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Write p,(n) = p(16n+7r). Define k, to be the smallest k for which p,.(k) is
odd. A table of k, is given below: '

r 01234567859 1011
k0010000012 5 2

Next let I, be given by the following table:

r0123456789101112 13 14 15
4547831213 4 27 8 3 4

Suppose p,(n) is odd (alternatively even) for n = ngy(r). We can suppose
no =1, (mod 9) and that 2ny+1 > k,.

Now let N =N, =(3nd+no)/2+k,.. Note that
[6N+r = 16{32+1)/2+k,)+r = 2(mod9), s0
It foilows from (2.2) that, modulo 2,

23)  p(NY+o,(N=1+p(N~24p(N=5)+p.(N=T+-..

T +pr(n0 +kr)+ pr(kr} = 0
(The condition 2#,+1 > k, guarantees that p,.(k} is indeed the last non-zero
term on the left of (2.3))

But the left hand side of (2.3) is odd (there is an odd number (2nrg+ 1) of
terms, the last is odd, the others are all odd (alternatively even)). So we have
a contradiction, and our theorem is proved.

12 13 14 15
0 3

O W

2
0

(16N +7) = 0.
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Finiteness criteria for decomposable form equations

by
J. H. Evertse (Amsterdam) and K. Gy6ry (Debrecen)

1. Imtroduction. Let K be a finitely generated extension field of @, and R
a finitely generated extension ring of Z in K. Let F(X,, ..., X,,) be a form in
m 3> 2 variables with coefficients in K, and suppose that F is decomposable
(ie. that it factorizes into linear factors over some finite extension, G say, of
K). Let b be an clement of K*(') and consider the decomposable form
equation

(1) F(x(,...,%xy)=b in  xy, ..., xp€R.

The decomposable form equations are of basic importance in the theory '
of diophantine equations and have many applications in algebraic number
theory. Important classes of decomposable form equations are Thue equa-
tions (when m = 2), norm form equations, discriminant form-equations and
index form equations. The Thue equations are named after A. Thue [31]
who proved in the case K = Q, R=2, m=2, that if F is a binary form
having at least three pairwise linearly independent linear factors in its
factorization over the field of algebraic numbers, then (1} has only finitely
many solutions. After several generalizations, Lang [13] finally extended
Thue's result to the general case considered above {when K is an arbitrary
finitely gencrated extension of @ and R is an arbitrary finitely generated
subring of X over Z). ' '

In the case that K = Q, R=Z, and F is a norm form, Schmidt [24]
gave a necessary and sufficient condition for F such that (1) has only finitely
many solutions for every be Q% Later he generalized [25] this result by
showing that all solutions of an arbitrary norm form equation over Z belong
to finitely many families (cf. [25]) of solutions. These results of Schmidt were
later extended by Schlickewei [20] to the case of arbitrary finitely generated
subrings R of @ and by Laurent [14] to the above general case (when R is

() K* denotes the set of non-zero elements of K. In general, for any integral domain R,
R* will denote the unit group (i.e. the multiplicative group of invertible ¢lements) of R.



358 _ 1. H. Evertse and K. Gyéry

an arbitrary finitely generated subring of an arbitrary finitely generated field
K over Q).

For discriminant form equations and index form equatlons Gydry (cf.
[3] in the case K = @, R = Z and [7], [8] in the general case) gave general
(and effective) finiteness criteria by using Baker’s method. These led to
various applications in algebraic number theory {cf. Gyory [4], [11]).

Under various restrictive conditions made for F and R, Schmidt [24],
[26], [28], Schlickewei [21], [22], GySry and Papp [12], Gy6ry [4], [5], (6],
[7], [8], [9] and Evertse and Gydry [2] obtained finiteness theorems also for
certain other decomposable form equations.

In Section 2, we shall establish some general finiteness criteria for (1)
and for some more general equations. Let % be a finite set of pairwise
linearly independent linear forms from G[Xi,..., X, ] which contains a
maximal set %, of pairwise linearly independent linear factors of F over G.
We give a necessary and sufficient condition (cf. Theorem 2), expressed in
terms of K, G, %, and % only, such that the equation

@2  Fl(xi, ..., X,) €R™
with I(x,, ..., x,) # 0 for all le.¥

has only finitely many solutions for every be K* and every finitely generated
subring R of K. If in particular & = %,, our result provides a finiteness
criterion (cf. Theorem 1) for equation (1). Our general finiteness theorems
concerning decomposable form equations imply (in an ineffective Torm) the
previously mentioned finiteness results about Thue equations (cf. Corollary
fo Theorem 1), norm form equations (cf. Theorems 5, 6, &), discriminant
form equaticns and index form equations.

The main tool in the proof of our finiteness theorems is the so-called
Theorem on unit equations (cf. Section 4) which was proved independently by
Evertse [1] (in the algebraic number field case} and by van der Poorten and
Schlickewei [17] (in the general case). Its proof is based on the Schmidt-
Schlickewei subspace theorem (cf. [23], [257, [27], [19D).

In case G = K, we shall state the finiteness condition of our finiteness
criteria (Theorems 1, 2) concerning decomposable form equations in two
different ways: one of them follows naturally from the Theorem on unit
equations, and the other shows that this condition is effectively decidable,
provided that K and the coefficients of the forms in % can be given explicitly
(cf. Section 3). Using the latter formulation of our finiteness condition, we
shall show (cf. Section 4) that the Theorem on unit equations is a consequence
of our Theorem 2. Thus the finiteness assertion in our Theorem 2 on
- decomposable form equations is in fact equivalent to the Theorem on unit
equations,

Section 5 is. devoted to applications of our finiteness theorems .on
decomposable form - equations- to norm form equations. We give, as a

X)=b in (%5, -..»
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consequence, another proof for the above-mentioned results of Schmidt [24],
[25], Schiickewei [20] and Laurent [14] on norm form equations. The
finiteness criteria of Gydry [3], [8] concerning discriminant form and index
form equations can also be deduced, in an ineffective form, from our
Theorem 2. We shall not, however, deal with these applications, because
these criteria followed in the same way from some earlier, less general (but
effective or quantitative) versions (cf. [4], [8], [2]) of Theorem 2 concerning

~decomposable form equations,

Our results will be. proved in Sections 6 to 8.
We thank the referee for calling our attention to some simplifications
and necessary corrections in the manuscript,

2. General finiteness criteria, Before stating our results we have to
introduce some notions from linear algebra, Iet K be a finitely generated
extension field of Q, let G be a finite extension field of K, let m be a positive
integer, let ¥ be a non-zero subspace of the K-vector space K™ and let % be
a finite set of linear forms in m variables with coefficients in G. A set of linear
forms {l;, ..., },} with coefficients in G is called linearly (in)dependent on V if
there are (no) oy, ..., %,G, not all 0, such that o, I, + ... +a, /. =0 identi-
cally on V. The subspace ¥ is said to be .,Q"—non—degenerate or S#-degenerate
according as % does or does not contain a subset of at least three linear
forms which are linearly dependent on ¥ but pairwise linearly independent
on V. In particular, V is &-degenerate if V' has dimension 1. We call ¥ an #-
admissible subspace if no form in & is identically zero on V.

In the remaining part of Section 2 it will be supposed that m > 2 and
that G is a normal extension of K. Let F(X) = F(X,, ..., X,) be a decom-
posable form of degree n = 2 with coefficients in K, which factorlzes into linear
factors over G. Let %, be a maximal set of pairwise linearly independent
linear factors of F. \

TueoreM 1. The following two statements are equivalent:

(L.1) Every y-admissible subspace of K™ of dimension
degenerate;

=z 2 is Fy-non-

(1.2) For every subring R of K which is finitely generated over Z and for
every be K*, the equation
Flx)=b in

X =(Xg, ..., Xp) ER™

has only finitely many solutions.

In the case m = 2 we immediately obtain the foHowing result on Thue
equations (see also Lang [13]).

CoroLLARY. Let Fo(X,, X,) be a binary form with coefficients in K which
factorizes into linear factors over G. Then the following statements are
equivalent : '
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(iy Fo has at least three pairwise linearly independemt linear factors in
G[Xls XZ]:

(ii) For every subring R.of K which is finitely generated over £ and for every
be K*, the equation

Fo(xy,x)=b in x,x,eR

has only finitely many solutions.
We shall now state a few extensions of Theorem 1. Let K, G, F, %, be

as above and let now % © %, be a finite set of pairwise linearly independent
linear forms in X, ..., X,, with coefficients in G.

TrEOREM 2. The following two statements are equivalent:

(2.1) Every Z-admissible subspace of K™ of dimension =2 is Fy-non-
degenerate;

(2.2} For every subring R of K which is finitely generated over Z and for every '

be K*, the equation

() Flx}=b inx=(xg,..., X €R™  with I{x) 20 for all le ¥

has only finitely many solutions.

Theerem 2 immediately implies Theorem 1, because all solutions x of (1)

satisfy 1(x) # 0 for all lin .%;. Let R be a subring of K. The following result
which deals with the equation

) Flx)=¢ in x=(xy,..., x,) €R™, eeR* with [(x) # 0 for all le.¥,

Is in fact equivalent to Theorem 2. Two solutions (x;, £,), {x,, &,) of (2) are
called linearly (im)dependent if x,, x, are linearly (in)dependent vectors in K™
Notice that if (2) is solvable and if R* is infinite, then the solutions of (2)
can be divided inte sets, each containing infinitely many pairwise linearly
dependent solutions. . '

Tueorem 2'. The following two statements are equivalent:

(2.1} Every P-admissible subspace of K™ bf dimension =2 is Py-non-
degenerate;

(2.2} For every subr;'ng R of K which is finitely generated over Z, equation (2')
has at most finitely many pairwise linearly independent solutions.

The statements (2.2), (2'2) arc in fact equivalent. (2.2) follows from {2.2)
by observing that R* is fiitely generated (cf. [18]), whence that the cosets in
R*/(R*)" have a finite full set of representatives, & say. Since every solution
{x, &) of (2) is linearly dependent on a solution (x’, ') with ¢'¢ &, equation
(2) can be reduced to a finite number of equations of type (2). (2.2) follows
from (2'.2) by taking in (2) R[b, b~'] instead of R and noticing that for
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every solution x of (2) there are at most finitely many solutions x' linearly
dependent on x; namely those solutions x’ for which x' = px, where ¢" =1
for some geK*,

Let V' be a subspace of K™ If Vis #y-non-degenerate, then we denote
by 5(V, %,) the smallest integer r such that %, contains r forms which are
linearly dependent on ¥ but pairwise linearly independent on ¥ Thus for
Zynon-degenerate V, S(V, %) = 3. If Vis #-degenerate, we put S(V, &F,)
= 2. In [2] we stated without proof that statement (2'.1) implies statement
(2°.2) (with (2'.1) replaced by the obviously equivalent condition that
S(V. %o) = 3 for all #-admissible subspaces ¥ of K™ of dimension .z 2).
Moreover, under the restriction that S(V, #,) =3 for all #-admissible
subspaces V of K™ of dimension > 2, we derived explicit apper bounds for
the number of solutions of (2) and for the maximal number of pairwise
linearly independent solutions of (2. These upper bounds depend on the
choice of the transcendence basis of K over @, as well as on R, b, the degree
of F and the degree of G over K, but not on the coefficients of F. As a
consequence of our results on decomposable form equations, we obtained in
2] explicit upper bounds of the same type for the numbers of solutions of
Thue-Mabhler equations, norm form equations from a restricted class, discri-
minant form equations, index form equations and power integral bases of
algebraic number fields. We remark that effective versions of these quantita-
tive finiteness assertions were earlier established by Gyé&ry [8], [9], [10].

The implications (2.1) —(2.2), {(2.2) —(2.1) in Theorem 2 are easy conse-
quences of Theorems 3, 4 stated below. Let K, G, F, #,, & have the same
meaning as in Theorem 2.

THEOREM 3. For every be K* and every subring R of K which is finitely
generated over Z, the solutions of {2) are contained in finitely many %-
admissible, ¥,-degenerate subspaces of K™

The implication (2.1) —(2.2) of Theorem 2 follows immediately from
Theorem 3 by observing that every subspace of K™ of dimension 1 can
contain only finitely many solutions of (2). The implication (2.2) —(2.1) is
immediate from the next theorem.

TuEoREM 4. For every ¥-admissible, ¥ -degenerate subspace Vof K™ of
dimension > 2, there exist a bK* and a subring R of K which is finitely
generated over Z for which (2) has infinitely many solutions contained in V.

3. Decidability of conditions (1.1) and (2.1). The importance of Theorem
2 is that it relates a statement (cf. (2.2)) about the finiteness of the number of
solutions of decomposable form equations to a condifion (cf. (2.1)) which can
be formulated in terms of linear algebra. The question arises if there exists an
algorithm which decides in a finite number of steps whether condition (2.0
holds. The following proposition gives such an algorithm in case G = K,
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provided that K and the coefficients of the forms in .% are given in an
appropriate form which will be detailed below. Recently we obtained such an
algorithm without assuming & = K. We shall not describe it here.

For any system I of lincar forms with coefficients in K, let ¥ (99 denote
the K-vector space generated by the forms of M If ¥, ..., ¥ are K-vector

’

spaces consisting of linear forms with coefficients in K, then ) ¥ denotes the
i=1

smallest K-vector space containing ¥y, ..., ¥..

~ Prorosimion. Let m, K, G, &#,, % be the same as in Theorem 2, and
suppose that G = K. Then the following two statements are equivalent:

(i) Every f-admissible subspace of K™ of dimension =2 is %y-non-
degeneraie:

(i) The forms in %, have rank m over K and for each proper non-empty subset
,?91 ﬂf 30

(Y (LN (LNL ) F # .

In [8] and [10] it has been explained that every element of K can be
represented by a finite tuple of integers once K satisfies certain conditions.
Fo-r convenience of the reader, we shall shortly desoribe how these represen-
tations are established. The field K has a transcendence basis, say {z,, ...,z }
over @, and can be written in the form K = Q(z,, ..., 7, ¥) where ,yqis’

algebraic over Q(z,, ..., z,). We may assume without loss of generality that
Y+ ot fe v+ =0,

where d. denotes the degree of y over O, ..., z,) and fl,..'., A are
polynom]a]_s in Zfzy,...,z]. We call the tuple (f),...,f)) an effective
representation of K (relative to {z,, ..., z,}). Given such an effective represen-

tation of K, every element o of K has a unique representation (up to sign) in
the form '

(3) a=P0+P1y+...+Pd_.1ydml

where Py, ..., P; are relatively prime polynomials from Z (£, ..., 2,]. The
tuple_(Po, -.s Py) is called an effective representation of a (relativeqto the
effective representation of K considered above). If effective representations of
I_( and a, BeK are given, then it is possible to compute effective representa-
tions of a+ B, a—p, a-f and, if f = 0, «/f. For these and further remarks,
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see [8], [10]. It is now clear that starting with effective representations of X
and the coefficients of the forms in %, one can decide whether statement (ii)
of the Proposition is true. Therefore , in case G = K the Proposition provides
indeed an algorithm for deciding whether statement (2.1) of Theorem 2 holds.

4. Decomposable form equations and unit equations. Using the above
Proposition, it is easy to deduce the following result as a consequence of
Theorem 2. :

THEOREM ON UNIT EQUATIONS. Let K be a finitely generated field of
characteristic 0, I' a finitely generated multiplicative subgroup of K*, and
m =2 an integer. Then the equation

XX+ oo +X, =1  in Xy, X5, ..., Xy €F
has at most finitely many solutions with the property that x; +x,+ ...
+Xx;, # O for each non-empty subset fig, ..., i) of {1,..., m}.

This theorem on unit equations can be obtained by applying Theorem 2’
with G =K, FX) =X, X3 ... Xpu(X,+ ... +X,), & being the set of all
linear forms of the type X; + ... + X, where {i;, ..., i;} is a non-empty
subset of !1, ..., m}. It is easy to verify that condition (ii) of the Proposition
is satisfied for this % and for %o = {X4, ..., Xp, X1+ ... +X,}. Indeed,
rank %, =m over K and for each proper, non-empty subset £, of %y,
V(L) NV (Lo L) N & always contains either the sum of the forms in
%, or the sum of the forms in #,\.%,. The subring R of K, generated
by the elements of T, is finitely generated over Z, and Theorem 2’ together
with the Proposition above imply that the equation

Xy Xg ooe Xp(Xy+ <00 +Xp) =& I0 X = (X1, ..., Xp)€RT, ecR*

with I(x) £ 0 for all le &

" has at most finitely many pairwise linearly independent solutions. Since

I = R*, this proves the Theorem on unit equations. ‘

The theorem on unit equations has been proved by Evertse {1] in case
that K is an algebraic number field and by van der Poorten and Schlickewei
{171 in general. We shall prove our Theorem 3 as a consequence of the
Theorem on unit equations. Hence the above arguments show that the
Theorem on unit equations, Theorem 3, the implication (21) —~(22) of
Theorem 2 and the implication (2.1) »(2'.2) of Theorem 2’ are equivalent
statements. We mention that, for m = 2, the equivalence of the Theorem on
unit equations (in two variables) and the implication (i) —(ii) of the Corolla-
ry to Theorem 1 follow easily from observations made by Siegel in his

paper [30].

4 — Acta Arithmetica L4
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5. Applications to norm form equatiens. Let K be a finitely generated
extension of @, M a finite extension of K of degree n> 2 and G a finite,
normal extension of K containing M. There are n distinct K-isomorphisms of
M into G, oy, ..., 0, say. Let «;, ..., &, (m:>>2) be elements of M which are
linearly independent over K and consider the linear form [(X) = o, X, + ...
+ 0y X Fori=1,...,n we put (X) =a;{0,) X, + ... +0;(2) Xn. Then

N, X+ ... +6, X0 =[1"X
i=1
is a norm form with coefficients in K. Let ¥ be the K-vector space generated
by ay, ..., %, in M. We say that ¥" is degenerate if there exist a pe M* and
an intermediate field M' with K & M' £ M such that uM’' = ¥". We shall
now deal with the norm form equation

4) Ny x,+ ... +oxg=5b in  x,...,x,eR,

where b K* and R is a finitely generated subring of K over Z. For K = @,
R = Z, Schmidt [24] proved that {4) has at most finitely many solutions for all
be @* if and only if ¥ has no a subspace of the form pM', where e M* and
M’ is a subfield of M different from @ and the imaginary quadratic number
fields. An easy consequence of Corollary 1.1 of Schlickewei [20] is that in
case K = @, (4) has at most finitely many solutions for all be @* and all
finitely generated subrings R of Q over Z if and only if ¥ is non-degenerate.
Laurent [14] extended Schlickewei’s resalts [20] to the case when K is an
arbitrary finitely generated extension of Q and R is an arbitrary subring of X
which is finitely generated over Z. ' '

We shall derive Theorem 5 below, due to Laurent [14], from our
Theorem 2. We remark that Theorem 5 was earlier claimed without proof in
our paper [2], p. 13.

TuroreM 5. The following two statements are equivalent:

(5.1) ¥ is non-degenerate;
(5.2)  Eor all beK* and all subrings R of K which are finitely generated over
Z, equation (4) has only finitely many solutions.

One can assume without loss of generality that ¢, =1 and that M
=K(ay, ..., ®,) when IV, ™ are pairwise linearly independent. We
shall derive Theorem 5 from Theorem 2 by showing that for %,
= {1, .., "), the %y-admissible, .Z,-degenerate subspaces of K™ are
exactly those subspaces V of K™ for which

(5) : UV = {10 xe V) = uM’

for some peM* and an intermediate field M' with K S M’ S M such that
pM' S UK™) = ¥ Since here dimV =1 if and only if M’ = K, stdtement
(5.1} is equivalent to statement (2.1) with ¥, = & = {KV . ™,
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Using Theorem 3, one can show that the solutions of (4) are contained
in finitely many subspaces ¥ of K™ of the type (5). We shall derive a more
general result from Theorem 3. Suppose that K and M have the same meaning
as above. Let R be a subring of K which is finitely generated over Z and has
K as its quotient field. Let %t be a finitely generated R-module contained in
M. Let ¥ be the K-vector space in M generated by the elements of ¥ For
any intermediate field M’ with K S M' S M, let Ry denote the integral
closure of R in M’ and U, the multiplicative group of elements & of R%- with
NM','K (f:) = f.

THEOREM 6. For every beK*, the set of solutions of the equation
(6) ' Nux)=b in peI

is the union of finitely many sets of the type (' Uy} N W where ' is a solution
of (6} and M’ is a field with KSEM' M, y M =¥ ‘

If the vector space ¥  generated by the elements of M in M is non-
degenerate then, by Theorem 6, all solutions of (6) are contained in finitely
many sets of the form (¢ Up) n M= (¢ {1}) n M= {g'}, ie. (6} has only
finitely many solutions. Thus the implication (5.1)~(5.2) of Theorem 5
follows at once from Theorem 6.

Laurent [14], Th. 8, proved the following generalization of Theorem 6
which is in fact equivalent to Theorem 6. For any subgroup E of R¥, U g
denotes the multiplicative growp of elements & of R¥ with Ny x(e)e E.

THeorEM 6. For every beK* and every subgroup E of R*, the set of
solutions p of the equation

(6" Ny =vb in  pe, vekE,
is the union of finitely many sets of the type (W Upp g} "M, where (' is a
solution of (6 and M’ is a field with KEM'SM, yMZ ¥

Theorem 6 follows from Theorem 6 by taking E = {1}. Theorem &'
follows from Theorem 6 by observing that E/E" is finite, whence that (6') can
be reduced to a finite number of equations of type (6), and that Uy S Uy -
As Laurent pointed out (cf. [14], Th. 9), in the case K = Q Theorem 6
implies the classical results of Schmidt [25], Th. 1 {see also f28], Ch. 7, Th.
4B) and Schlickewei [20], Th. 1.2, on the finiteness of the number of families
of solutions of norm form equations. We remark that Laurent [14] obtained
Thecrem 6 in another way, as a consequence of his general finiteness
theorem concerning intersections of a subvariety of a linear torus ¥ with
subgroups of finite rank of ¥

6. Proofs of Theorems 3 and 4. In the proof of Theorem 3 we shall need
the following consequence of the Theorem on unit equations.
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Lemma 1. Let K be a finitely generated field of characteristic 0, let T be a
finitely generated multiplicative subgroup of K*; and let t = 2 be an integer.
Then the solutions of the equation
x)el™

(N X+ .. +x,=1 in (x,...,

are contained in finitely many proper subspaces of K.

Proof, The solutions of (7) having some non-zero subsum obviously
belong to finitely many proper subspaces of K'. Further, by the Theorem on
unit equations (cf. Section 4), the solutions of (7) with no non-zero subsum,
being finite in number, are also contained in finitely many proper subspaces
of K'. This proves Lemma 1. =

Let K, G, F, m, ¥,, % have the same meaning as in Theorem 2. Let
beK* and let R be a subring of K finitely generated over Z. Theorem 3
follows immediately from the next lemma by taking W = K"

Lemma 2. For every subspace W of K™, the solutions of eguation (2)
belonging to R™ ~ W are contained in at most finitely many ¥-admissible, -
degenerate subspaces of W.

Proof. We shall prove Lemma 2 by induction on r = dim W. The case
r=1 is trivial. Suppose that Lemma 2 is true for all r < p, where p =2
(induction hypothesis), and let Wbe a subspace of K™ of dimension p. If Wis
Zy-degenerate, then there is nothing to prove. So suppose that Wis #,-non-
degenerate, and that equation (2) has a solution in W, Then there exist linear
forms g, I, ..., I, in %, which are pairwise linearly independent on W such
that

, .
Y ¢ h(X)=0 identically on W

i=0

for some cq, ¢y, ..., ¢, G*. Let t be the smallest integer with this property.
Since by assumption Wis #,-non-degenerate, we have t 2 2. Every solution
xe R"n W of (2) satisfies

i 3
e li{x)
(i)
i;]_ . Co "0 (x)
Let I' be the unit group of the smallest extension ring of R _which contains b,
the ¢;, their inverses as well as all the coefficients of the linear factors of F.
Since- this extension ting is finitely generated, I' is also finitely generated.

Further, for every solution xeR™~ W of (2), the numbers ¢ (x)/co o (x)
belong to I'. Hence, by (8) and Lemma 1, the vectors -

(= ek Ve lo®), ..~k (o o))
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belong to finitely many proper subspaces of G'. If Vis such a subspace of G*
and if (—¢y Iy (x)fco lo (x), -.., —¢, L (x)fcolo(x))e Vthen there are d;eG, not all
zere, such that

Lo el (x)
Lhem "
whence
(9) )': dic) I (x) =

But by the rmmmahty of ¢, E {d; c;) I; (X) is not identically zero on W Hence

the xe W satisfying (9) belong to a proper subspace of W. This shows that the
solutions of {2) in R™n W are already contained in at most finitely many
proper subspaces of W. Together with the induction hypothesis this com-
pletes the proof of Lemma 2. a

Proof of Theorem 4. K, G, F, #,, % will have the same meaning
as in Theorem 4. Let V be an .%-admissible, % ,-degenerate subspace of
K™ of dimension 2> 2. It will be enough to prove Theorem 4 in the
special case V=K" (with m=2) and I(e,)# 0 for all le% where
e¢=(0,...,0,1,0,..., K™ with a 1 on the ith place. Indeed, suppose
that dim V'=r < m. Then there exists an acV with I{«) # 0 for all [ in &
and a bijective linear mapping A: K" — V such that A(e}) = a, where now "
¢ =(1,0,...,00eK". Let

Lo ={1(AX): 1e¥,), £ ={(4X): le&)

(with X being an abbreviation for (X,, ..., X,)) and F'(X) = F{4X). Now K"
is #,-degenerate and I'(¢}) 5 0 for all I' in .&". If the equation

F(f)=b inXeR with [F{® 0 for all I' in &
has infinitely many solutions for some be K* and some finitely geperated
subring R of K over Z, then it follows at once that (2) has infinitely many
solutions in x&R™ NV, provided that R contains the entries of the matrix
of A : '

Henceforth we shall assume that K™ (with m = 2) is %,-degenerate and
that I{e;) # 0 for all I in %, Then

(10) F(X) =bo Fy (XI"" ... F,(X)*
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where Fy, ..., F, are irreducible decomposable forms in K[X] with F,(e,)
=1and a,eNfor i=1,...,t and boe K*. We may assume without loss of
generality that all forms [ in % satisfy I(e;) = 1. Let t, ..., ¥ be linear
factors of Fy, ..., F,, respectively, belonging to .#, and let K be the smallest
extension of K containing the coefficients of [}, i =1, ..., t. Then we have
degF, = {K,:K] for i=1,...,t Put [K;:K]=r and suppose that r; > r,
> ...2r.Letr=r+ry+ ... +r,. For 1L i<t and 1 <j < we denote
by ¢,j> the integer ry+7ry+ ... +r—+j if i=2 and j if i=1. For
1<i<t, let gy, ..., 0, be the distinct K-isomorphisms of K; in G. Let
ls ..., | be the forms in %, and suppose that these forms are ordered such
_that l; ;5 = g;;(1#). We call a vector &= (xy, ..., #J€G" -admissible if there are
a¥eK,, ...,a¥e K, such that ag;, = a;; (@) for 1 i<, 1<j <r;. Then for
k=1,..., m the vectors {I; (e, ..., () are admissible. For 1 <i<t, let
{eny, ..., ;,} be a K-basis of K; and let the r xr mattix 2 be defined by

o=|
0 Q,
where, for 1 <i<1t, £ is the r, xr; matrix given by
oplwy) - onlwi,)
Qi 5ol PR
ai,l'j (wil) . ai,r,- (wi.rl-)

It is easy to see that
(11) 2eG" admissible < af = Q87(* for some BeK’.
Let A be the r xm matrix '

L) .. hilew

...........

lr(el) L(fm)
Then there exists an rxm matrix M, with entries in K, such that

(12) | A=QM.

We are now in a position to prove our theorem under the restrictions
we made before, namely that V = K™ and that I{(¢;) =1 for all [ in ¥ %,
contains exactly r pairwise'linearly independent linear forms. By the assump-
tion that- K™ is % ,-degenerate, these forms are linearly independent. Hence
r < m. We distinguish two cases: :

(%) We denote by BT the transposed matrix of a matrix B.
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First suppose that r < m. Then there exists a vector ycK™\ {0} with
My" = 0. By (12) we have Ay’ =0, whence L{(y) =0 for i=1,...,r. Put
x;, = ¢, + iy for all AeN. It follows from (10) that

F(x;)=F(e,) =b, for all ieN.

Further, there are only finitely many A in N such that
I(x;) = le)+A(» =0

This proves our theorem with b = b, and R being the ring generated by the
coordinates of y over Z.

Suppose now that r = m. For any integer i with 1<i<¢ and r; 22
there is an n; €K¥ such that Ng x(m) =1 and that g;(n)/o;; (n) is not a
root of unity for j, j’e {1, ..., r;} with j # j’. Indeed, choose #{e K; such that

for some le &

. K; = K(n}). Let w be the number of roots of unity in G and let s be an

integer with s> wr?. Suppose that for each v in {0, 1,..., s} there are
g jell, ..., r} with j# j and a root of unity ¢ in G such that

o (m+v)fo; (ni+v) = ¢

By our choice of s, there are v,, v, in {0, 1, ..., s} with v, % v, and J, j in
1, ..., r;) with j = j such that

oy (1 + v1)/oy (i + v1) = 0350+ va)/ oy (i + va).

This implies that o;;(n}) = o,; () which contradicts our choice of #;. Hence
there is an element g, in K; such that 6,;(no)/a:; (0:) is not a root of unity
forj,j in {1, ..., r;} withj # j’. It is now obvious that #; = ne/N &y/x (Moi) satisfies
the required conditions. ' '

Let to = O be the greatest integer for which r, 22 If £, <t—1, then
there are pairwise distinct rational integers h, 41, ..., Iy such that

t

13) | Y ah=0.

_ I=1g+1
(For instance, we 'may take b =a,-1 for l=ty+1,...,t—1 and h,
= — lil a;-1). Take (,’IEK* such that ¢ is not a root of unity. It is easily
seen ':.1;;: 1thf:m are non-zero rational integers h,, ..., b, such that il we
define &,, ..., &, by

(iu('h))ki for
Eap=19¢" . for
U for
then &,/¢, is not a root of unity for p, ge{l, ..., m} with p #q.
Let now a,; =& for p=1,...,mand 2 =1, 2, ... Then the vectors a;
= (0tyz, .-, Omy) are admissible and pairwise distinct. Since r = m, the matrix

i<toand j=1,...,r;
i>tyand j=1if rg<t—1:
i>r0 andj=1 iff():f—l,
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A 1s invertible. Hence for every le N, there exists a unigue x; € G™ such that
(14) Ax] = of.

Further, by (11) there exists a ;e K™ such that & = Q8. This together with
(12) shows that

Mx] = f.
Hence x, eK"™. Moreover, x, eR™, where R’ denotes the ring generated by
the entries of A~ ! and by the coordinates of the vectors &, (¢ N), The ring
R’ is obviously finitely generated over Z. Hence there exists a ring R = K,
containing R’ N K, which is finitely generated over Z. Thus x; e R™ for ie N,
and, by (14), the x; are pairwise distinct. By (13) we have

t N

ITITedpa=1

i=1j=1
which together with (10) and (13) implies
F(x)=b, for all ieh.

We shall now show that for all but finitely many 4, I{x,) # 0 for all / in
Z. Let le%. Sinee L,...,1, are linearly independent, there are
€1y .ory CyE G, at least two of which are different from zero, such that

for all Ae N

I{X)= ) ¢, 1,(X) identically in X =(X;, ..., X,).
p=1
Suppose l{x;) = 0. Then
(15) Y ¢yt =0,
p=1

We recall that a,, = ¢} for p=1, ..., m and that £W/E, is not a root of unity

for p, qe {1, ..., m} with p # ¢. Putting now u; = ¥, ¢,&2 for Ae N, (15) can
be written as i |

(16) Cu, =0,

The sequence {u,}; is however a non-degenerate, homogeneous, linear
recurrence sequence {(cf. [29]}. As a consequence of the Skolem—Mahler-Lech
theorem (cf. [15], [29]), (16} has only finitely many solutions in Ae N. This
shows indeed that I(x,} # O for all but finitely many AeN. By repeating the
above argument for each 7 in %, one completes the proof of the theorem. =

7. Proofs qf Theorems 5 and 6. Let K be a finitely generated extension
of @, 'M a finite extension of K of degree n>2 and G a finite, normal
extension. of K which contains M. By I(X) we shall denote the form oy Xy
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4+ .. to, X, where 2< m<nand oy =1, a,, ..., a,, are K-linearly inde-
pendent elements of M such that M = K(«,, ..., «.). Let ¢, ..., 6, be the
K-isomorphisms of M in G and put M(X) = o;(a;) X, + ... +0; (et} X, for i
=1,..., n Finally, let %, = {{), ..., I}, As we already observed after the
statement of Theorem 5, Theorem 5 follows at once from Theorem 2 and
Lemma 3 below.

LEMMA 3. Let V be a subspace of K™ with V s (0). Then the following two
statements are equivalent:

(i) Vis #o-admissible and #y-degenerate,

(i) {(¥)=puM for some pel(V)\{0} and
KEMEM.

Proof. First we shall prove the implication (i) — (ii). Let V be an %-
admissible, #,-degenerate subspace of K” and choose ucl(V) with p# 0.
Put W' = (V) and W = u~ 1 (V). Then both W and W’ are vector spaces
over K. Further, te Wand W, W’ have the same dimension over K which
will be denoted by p. Let M’ 2 K be the smallest subfleld of M containing W,
and let [M’: K] =gq. Then g = p. The vector space W has a basis of the form
[w, =1, 0, ..., w,) over K. Let L{Y) =w, ¥, + ... +®,Y, and put ?(Y)

some field M' with

P .

= Y oi{w)Y, for i=1,...,n Among these linear forms there exist g

j=1

pafrwise linearly independent forms, LV, ..., L'? say, such that any other
form LY with j> g is linearly dependent on one of the forms in £,
={LM, ..., [¥}. It follows from (i) that K* is #;-admissible and Zo-
degencrate. Therefore IV, ..., L@ are linearly independent. This implies
however that g < p and hence that ¢ = p. Consequently, M' = Wand so I(V)
= uM’ which proves (ii).

We shall now show that (if) — (i). Suppose that /(V) = uM' for some
pel(V) with g+ 0 and some field M' with K = M= M. Then Vis %~
admissible. We shall prove that V is % -degenerate. Let g = [M":K]. We
rearrange the K-isomorphisms of M in G such that the distinct K-isomor-
phisms of M’ in G are exactly the restrictions of ¢,, ..., 6, to M’, respectively,
while tor g+ 1<i< n, the restriction of ¢; to M’ is equal to one of the
restrictions of oy, ...,0, to M. Hence for g+1<i<n [© is linearly
dependent on one of the forms IV, ..., 9 on V. The forms IV, ..., I are
linearly independent on V. For suppose that there are elements 84, ..., f, in
G, not all zero, such that f,/+ ... +B 19 is identically zero on V. Then,

WIth B:’ =ﬁl'a-f(l"l) (l = 1: mees Q),
Bro, O+ ... +B,0,(0)=0 for all LeM'.

This implies however that for any K-basis {w, ..., @,} of M, the determi-
nant of the matrix (o,(w;)) is 0 which is impossible. It follows that V'is %5-
degenerate. This completes the proof of (i) a



372 1 H. Evertse and K. Gyéry

We shall now derive Theorem 6 from Theorem 3 and Lemmas 3, 4. Let
‘R be a subring of K which is finitely generated over Z and has K as its
quotient field. Let I < M be a finitely generated R-module. Let %" be the
K-vector space generated by the elements of Y% Then ¥ has a K-basis
{1, .0y Uy such that ME M = Ro,+ ... +Ra,,. This can be seen by
taking a set of generators of X over R, f, ..., B, say, and finding a set of
K-linearly independent elements «y, -.., a, of ¥ such that the f;, can be
expressed as linear combinations in the a; with coefficients in R. We may
suppose without loss of generality that @, = 1. For m = 1 Theorem 6 trivially
holds with M’ = K, hence it suffices to consider the case m = 2. Further, we
may assume that M = K(x,, ..., «,). The solations of the equation

(6) N MIK () =5

in x9N’ are, by Theorem 3 and Lemma 3, contained in at most finitely
many sets of the form uy M, where 03 pu,eDV and M' is a field with
K S M' = M such that yy M’ S #°. But then the same finiteness assertion
bolds for all solutions pe M of (6) with 0 £ pye M which are now solutions
of (6). Therefore it suffices to show that for every set to M* of the type just
mentioned, the solutions of {6} in iy, M’ 9K are contained in finitely many
sets of the type (4’ Up) n I, where ' is a solution of (6) in M and U,
is the multiplicative group of units ¢ in the integral closure R, of Rin M'
with Nye(®) =1. Il now pepaM nIM is a solution of (6), then
olpeM Augt M and Nagyg (g ' 1) is equal to one of the dth roots of
Nk (o)™ ' b, where d = [M:M’]. Hence the assertion follows from the
following lemma with the choice W' =M nuz! M, & = ugt p.

LemMa 4. Let I be a finitely generated R-module in M’ and let b’ eK*.
Then all solutions of the equation

(17) | Nuyx (&) = b

in éeM

are contained in finitely many subsets of the Jorm (&' Uy ) WIR', where & is a
solution of (17).

Proof. Our proof of Lemma 4 will contain similar arguments as those
used by Laurent [14] in the proof of his Theorem 8. For convenience of the
reader, we shall give the complete proof of Lemma 4. As before, Ry and Ry
denote the integral closures of R in M’ and in K, respectively.

By a theorem of Nagata [16], Ry and R,y are finitely generated over Z.
Further, they are integrally closed (in their quotient fields). Hence on both
fields K, M’ there exist sets of additive valuations My, My respectively,
having the following properties: .

(18) Re= (N {#eK: v,@ 320}, R, =

ey

N faeM: ¥,@) =0}
Ve dpy .
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and
for aeK*, v,(x) # 0 for all but finitely many v, € My,
(19) for aeM™, V(o) 0 for all but finitely many Vo€ My

Further, every V,&.#), is an extension of some v, e_J_tK. If ¥, is an
extension of v, to M' we write }|p and we say that P divides p. For every
v,e.fy and every {eM™ we have

(20) vy (NM’(K (5)) = Zf\ﬁ V\u(‘f);
pLTY
where the sum is taken over all P dividing p, and where the f,, are positive
integers, the residue class degrees of the ‘¥'s with respect to M'/K.
For all solutions & of (17) and for every v,e .#, we have by (20}

(21) Z.ﬂu Vy (&) =0, (b).

B

Since M’ is finitely generated over Z, there are integers cy (Vy € #,p), only
finitely many of which are non-zero, such that ¥, (£) = ¢, for all { e . But,

by (19), at most finitely many of the integers v, (b} are non-zero, hence (21}

implies that there are only finitely many distinct tuples (Vu(é_):Vﬁs.{(m,)
with ¢ &0 satisfying (17). In view of (18), two elements #,, n, of M™ :,atxsfy
V() = V(o) for all V€ #p if and only if fz = &ty for some £ eR}Y-. All
solutions of (17) are therefore contained in finitely many sets of the type
& RYpy with &'e M'™*. We may assume that ¢ is a solution of (17). Then fo_r
any ¢e R for which &¢ is a solution of (17) we have Ny x{e) = 1. This
shows that all solutions of (17) are contained in finitely many sets of the type
(&' Up) 0BV, where & is a solution of {17). =

8. Proof of the Proposition. We shall establish two lemmas which are
more general than necessary for proving the Proposition. We shall need these
i later paper. ‘
lemm&lf; ;Illla?l use thIe): sime notation as in Section 2. In partic_:ular_, Kisa ﬁe_ld
which is finitely generated over Q and G is a normal extension of K of finite
degree g. For any linear form I(X) =a; X;+ ... +et,, X, with TR o, €G,
the forms M9(X) are defined by o;(x)X:+ ... +01 (0 X (= 1,...,g),f .
where oy, ..., 6, are the distinct K-automorphllsms Ofn G If & 1s a setnod
linear forms in G[X . .... X, we put & = {K0: [e %], The set &is ca 1e1
self-conjugate it = 9V =P = =99 Incase G=K, 41 trlylag
self-conjugate, The rank of a set & of lin_ear forms with <_:oefﬁc;1ents in 9:’
denoted by rankg (%), is defined as the max1mle|1 number of hnea{ forms'm 7
which are linearly independent over G. Let ¥"(:%) be defined as in Section 3.

j linear forms in
5. Iet & be a self-conjugate set of' _ r ;
G [XI:E[_M.*AX Wl Then ¥ (%) has a basis of linear forms with coefficients in K



374 J. H. Evertse and K. Gydry

Proof. Let {w,, ..., ,} be a K-basis of G and let /(X) & &. Then there
are linear forms k,(X), ..., k,(X) with coefficients in K, such that Ix

g g

=121 w;k;(X). Since & is self-conjugate, the forms [ (X) = Y. oi{w)k(X)
= jal

(i=1,..., g) also belong to &. However, the determinant of the matrix with

entries ¢;(w;) is non-zero. Hence k, (X), ..., k,(X) can be expressed as linear
combinations of I'V(X), ..., 1(X). Therefore ¥ (%) is generated by linear
forms with coefficients in K. This implies that ¥"{%) has a basis of linear
forms with coefficients in K. w

LemmA 6. Let A, A7, Ny, Ay, ..., Ny be finite, non-empty sets of
non-zero linear forms in G{X,, ..., X,] (s =1, r = 2) such that

(22) N is self-conjugate, & A", ¢V=JVOU./V1 U ALy,

. s—1 .
(23) 522 then v'(H4)A(Y YA =0 for i=0,...,5—1.
&l

Then there exists an A"-admissible, - -degenerate subspacé of K* of dimension
= r—rankg () +s.

Proof. We shall prove Lemma 6 under the additional assumption that
{(24) for each i in {0,...,s—1} and h in {1, ..., g}, there is an i in

{0, ..., s—1} with 4 = 4. '

For s=1 or g=1, (24) is trivially true. We shall now show that
assumption (24) is no restriction when s> 2 and g > 2. To this end, we
define sets A; (k=1,...,g, j=0,...,5—1) by

Ay =M:’mﬂj)r\ RNV &'

LI

where j =i, s*"' i, "3+ . +i with integers 0 < i1, ..., iy <s. Since A"
is self-conjugate, we have the relations

s—1 :
(25) Ny = Uo/Vk.sﬁq for k=2..,g;j=0,.. s 1.1,
q=v .
We shall show by induction on k that
-1
(26) PV (Y V(M) =(0) for i=0,.. 5~1.
r=0

r#El

By (23), (26) is obvious for k =1. Suppose that (26) has been proved for
k=p—1, say, where p>2 Let k=p and 0<i < s’—1. Write i=5+q,
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where 0 S g<s—1 and 0" —1, Let

sP~1
le ¥ (N ) (Y, P (N0
ot
By (25) there are forms ) in ¥ (A4 (0Kt <s—1, t#¢) and [ in

P |

Y #7(t,-1.) such that

u= 0
" s—1 -
I= % L+
1=0
14
s=1
The form {— Y I belongs to
=
sl
P (A e )N Y P (A 1)
ue Q
‘ u#j
’ s—1
Together with the induction hypothesis, we obtain /= ) [. We have,
t=0
ttq

however, le ¥ (4P), L ey (A®) for t + ¢ and, by (23),

s—1
A%2 ¥lalt ;ﬂ PA{AHP)) =(0).

This proves that /= 0. Hence (26) holds for k = p.

Another consequence of (25) is that for k=1, ..., g, at least s sets
among the .4 ; (0 < j < s*—1) are non-empty. In view of (25), (26) it foliows
easily that (22}, (23), (24) are satisfied if A7, ..., .#.; are replaced by the
noﬁéempt'y sets among .40, ..., .4, ;. Since there are at least s of such
non-empty sets, it suffices to prove Lemma 6 for these non-empty sets,
instead of .17, .. .

~  From now on, we shall assume that 4, ..., A7, satisfy {24), too. Let
AF @=0, ..., s—1) be maximal subsets of A%, ..., #,— respectively, such
that the forms in .#%* are linearly independent and for all i in {0, ..., s—1}
and hin {1, ..., g}, #*? is equal to one of the sets A7, ..., /¥ . Then,
by (23), the forms in A™* = 4% U ... u.#%. are linearly independent. For i
=0,..., s—1 we construct spaces #7; of linear forms in G[X, ..., X,] as
follows. Let

.,:i’s...l.

HE= Ay ok} (=0, ., 5= 1)

If A¥® = 4% say, then we assume that [, is obtained from [, by applying



376 J. H. Evertse and K. Gy6ry

o, to the coefficients of I, for p=1, ..., r (=r). Put #;=(0) if r, =1
and if r; = 2, let #; be the vector space over G generated by the forms

ba—& kg, ..., by =&l for certain &, ..., &, €K which can be chosen
50 that

Q@n W= WP 0 NP = A

and

(28) (Wot ... + W) A" = Q.

Indeed, if ro = ... =7, =1 then (27), (28) are trivially satisfied. Suppose

that r; 22 2 for some i. Condition (27) can be satisfied by choosing the &,’s so
that §;, = &, whenever A4} = 47*® for some h. Further, it is easily seen that
in view of the linear independence of the forms in .#* and the finiteness of
A", we can choose the tuple of £;,’s to satisfy also (28). Putting # = #/,
+ ...+ ¥y, let Vbe the K-vector space defined by

V= {xeK" l{x)=0 for all le#"}.

By (27), #is self-conjugate. This implies together with Lemma 5 that %" has
a basis of linear forms with coefficients in K. Hence V has dimension

r—rankg (#) = r—(rankg (4™*) —5) = r—rankg (N)+s.

From Lemma 5 and from the fact that %" has a basis of linear forms with
coefficients in K, it follows that the linear forms in G[X,, ..., X,] which
vanish identically on V are exactly those belonging to #". Together with (28)
this shows that ¥ is .4#"-admissible. We shall complete the proof of Lemma 6
by showing that V is .4#'-degenerate. Firstly, all forms in .4 are linearly
dependent on I, on ¥ for i=0,...,5—1. Secondly, lors -y Ly y are
linearly independent on V. For suppose that aglyy+ ...+ Ly, =0
identically on ¥, that is that agloi+ ... +a_, li—y, €% for some
%o, ..., % ; EG. Since the forms in A* are linearly independent, we have
%lige#;for i=0,..., s—1. In view of (28), this implies however that ot = ()
for i=0,.,.,5—1 which completes the proof of Lemma 6. =

Proof of the Proposition. Next suppose that G = K. First we prove
the implication (i) —(ii). Suppose that (i) holds, If rankg (#,) < m, then, by
Lemma 6 with r=m, s=1, there exists an $-admissible, .%,-degenerate
subspace of K™ of dimension > m—ranky(%,)+1 = 2 which is impossible,

Hencerank (%) = m. Suppose that there exists a proper, non-empty subset %,
of 'EPO with .

(29
where

YNE =0,

60 V= V(L)Y (Lo\ L)
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Let ¥ be the subspace of K" defined by
V={xeK™ l(x)=0 for all I in .

There are no linear forms in K[X,, ..., X,,] vanishing identically on ¥
other than those in #". Hence, by (29), Vis #-admissible. Denote by r the
dimension of V. Since, by (29), (30), dim ¥ < m, we have r = m—dim ¥ > 1.
Let A: K" -V be a bijective finear mapping. For any set & of linear forms
in K[X,, ..., X,,], put

L1 = {lA: e #.

Then ¥ = (0) and, by (29), no form in %4 is identically zero. Further, we
have by (30)

V(LY NV (Lo\ L)) = (0).

Since %4 and (%,\.%,)* are non-empty, this implies that (%,\%;)*
= i\ 2. Thus

(P V(LI P = (0),

where both sets .%{, %4\ %4 are non-empty. But these sets consist of linear
forms in r variables, hence r 2 2. Moreover, %3 is self-conjugate. Together
with Lemma 6 this implies that there is an #“-admissible, #7-degenerate
subspace W of K" of dimension at least 2. This shows that AW is an .%-
admissible, % -degenerate subspace of V of dimension = 2 which contradicts
assertion (i) of the Proposition.

We shall nhow prove the implication (3i) — (i). Suppose that (ii) holds. Let
¥ be an #-admissible subspace of K™ of dimension r = 2 and let 4: K" =V
be a bijective linear mapping. Then no form in %4 is identically zero.

. Denote by %, a maximal set of pairwise linearly independent linear forms in

4. Since rankg (%o} =m, we have rankg(#3) =r and hence #; has
cardinality at least 2. Let %% be a proper, non-empty subset of .#5. Let $1
be the largest subset of %, with the property that each form in 2 is
linearly dependent on one of the forms in .%;. Then each form in (£, \ #,)*
is linearly dependent on one of the forms in %} \ % . From (ii) we infer that

PN (LNL) N PA=5 (LD ¥ (L\NL n# £,
Thus ‘
1 (L) NP (Lo L) # ().

Therefore, there are linear forms Iy, ..., ,e Z1, Lyv1, -, LELONFL (> P

2= 1) such that
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q
Za,-li=- Z ailj?ﬁoa

i=1 i=p+1

whence

Since the forms in .%#§ are pairwise linearly independent, we have g3 3.
Hence K’ is #,-non-degenerate. This implies however that V is %,-non-

q

Z acil;=0

i=1

with non-zero o; €K for i=1, ..., q.

degenerate, which completes the proof of our Proposition. a
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