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Introduction. Let p be a prime number and Q, the field of p-adic
numbers. Every element ae Q, has a unique representation as a power series
in p,

a= 3 ap, aecl0,1,.., p-1}L

Rl eEe)

It is well known that a p-adic number « = 3 & p' is rational if and only
—w<i

if the sequence of coefficients a; is periodic from some index i on. This

equivalence relation is a characterization of the field of rational numbers @

in @,. It is natural to ask whether or not a similar relation holds for an

algebraic number field of finite degree over Q. The purpose of this paper is

to investigate this question.

1. Sufficient conditions. Now we introduce the following notation. Let k
and O be an algebraic number field of finite degree over Q and the ring of
algebraic integers of k respectively. Throughout the present paper, p denotes
a fixed prime ideal in ©O. By | |, we shail denote a so-called normalized
multiplicative valuation corresponding to a divisor qof k. If q is a prime
ideal, | |, is non-archimedean; if q is one of the archimedean divisors pe,; (i
=1,2,..., 7, +r), | |, is archimedean. Here, r, and r, denote the number of
real archlrncdean divisors and that of complex archimedean divisors respect-
ively. By a residue system we mean a complete residue system, containing 0,
of the ring O modulo p, and by a prime element we mean an element w of k
such that |w|, = N, ', here, N, denotes the index [D:p]. Let k, be the
completion of k with respect to | |,. If we choose a residue system S and a
prime element w, every element o of k, has a unique representation as a
power series in w, = 3, &', &S We say that the power series has

~ o0 <&
periodic coefficients when there exist integers y > 0 and v such that g; = a;,,

for alt i = v. If y, > 0 is the smallest integer such that a; = a;,.,, for all i =,
then we call 7, the period of o. We say that the equivalence relation E (w, S)
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holds when, for any aek, (o= 3 @', q8), o belongs lo & il and only if
the sequence of coefficients g; is periodic. When the sequence of coefficients a;
is periodie, then « belongs to k clearly. So we shall study whether or not the
representation of any element o« = 3 g,w'ek has periodic coefficients.
— i &l

THEOREM 1. Suppose that there exists u prime element w satisfying el
2 1 for all non-urchimedean o #p and e, > for alli=1,2, ... r+r,.
Then E, (w, S) holds for all S.

Proof. It is sufficient to prove that the series representation of any uek
has periodic coefficients. Take a residue system S. Without loss of generality,
we may assume that ek is a p-unit, a = Y g0 (4685, ay # 0). Let o,

i=0
(m=1,2,3,..) be the sequence defined by
= l—{agta, o+ . a0t 0 ek,

If qis a non-archimedean divisor such that lewl, = 1, then

), = la~(ag+a 0+ .. +a,. 0",
< max el aol.. fag ol oo, et
€ max {lel, 1], for all n =1,

If qis a non-archimedean divisor such that lenl, > 1, then

let, ), < max e ™", e ™", lay 07 Y L gy 07 o
€ max jjee ™", o™, o7 Y, L Jo )
= max faw ™", o7 for all n2= 1.

Now let Ms denotes the real number max lal,, laes, i=1,2,..., ri+r}.
If qis an archimedean divisor, then

lotad S o™ A lag 07y lay 07 4 L ko, w7,
< fa ™"+ Mgl (ol " L el 1)
< Iotw"‘lq-!-Mslmf.;"l (1=l L=t
= e ™"+ Ms{lel,— D" for all n=1.

In case q=1p, as every a, p-integer, we have led, €1 for all nz 1
Therelore every =, is included in some compdct subset of the adele ring R (k)
of k. Since k is a discrete subset of R (k), we have &, = a, for some natural
numbers 4, 4 such that u < A. Then

a=ag+a 0t .. +a, ot 0f

=dotarw+ a0 a0t o or T e, 0,
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so that the series & = ), @' has periodic coefficients from u on. This proves
i=0
our theorem.
Now we define a real valued function ¢ of divisors in k such that
@{q) > 0 for all divisors and @(q) = 1 for all but a finite number of divisors.
Let V() be a parallelotope in R (k) with respect to o, ie.

Vip) = i(x)eR(K)| Ix,), < @ (o) for all ql,
and let jj¢] =[] e(a).

q
Corotlary To Tarorem 1. Let w be a prime element sarisfying the same
conditions us in Theorem 1 and let S be o residue system. Then the period of
euch oe T is bounded.

Proofl. From the proof of Theorem | we have following inequalities:

(1) If ais non-archimedean and |w|, = 1, then ||, € max {lz],, 1] for all
n=l:

(2) Il qis non-archimedean and ||, > 1, then el € max {Ialqlw{;“, lowl; h
for all n=1;

3) If qis archimedean, then |u,], < lof lealy "+ Ms(lw|,— 1) for all n = 1;
4 I q=p, then ||, <1 for all n3 1.
Therefore, if e © then we have
{1 " ), <1 for all non-archimedean q and n3 1,
(D eyl < lelleofy "+ Ms(jw|,—1)"!  for all archimedean g and n 3 1.
We define

() = 1 if o is non-archimedean,
elo) = Ms(jw|,—1) if ais archimedean.

It is clear that ¢ depends only on o, S and is independent of o. By
inequalities (I) and (IT), we can see that a, belongs to V(o) for all sufficiently
large n. Therefore the period of each xe O is bounded by the number of
elements of V(¢) k. This completes the proof.

The following lemma is well known.

Lemma (S. Iyanaga [30). If lo|| > 221" " |dy)?, then there exists a non-
zero element in V{p) k.

Here |d;] is the ordinary absolute value of the discriminant of k. We then
have the following theorem.

THEOREM 2. Assume that N, >27%n "2|d|"* Then, there is a prime
element o such that E (w, S) holds for all S.
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Proof Let & be a real number such that O0<g<1 and
N, xe® @ 5 22772 (4|2 We define o as follows
N, if q=p,

el =<1 if g3 p is non-archimedean,

& 9= P, (1 SISy +r,)

Here &, is 1 if p,,;is real, and 2 if p,,; is complex. Since [|g]]
= N, x&*® > 27" "2|d,|'"?, by the Lemma, there exists an element g 5 0 in
V(ip)nk. Put w=g !, then we have |w|p>Np‘1, lw|, = 1 for all non-
archimedean divisors o= p and |a>|pw,i >1for all i=1,...,r{-+r,. Since
[Twl, =1, we have jw|, = N,;'!, therefore by Theorem 1 our theorem is
q

proved.

2. A mecessary condition. Next, we study a necessary condition for the
equivalence relation.

TueOREM 3. Suppose that E, (w, S) holds, then we have |w|, 2 1 for ail

divisors q # p. .
Proef Let ack be a p-unit, that is, o= Y @' (g5, a9 5 0). In our

i=0

case, the sequence f{a,} (n=1, 2, ...) defined similarly to in the proof of

Theorem 1 is periodic from some index on. Therefore, max {|a,/| n

=1,2, ...} is bounded for all q. Now assume that q p is a non-archime-

dean divisor such that |w|, < 1. Then

for]. = oo™ —lag @™ "+a, 0™ "+ L ta,_ w7,

loeo ™"~ max {lag ™", lar @7 L e g 07

2 al
Z Jaw ™"~ @™, = (o, — Dl 7"

If we take an element o €k such that |af,—1 > 0, then ||, =0 (1 — o) that
is a contradiction. Consequently |w|, 2> | for all non-archimedean diviso.s
q# p. Next, assume that ¢ is an archimedean divisor such that |of, < 1.
Then

ol " = (laoly +ay @ly+ .o +la- 1 0" )}
feol "y — M (1 [0l + o+ ool ™ 1))
> |l fiod,— Ms (1 — ol )11,

where Ms is the same as in the proof of Theorem 1. If we take o to be a
sufficiently large natural number which is prime to p, we may assume that
lojy—Ms (1 —|ew|)~* > 0. Then, |a,|, — % (n— co) that is a contradiction and
our theorem is proved.

local 2
>
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This theorem shows us that the number of prime elements e’ such that
E, (w, 8) holds for all § is only finite.

Now let E (w, S) hold and let m; be a natural number > 2 which is
prime to p and |wm, |, < 1 for some non-archimedean divisor q and let m, be
a natural number prime to p such that |wm; !, < 1 for some archimedean
divisor g Then although om; and wm;*' are prime clements, neither
E,(wmy, §) nor E, (wom3 !, §) holds for any S. In case of k = Q, et m, be as
above, there is a rational number which is never represented as a power
series in pm,; with periodic coefficients. In fact, from the proof of Theorem 3,
my! is such a rational number.

If k is totally real, then the condition for @ in Theorem 1 is necessary
and sufficient for E,(w, S} to be valid. If k is imaginary quadratic and p is
principal, then a generator of p satisfies incqualities for « in Theorem I.

Now we let

_{p if pst2,
= itp=2

and let {, and p be a primitive gth root of unity and the unique prime ideal
in k = Q({,) lying above p respectively. Then @ = I—{, is a prime element.
By Theorem 1 and Theorem 3, we can see that, for all S, if g <35 then
E,(w. S) holds and if g > 5 then E (w0, S) never holds.

3. Counterexamples. Lastly, we shall prove a theorem concerning
counterexamples.

THEOREM 4. Assume that the ideal (2) ramifies completely for k/Q, and the
prime ideal p of © lying above (2) is not principal. Then E (w, §) does not hold
for any w and S.

Proof. Suppose that E,(w, S) holds. The assumption and the previous
theorem show that je|, = 277, |@|, = 1 or 2 3 for all non-archimedean q # p
and |m|, = 1 for all archimedzan q. From the product formula []lw}, = 1 we

a1
have ||, = 1 for all non-archimedean s p, therefore p must be principal.
This is a contradiction and proves our theorem.

ExamrLe. Let m be a square-free rational integer- = 5 (mod 8) and let

k= 0(/—4m), Q(./—8m) or @{./8m). Then k satisfles the assumption of

Theorem 4.

4. The case of characteristic p > 0. In the rest of this paper we shall treat
the case of characteristic p > 0. Let F be a finite field of characteristic p > 0
and k a finitely generated extension of F, of degree of transcendence 1 over .
F. We assume that F is algebraically closed in k. Under the same notation as
in previous sections, we have
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Tueorem 5. E,(w, S) holds if and only if (o], 2 1 for all qs p,

Proof. As Theorems 1 and 3.
We define

1 if asp,
ola) = {N if q=p.

»
When E, (w, S) holds, by Theorem 5, w™* belongs to V{p) ~k which is a

vector space with finite dimension over F. Let dimp be the dimension of
Vip) nk. As

F=(x)eR(k)| |x], =1 for all ] Nk,
we have

CoroLrary 1 1o THEOREM S. There exists a prime clement w satisfying
fol, = 1 for all q=p if and only if dimp = 2.
Furthermore, we can see easily a following corcllary.

CoroLLary 2 To THEOREM 5. Let E,(w, S) holds. Then the period of each
ae D is bounded.
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Uber ganzzahlige Vertauschbarkeitsketten
ungeraden Grades*

yon
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1. Einleitung. Motiviert durch Anwendungen in der Kryptologie haben
sich in den letzten Jahren mehrere Arbeiten mit der Kette der Potenzen
x, x2, x*, ... sowie mit den beiden Ketten der Dicksonpolynome g, (d, x),
ga(d, x), g3l{d, x) ..., d = +1, Uber den ganzen Zahlen Z (vgl. [2]) und
mit den davon induzierten Permutationen auf Restklassenringen Z/(m)
beschiftigt. Insbesondere wird in [5]. [6] und [7] die Fixpunktanzahl der
von den Polynomen dieser Ketten dargestellten Permutationen von Z/(m)
berechnet, und in [8], [1] und [4] die Gruppenstruktur der von diesen
Ketten induzierten Permuthlionsgruppen von Z/(m) ermittelt.

In [2] (vgl. Chapter 3, Prop. 3.51) wurde bewiesen, daB fir ein lineares
Polynom [ = ax+b mit reellen Koeffizienten a und b die konjugierte Kette
l'oxfollkeN) bzw. "'og.(d, xpollkeN], d =+1, nur dann ganz-
zahlig ist, wenn | = ax + b ganzzahlig ist. Daher lassen sich Eigenschaften der
von den ganzzahligen konjugierten Ketten induzierten Permutationen von
Z/(m) (z.B. Fixpunktanzahl, Zyklenlinge und Struktur der gebildeten Grup-
pen) unmittelbar aus den entsprechenden Eigenschaften der von den
urspriinglichen Ketten induzierten Permutationen von Z/(m) herleiten.

Lidl und Miiller haben in [3] die ungerade Kette der Potenzen
x, x%, x5, ... und die ungerade Kette der Dicksonpolynome g, (d, x), g4 (d, x),
gs(d, x), ....d = +1, betrachtet. In der vorliegenden Arbeit wird gezeigt, daB
konjugierte Ketten dieser Ketten auch dann ganzzahlig sein k&nnen, wenn
das transformierende Polynem ! = ax+b nicht ganzzahlig ist.

Es werden alle konjugierten Ketten der ungeraden Kette der Potenzen
sowie der Dicksonpolynome mit 4 = +1 bestimmt, welche ganzzahlig sind.
Weiters werden Kriterien daftir angegeben, wann die Elemente der ganzzahli-
gen konjugierten Ketten Permutationen von Z/(m) induzieren, und im Fall
der Potenzen auch die Anzahl der Fixpunkte dieser Permutationen sowie

* Die vorliegende Arbeit wurde vom Osterreichischen” Fonds zur Forderung der wissen-
schaftlichen Forschung unter dem FWF-Projekt Nr, 5452 wesentlich unterstiltzt,
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