4 1, +1,), say.
Since it is easily shown that |f{s) <({t]+1)exp(CN'™7) (ef. (2.5)), we have
I, <exp(CNY?) { ve™ " dv < exp(C(N*~T)),
ir .

and a similar result holds for I,. Also, by using Schwarz’ inequality, we have

27

’ 2T ’
L<( ] e f@+a+itero) do) (| e o dv)”?
- 2T —~2T
aT

< [ emcM| f’((%+s)+i(r%u))12du)”2

- 2T
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Substituting these estimates in (3.1), we cbtain

i.bnn_"’f(s) < Xl-—ae—Clié+X(1/2+e)—aexp(C(N1/2__T))

r=1

b

) 2T
+X(1_I2+e)—u( _(
-2T

e~ [+ +i(e+v) dv)?

and so,

(3.2) T-1 |'] Z ) n”s—f(sl

1 n=1
& T~ x- u)+X(1+E)“2cfexp(C(N1/2_T))
2T T
LTl X020 |~ ewclvl(”f((%+a)+i(t+v))|2dt)dv
~2T 1

Now we note that
T .
(3.3) §lf (G+e)+iG+) dt < Texp(CN'?)
1
holds. This follows immediately from the fact that
Lf ()] < {L(s) exp(CNl"“”Hl

and Theorem 7.2 (A) of Tltchmarsh [1 1] From (3.2}, (3.3) and Minkowski's
inequality, we have

T4 115, b )

<€ T 1/2 Xl a_i_ X(1/2+s)_v—aexp(CNljl)_

Next we estimate the second term in the left-hand side of (3.4), by a method
similar to the proof of Lemma 3. In this case we apply the argument in the
proof of (7.2.2), instead of (7.2.1), of Titchmarsh [11]. Then we have

B4 (T j"lf( ) —

T o
T-1{| S ban 7 dt € (N-log N)' 720 T X720 70T
1 n=1

Combining this estimate with (3.4), we have
i’ - 2uyte '
T “f(S)|2dt ‘@(N'logN)l_h‘-kT’l X2(1~a1)+p,+X1 2aq + exp(CN”z).
1

If we choose X = Texp(CN'?), then we obtain the assertion of Lemma 2.

4. Proof of Theorem 1. In this section, the letters C,, Cy, C,y denote
positive absolute constants, and the letter C and O-constants depend only on

icm
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oo and &. Let R be the given rectangle, and a,+ib, (1 < p,

g<2a <ayby
< b,) the four vertices of R:

R={zl a, <Rez<a,, by <Imz < b,}.

We define two rectangles R; and R, by

R,=1z a;,+6<Rezga,—4, b+d <Imz < b,—6}
and
R,=1{z} a;—6<Rez<a,+8, by—d <Imz < b, +4},
respectively. _ :
Let Ly(T, R)=m{te[l, T} fy(oo+it)e R} for any rectangle R. Then,

the existence of the limit

Wy(R) = lim Ly(T, RYT

T-o

is a direct consequence of the Kronecker-Weyl theorem on the umiform
distribution of sequences. In [7], we have shown that for any large positive
integers m and r, the estimate

@1)  Ly(T, RYT—Wy(R) < N2(r)* (m=1+Dj)+7
' (= Ay +A;+ T, say)

—N/N+1) N(3,’2)+200+ T 1

holds, where
Dy = T~ (3+2-log m)¥ exp(C, (mN -log N)* (log (mN)) )

(Proposition 1, § 2 of [7]. Here we note that, though we assume o, > 1 in
[7], the same results hold for any a¢ > %, except for the arguments based on
Lemma 6 in [7], § 4) Since the right-hand side of {4.1) is independent of R,
we can apply this inequality to R, and R, and get

Ly(T, RYT~Wy(R) < Az+A;+ T,
Ly(T, RYT—Wy(R) € A+ A +T7%.
Furthermore, in § 9 of [7] we have shown that

Wy (R)— Wy(R) €6 and  Wy(R,)— Wy(R) <82
Hence we have

(42) La(T; RY/T— Wy(R) < Ay + A3+ T~ 1+,
(43) ' Ly(T, RY/T—Wy(R) € Ay+ Ay + T~ 1 +6Y2.
Next, we put

ki (Ty=m{tell, T]| oo+iteG, !10gC(Uo+it)—-f~(Go+it)l d}.
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If 6o +it €G and flog {{og+it)—fy(oo-+if)| < &, then, by the definitions of R,
and R,, we see that, if log{(go+it)e R then Inloe+ie R, and, if fy(o,
+it)e R; then log{{s,+if)e R. Hence we have

4.4 Ly(T, R)—=k3¥(T) € L(T, R} < Ly(T, Ry} +k}(T).
Combining (4.2), (4.3) and (4.4), we obtain
{4.5) L(T, RYT—Wy(R) € A3+ Az + T " +8Y*+ k3 (TY T,

An upper-bound cstlmate of the term k%(T)/T can be easily obtained from
Lemma 1. We set 4 <oy <ag <op <1, 0g—0; <¢ and d = 1. It is obvious
that

T
AT < | @k (20) dry,
1
so from Lemma 1 we have
(4.6) k‘fv(T)/T<§5‘2A;+5'2(N-logN)”‘”‘log(6”1)+ T-1,

where 4; = N'7¥eP T exp(CNY2).
Next we evaluate |W,(R)—W(R)|. We first quote some results of Bohr-
Jessen [4]: ‘ _ '
(1) For any sufficiently large N (> Ny), there is a function Fy{z) con-
tinuous in the whole plane, for which

Wy (R) = JRIF n{z)dxdy

L—20p+e

(z;x%y)

holds for any rectangle R.

(3 If ag > 1, the_n Fy(z) converges uniformly to a continuéus function
F(z) as N tends to infinity, and

@.7) ‘W(R) = ”F(z) dxdy.
By virtue of these results, it is enough to evaluate IFN(z) F(z). Let g = gy
be a small positive number, and I'y = {z| lz| < onl. We put

N+

-~ ¥ log(l-p,

n=N+1

Snic(Ona1s o5 Oysp) = o exp(ZniB,,))

, O} €0, 1), and define
Onsk) C—‘II:O, 1) _SN.k(x) = I'y}.

for any (w41, ...
Quully) = =0y, ..o

Then, Bohr-Jessen proved that

(48)  supIFy ()~ Fras

€ sup
dist(z, W) S gy

|Fy, (2) —FNO W+ K(1- m(Qy (FN)))
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holds for any N = N,, where K = sup Fy, (z). (Bohr—Jessen [4],. § 46.) Be-
sides, if oy > £, then we have

@9) (1 ~m(Que () <(x/6) 5 py ™.

n=N+1
(Bohr-Jessen [4], § 50.) Since the right-hand side of (4.9) is surpassed by
O(N'"*(log N)™°®), with (4.8) we have

sup|Fy(z}—F (2] €  sup |Fy (2)— Fy, W) +or 2N " *(log N} *°.

dist(z,w) Sgpy

We know that the first term of the right-hand side of the above can be
estimated by O(o¥"log(en). ([7], (5.6)) Therefore, if we choose gy =
N7~ 20/1% then we have

(4.10)  Wy(R)—W(R) < m(R)sup|Fy(z)—F(z)|

<m(Ry NV 203 log N,
Now we. combine (4.5), (4.6) and (4.10) to obtain
@11)  L(T, RYT-W(R)
<0724, +A2+A3+m(R)A4+51/2+é"2(N~10gN)—4+e10g(5-1)+T-il_

Suitable choices of the parameters m, r, § and N in the right-hand side
of (4.11) lead to the assertion of Theorem 1. At first, the method of finding
the best choice of the value of m is already described in § 5 of [8]. In view of
(5.4) of [8], we can assume

Ay < N*log(N)-(3r)¥(log T)~ * (log log T)*®

under the following conditions:
(A} N = N(T) tends to infinity as T tends to infinity,
(B) tog T » N4

Next we decide the value of » by requiring A, =

stronger condition
(Bf) log T 3 3 30N doglog N
instead of (B). We consider the equation

(4.12) Ay (o) = g MV H NEATE
under the conditions (A) and (BY). This equation can be rewritten as follows:
—~(3]2)+2 B
0= (N0 3-8 (108 N)=1 (fog T)M? (log log T)~ 22)N+ VN =2,

That is, (4;12) has a unigue solution g, and from the condition (B‘}, ¢ tends to
infinity as T tends to infinity. If we put r = [¢], then we have'.

Afz(r) & N(3|'2)+20'0 (10g T)W 13N+ 2)(loglog T’)2[3(N+2.} (=

(= m(R)4,, say)

(= A3 (r), say)

= A;. We assume the

As, 5ay),
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and the same estimate holds for A;. Hence we arrive at the following

estimate:
(4.13) L(T, RyT— W(R)

%8 2 A;+m(R) Ag+As+6"2(N-log N)"**elog(s~ 1)+ 812+ T 1.
Now we decide the value of N by requiring A, 2
4.14) N = [Cg loglog T/logloglog T,

then we have

As. If we choose

4, <(loglog T)—(zao— 115 +e
and

As < (loglog T)P/P o0~ (13Cer e

Hence, taking a sufficiently small value of Cyg, we can assume
As <€ (loglog T)

for an arbitrary large Cy. We remark that the choice (4.14) of N satisfies the
techmical conditions (A) and (B').

For the remaining terms in the right-hand side of (4.13), we first decide
the value of & by requiring 32 4, = §"/2; so that, we set 6 A%, On the
other hand, under the choice {4.14), we have

~Cote

4, <(loglog Tflogloglog T)'~ 1 **+T" ™™™ exp(C log log T)*?)
< (loglog T)' " 270"
Hence,
5% 4,, Y% <(loglog T) *707 M7

and furthermore, we see

572(N-log N)"***log (6~ 1) < (loglog T) ¢ F4Pro - Dis+e <(Iog10g T)~ 3+,
Substituting these estimates in (4.13), we obtain
(415) L(T, RYT-W(R)

<m(R)(loglog T)
Thus our proof of Theorem 1 cempletes.

5. Apphcatlon of Jensen’s theorem. Now we start to prove Theorem 2. In
this section we discuss some consequences of Hilfssitze 3 and 4 ‘of Bohr-
Jessen [3], which are based on Jensen’s theorem and Carathéodory’s inequal-
ity, and ih particular, complete the proof of Theorem 2 in case o; > 1. We
note that in this section, the letters C,q, Cyy, ... and O-constants depend
only on ¢y, ¢; and a. ' '

~(200~1)/15+2 ~{2ag— 1}{5+e

+(loglog T)

'by
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For given g, and ¢,, we first fix a positive

Mo = No(oy, 03} < min(’lf(az—ﬂ'l), gy —‘%)
Let us remember the definition

Q(d, to) = {s =o+it] ap <o < fiy, to—%d <t <ty+3d}.

In the proof of Lemma 7, we remark the existence of the constant Cs > 1 for
which the inequalities

[log £ (s)—al = |fv(s)—a 2 Cs >0

hoid on the line o= C;. We take a C,, > max(Cs, 0;,+7,), and fix the
values of a,, B, and d for which the conditions % <ug =ag(0;, ;)
<03 ~MNo» Po = Bol01, 02, a) = Cyp and 1425, <d < 2 hold. (In particular,
if o, >1, then we require «,>1) Since |log{(Cs+ito)—al = C, and
|fw(Cs+itg)—al = Cq for any real t,, we can apply Hilfssatz 3 of [3] to
the function f(s) = log { (s +ito) —a and f(s) = fy(s +ity) —a with R = Q{d, 0),
5¢=Cs and k = Cq. If we denote the set :

Cﬁ >0 and

!S ZG‘"}‘iti O'j—rfoi‘-’; 0’%“&""]0: to“%“’lnfgf

<to+i+70)
Aplte) (I=<j<kx2),
then we have the following

Lemma 8. If [log{(s)] < K for some large K in Q(d, t,), then

# (A1) N ) €log K.
Also, if | fx(s) <K in Qd, ty), then

#(Aplt) nofy) <logK  (1<j<k<2).
Next we define, for small positive v,
My (r, to) = lsedplto)l |s—s,| =7 for any s, e,

Mi(r, to) = [s €, (to) Js—s = r for any sNesty),

and consider lower-bound estimates of |log{(s)—al, |fy(s)—a| in these re-
gions. Hilfssatz 4 of [3] states such a result, and, according to the proof of
Hilfssatz 2 of [3], we can write down explicitly the dependence on r in the
conclusion of Hilfssatz 4. Applying this result to our case, we have the
following

LemmMa 9. There exist positive constants Cy, and Cy, for which the
following properties hold: If [log{ (s}l <K in Q(d, to), then

llog ¢ (s)—a] » r" 11 F K~ 12
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holds in M, (r, to), and also, if |fx () < K in Q(d, to), then
) —d| PTG

holds in My(r,to) (1 <j<k<2)

In particular, in case g; > 1, we can take K = O(1) for any t,, s0 we
have {log{(s)—a| & r°13 for any selo;~Ho SO ayt1g, [5—58] =7 fqr any
s,€ «/}. Hence, combining with the Propesition in § 5 of [8], we obtain the
result of Theorem 2 for o, > 1. (In the potation of [8], we choose &

—(dl—‘l}fcl'_x"ﬁ&
= (loglog T) ) _ _

Now the only task remaining to us is to prove Theorem 2 i case
o, < 1. In the next section, we discuss the construction and the prol?ertlgs of
the auxiliary function n¥(ty). The structure of the method, which is a
refinement of Bohr-Jessen’s discussion in {3], is similar to the argument
developed in [8], but the details are more complicated.

6. The function ¥ (t,). We first remark that in this and the next section,
the letters Cy4, Cys, ... depend only on oy, o, and 4, and the letter C and O-
constants depend only on &y, ¢;, a and & Let R(tp) = is =.a+it| oy <0
<0y, to—% <t <io+3) and n,(ty) = # (R(tg) n ). It is easily shown that
T
N (T-3+0(1) < [na{to)dte < N,(T+D+0(1).
1

Besides, applying to the function {(s)—e", the same argument as in the proof

of Theorem 9.2 of Titchmarsh [11], we can show
N (T+3)—=No(T) = 0(logT) and N (T)—N,(T—%) = O(log 7).

So it follows that

(6.1 No(T) = [n,(to)dte+O(log T).

We shall constrnct a piecewise constant function nX(to} which “approxi-
mates” n,(iy). Besides we require that there exists the limit

T
(6.2) . G*(@) = Lm T [n}(to)dty-

T—w

Let n <no, and we put

Rr(fﬁ) =1{s o, +n<o<o,—n, to—3+n <t <to+i—7),
Rty =lst 61 —n< o< 0,49, to—f—n<t<to+i+n},
m(to) = # (Ri(to) N} and  nl(t)) = # (R, (te) » )
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Then it is obvious that

(6.3) (o) < R, (1) < ng(to).

If we define

(64) 7(t0) = {0 if 1o (t0) < nf(r0) < (1),
1 otherwise,

T

then we see that T—1 j x(tg)dey is “small”, or we can show the following
!

Lemma 10. For any large positive number K and positive integer N, we
shall define n} (to) = n¥(to; n, K, N) which is piecewise constant and satisfies

{6.2). Then there exists a small positive § = é(n, K) for which the following
estimate holds:

T
T~ [x(to)dty < X(T, N, 8)+{log T)' “2*0"* y ¢~
1
‘That 1s, nf(to) is an “approximate” function to n,(ty). Furthermore, we
shall prove .
Lemma 11 (Bohr-Jessen [3]). For any real ty, n¥(ty) < n¥(d, 15} holds.

Now we start to construct n¥(t,) and to prove the above lemmas. Since
R, (to) = Ay;(to), it follows from Lemma 8§ that, if ,(t,) =0, then 1 (to)
—1,{to) < Cyi4log K. Hence, if we take a positive r < nH2C 4 log(K)+3),
then for any t, with Y {t,) = 0, there are two positive 1, = 7 (to) <n and 1,
=1,(t)) <n, for which the following conditions hold:
OR;(to, T} = My, (r, to) and AR {to, 1,) & My, (r, to),

where

Ri(to, =15l 6, +1 <o <o,—1, ty~i+1 <t < fo+i—1)
and

Ry(tg, 1) = 15| 01— <0 <o,+7, tg—3—1t <t <ty+3+71}).

So, if we choose r = (1/2)(2C 4 log (K)+3)"?, with Lemma 9 we have that
for any t, which satisfies ¥ (¢o) = 0,
(65)  log{(s)—al = Cygn 18X g~ Croslek

holds on @R;(zy, 7)) U 8R, (to, 1,). N

Next we prove a similar result for fy(s). We first note that
/v € C1y N'™* in the_half-plane o >a, (cf. (2.5). So we can apply
Lemma 8 with K = C;, N' 7°%, and the result is that

4 (R, (t)—Ri(t0) N ) < Cyq log N.

(=mol, K), say)

2 = Acia Arithmelica L4
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If we put ' = (/2}(2C 5 log (N)}+3)™*, then there is a positive 1}, = T,{fo) <n,
for which 0R, (1o, ;) = MY, (v, to) holds. Hence, with Lemma 9, we have that
for any real rg,

(6.6) fols)—d] 3 CqnC20Y NTE21EY (miy(n, N), say)
holds on OR,(tq, t,).
Now we choose § = ¥mq(n, K), and define
0 if Yxlto) = ol (to) = 0
= y*(fn" —
x* (IO) - x (t()’ 1, K: N) {1 otherwise.

Then it is obvious that y*(to) < Wi (te)+ @& (to), so from Lemmas 1 and 6 we
have .
T

(6.7) T [y*

1

1—-2xg+s

{to)dty < X(T, N, 8)+(log T) +e k.

For any t, which satisfies' y*{1,) = 0, we sec
[log{(s)—~a =m, and |Ry(s}f <& on &Rty 1)U OR, (e, 1)),

from (6.5) and the definition of ¢@f(t,). Hence, if we define a function
f*(s) = f*(s; i) which satisfies

If* () —fu(s) <my—8=5 on
and put

aRi (tﬂs Ti) U aRy(tOo Ty)»

ni(to) = % {se R(to)l f*(s: 1o} = a},
then Rouché’s theorem asserts that

M (to) < n(to) S ni(te)  if 2*(t0) = 0
So we see x (tp) < x*(tg) for any real t,. Therefore, (6.7) implies Lemma 10.

Furthermore, if we require the property that |f*(s)—/fy(s) < mb(n, N} on

@R, (to, T;), then from (6.6) and Rouché’s theorem we obtain the result-of

Lemma 11. Hence it is sufficient to construct f*(s; t,), which satisfies | *(s)

—fu(s) < p for some positive p <min(d, mp), in the hall-plane o > a,.

(Besides we require that n}(t,) is piecewise constant and that the limit G*(a)

exists.) The method of the construction is the same as that described in § 3 of
T

[8], so we omit the details. The difference between T~ ! j n¥ (o) dty and G*(a)

is estimated by using the theory of discrepancies i in § 4 of (8], and the result
is that

. o
T [nt(to)dto—G* (@) < N23¥(m™ ' + D) PN G*(a)
1

icm
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for any positive integer m, where P = P(y) is a sufficiently large integer
which satisfies the following condition: We put

I 04, ., pp) = — Z log {1~ p, *exp(2rig,))
n=1

for o1, ..., pye[0,1). If @, < P~ (1 <n< N). then the inequality

/%G @1, vens o) ~(—

holds uniformly ing —n<o<o,+n.

It is easily shown that we can specify P =[C,, ,u“‘N1 *0] (cf. § 5 of

[8]). Also, by the same choice of the value of m as in § 5 of (8], we obtain
m™'+ Dy € N-log N-(log T)"1/3 (log log T)**

under the conditions (A) and (B) (cf. § 4). Hence we have

T
' [n2 (to)dto—G*(a)
1

< N*log N -(log 7)™ (loglog TY**(3C,; =L N* ~"0)¥ G* ()
{=Z(T, N, ) G*(a)}, say)

Z log(1-p;9)) <u

n=

68) T~

under the conditions (A) and (B). '

7. Completion of the proof of Theorem 2. Our starting point is the
inequalities
13 (20 (M3 (20) — i (o))~ ¥ (20) 1 (£0) < 1y (20)
< g {to)+ (ml (to) ~ n (to))+ n, (o) % (to)

which have appeared in the last stage of Bohr-Jessen’s proof of their Satz V
in [3]. These inequalities are easily obtained from (6.3) and (6. 4) We integrate
each term of the above mequa]mes to get

7y 1! _f”a*(to)dfu— T !("ﬂ(fo)‘“’“"i(to)) dto—T! f": (to) x(to)dto
1

T
T fna(toydte < T71 j" (to)dty+T71 H"’(fo) A (to)) dto

+T71 ,I n,(to) x(to) dto.

Obviously n,(to) < n,(d, to), and Lemma 11 asserts n*(t;) <
from Lemmas 7 and 10, we have

n¥(d, t,). Hence,

T .
T [n,(to) x(to)dto <€ X(T, N, 8)"/2 4 (log TY2™%0*" 4 o~ K12
1 .
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and
T

T=! [n¥(to) x(Eo) dio < (X (T, N, )2 +(log T)* %" 42 K2)- Y (T, N)™2.
1
Substituting these estimates in (7.1), we obtain
T T T -
(7.2 T7 [n(tg)dto—T " [m¥(to)dty <€ T~ ( (1) (o) — 1 (to)} dto
1 1 1

H(X(T, N, 82 +(log T)'"* 7" + e M) (1+ Y(T, N)'?).
Next we estimate the first term of the right-hand side of {7.2). Let
mite) = # (8| o;—n <0 <oj+n, to—F—n <t <to+i+n} N )
(Gj=1,2.
Then we have (see the proof of Hilfssatz 7 of Bohr—Jessen [3])

T
(73 T [(m(t0) (o)) dto
' 1
: T
< T~ [l to)dto+ T~ [n2(to)dto-+4n(T* Ny(T4 1)+ 0(T 1)
1 1

From (1.5) it is obvious that T™1N,(T+1) € 1. For the integrals in the
right-hand side of the above, we show the following

Lemma 12.
T ‘ .
Tt {ni(to)dto <(log T)'* 707" + e K2 4 yK2log K
1 .
n™'log(K)-(loglog )_ " WSt i oy <1,
n log(K) (loglog T} 7 if ;> 1.

1~ 2ag+e

Proof. In view of Lemma 6, we can take 8(T) ='C(.(logT)
+e7 %) for x(to) = Yk (to). Since ni(to) < n,(d, tg), from Lemma 7 we have

1j2~ap+e

(7.4) T4 [ nl(to)Yx (£ dto < (log T) +e7KI2
1

Nej;t, let ¢, be any real number for which V(2o =0 holds. Then,

for any seeAylte), the inequality [logl(s)) <K holds for any

56 C(so) = {s| |s—so} = ¥dist(Ay;(to), Q(d, to))}. Hence, at s = s,
Wd/ds)log{(s) < (2m)~* [ llog{(s)l/ls—sol*|ds| < Ca3 K.

) Clsg)

Let R be the square with the edges parallel to the axes, with center a and the

length of the edges 2'\/5 C,3nK. Then, Bohr-Jessen’s argument in the proof
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of Hilfssatz 6 of [3], combined with Lemma 8, leads to the following
estimation:

05) T [odig

T
< T [m(to¥x(to) dio+n~" log (K)- T~ (L(T+1, R)+1).
d _

Wel have already known the asymptotic formulas of L(T, R); (2.10} of [7]
and (4.15) of the present paper. Since W(R) < m(R) < n2K? (see (4.7)), from
those asymptotic formulas we have

_ 2K*4(loglog T) Pri~is+e
T-L(T, R) <" e
(T R) < {ﬂ2K2+(logIog Ty T

if o, <1,
. if O'j}]..

The result of Lemma 12 follows from (7.4), (7.5) and the above.
From (7.2), (7.3) and Lemma 12, we have

T T
(7.6) T_-l ifn-a (ro) dto""' T_l jn: (to) dto
1

<(X(T, N, 8"+ (log TYHETe0T5 1 e~ K2 (1 4 Y(T; N)2)
+nK2logK ’
+n—llog(KJ.(loglogT)—(ZO'I—I)IS'i'S
+e,1 log(K) - (loglog T)_(Gl_l)/z-krj,

where e; = 0 (if ¢; <1) or 1 (if o, > 1). By (6.1} we see

T
]jm T_l !na(to)dto = G(a).

T—w

Hence, if we fix the values of #, K and N in (7.6) and increase the value of T

to infinity, then with (6.2) we have

7.7y  G(a)—G*(a)
<872(N

1-2ag+e

+(N-log N)™***log (6~ 1))
+e K24 K2 log (K)+1.

~CoyK

Here we specify n=¢e %2 50 § =Limy(n, K) > K . Hence we have

(7.8) G(a)—G*(a) < K*¥KTE NITR0 0 | - Kiz gate

Now we assume the conditions (A) and (B). Then we see Y(T, N) <1, so,
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with the above choice of the value of #, we have

T
(79) N (TYT—T"" [n3(to)dto
! 0
g KCasKFe ylamnote g gO2ak pliTe0Te oy p(CNYY) e M2 K24
+e412-K* {(loglog 7)1 " -4 (loglog T) 2™

from (7.6) and (6.1). The above result suggests that the following condition
holds:

(©) : N»K

Under this condition we see & » mj, 50 we can choose
' —(IIZ}CZOK-IOL:NN-C11 loplogN

Cagk

p=Champ=C19Cpqe
Hence we have
(7.10) Z(T, N, p) <(log T)"*"(loglog TY** N

. . . R CrgNiloglog N 1/3
In view of this estimate, we must require N 2° <(log T)'"". Now we
assume

N(C28K+C29|0510gm.

N = [(log log T)/(log loglog T)"]

with a positive parameter ». Under this assumption, by requiring
KACaskre gl = 2m0Te _ o-Ki2 g2+ in the right-hand side of {7.8), we find the
following choice of the value of K;

K = [((22y—1)log loglog T)/(4C,s)log log log log T)].
Then, from (7.8) we have
(7.11)  G(a)—G*(a) < exp((— Ciologloglog T)/(logloglog log T) + &),
and in particular, G*(a) = G(a)+0(1) = 0(1). Hence, from (6.8), we have

T
(7.12) G*(@)—T7* [n}(to)dto K Z(T, N, 4). .
1
Also, under the above choices of N and K, the right-hand side of (7.9). is
estimated by exp((—C;, logloglog T)/(logloglog log T)+¢). Therefore, with
(7.11) and (7.12), we mow arrive at the following estimation: -

No(T)/T~G(a) €Z(T, N, 1) +exp((—Cs; log log log T)/(log log log log T)+3).

Weé note that the above choices of the values of N and K satisfy the
conditions (A), (B} and (C). Finally, it can be easily checked that if we set
v > 2, then Z(T, N, p) <(log T)~*/3*%, (See (7.10).) The proof of Theorem 2
is now completed. ' ' :

icm
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