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0. Introduction, It is well known that the sequence w:= ({ka,}, ..., {ka});
ke N (we will call it s-dimensional Kronecker-sequence) 1s uniformly distributed
in the s-dimensional unit-cube if and ounly if 1,=,...,n are linearly
independent over the rationals.

A measure for the quality of the uniform distribution is the sequence of
discrepancies of such a sequence. In higher dimensions it is possible to define
different forms of discrepancies. The two most important are the wusual
discrepancy

LB

Dy = sup
P R

(where the supremum is taken over all s-dimensional intervals

R= [[la,b) with 0<a,<b <1,
i=1

where by A,(R) we denote the number of the first N sequence-elements which
lie in R, and where u is the s-dimensional Lebesgue-imeasure), and the so-called
isotropic discrepancy

Jy = sup
c

Ay(©)
N

*#(C)‘

(where the supremum now is taken over all convex subsets of the unit-cube F°).
For the definition of discrepancy and for general results for Jy see for
example [6], [9], [11], [12], [8].
The sequence w is uniformly distributed if and only if lim Dy =0, and

N-ow

because of the inequality Dy < Jy < ¢, Dy® this is the case if and only if
lim Jy =0
N-w

The usual discrepancy Dy of Kronecker-sequences was very well studied.
For example Hlawka [5] and Ostrowski [10] gave relations of Dy to the
approximability of & = («,..... &) with respect to the maximum norm. For
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example it was shown that if « is badly approximable with respect to this norm,
then
limsup N'*D, < co.
N=r

But it turned out, that for studying the usual discrepancy another “multiph-
cative norm” is much more important in this connection. From results of
Niederreiter and Schmidt ([9] and [13]) for example it follows, that there even
exist @ not badly approximable with respect to the maximum norm and with

limsup N' ~*Dy < o0

N—+o

for every ¢ > 0.

It is the aim of this work to show that the maximum norm is most
accurate if we consider now the isotropic discrepancy, and that the extremal
results, we will obtain now for Jy, are for badly approximable « essentially the
same as for the smaller Dy and (in difference to D) now in some sense best
possible. So for example we will show in Theorem 1 that

limsup N*#J, < o
N+
if and onmly if « is badly approximable with respect to the maximum norm.
From Theorem 2 for example it will even follow that for s = 2:

0 < limsup N'*J, < o
N-t
if and only if « is badly approximable with respect to the maximum norm.

This can be proved with the help of a sharp result of Davenport and
Mahler on diophantine approximation.

In Theorem 3 we give a metric result, thereby improving a result in [8], by
showing;
‘IN — O(N— 1/s(10gN)(s- 1)/54-5)

for every ¢ > 0 and for almost all aeR"

Further, in Lemma 6, we will give a general upper bound for J,. (For the
exact statement of results see Chapter 2.)

1. Natation and definitions. We use the following notation:

For o = (a;, ..., ) e R® we denote by 1| =g, < q, < g, < ... the best
simultaneous approximation denominators to & with respect to the maximum
norm. For such ¢;:= ¢, o shall be of the form

.0
g=D 0k forj=1,2,..., 5 with 0] < 1.
g 4
a, is defined to be [%:’ and ||x|| always denotes the distance of x to the
3

nearest integer:
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By wy we define the sequence ({kax,}, ..., {ka,}); k =1,2,..., N and for
given g;:= q by w, the sequence

({kp—l},‘..,{k&}), k=1,2,....q.
q q

If we have any finite sequence of length N: w, w(l), W etc. then we denote
the according isotropic discrepancy by J,, J§, Jy etc., and for a convex set C,
the number of sequence elements in C by 4(C), AMC), A(C) etc.

u always is the s-dimensional Lebesgue-measure and I* the s-dimensional
unit-cube,

For given w, and for ke N we define

M= max (lkag|, ..., [lkox])
KPL kP

Je=los
q q )

For given i we define the lattice I'; to be spanned by the vectors

and

y mrag

M,:= max (}

j=1,..,8

xi::(?—l,...,ff), eyi=(0,1,0,...,0), ..., &:= (0, ..., 0, 1).
4q q
Then the set of points of W, is equal to I, I

By 4, A3, ..., A, we denote the successive minima of I'; with respect to the
euclidean norm. _

Constants ¢; which have the same form in different lemmata in general are
not equal. ¢; always denotes a constant depending at most on the dimension s.

2. Results and their proofs. General upper bound
Levma 1. Let

w(l):= (xy, w(2):= ¥y, - VW)

be two finite sequences in R* with d:= max [x;—¥-
i=l.....~ .
Then for the corresponding isotropic discrepancies JY and J§ we have:

T < FIP + 25d(1 + 24

Proof, Let P be any convex subset of I and P, and P, outer and inner
parallel regions to P in distance d in R%. (P, of course can be empty)

We have u(P\P;) < 2sd and p(Po\P) < S(P,)d where we denote by S(Po)
the volume of the (s — 1)-dimensional surface of P,,. P, is convex and contained
in the cube [—d, 1 +d]° .

Therefore S{P,) < 2s(1+24)"* and u(P,\P) < 2sd(l +2dy~1, Let w be
the set of points y,+g with i=1,..., N and geZ", then: ‘

vy Xy}  and
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AO(P )= N-u(P)~ N-u(P\Py) < AD(P)—N-p(P)
= (P )—N- N(Po)'I“N p(PA\P)

and so

|A{P) =N - u(P)

< max(NJP +25dN, [A(Po)— N-pu(Py)l +2sdN (1 +2dy~1).

Because of d < 1, P, is contaimed in W:i=1-1,2[* W is divided in 3*
unit-cubes W; i = 1,...,3" and P, n W, is convex for every i If we denote by
C; the convex part P, n W, translated modulo Z° into the unit cube, then we
have:

|4(Po)=N-p(Po) =X (4

i=1

(Pon W)= NPy 1 W)

< Z [APHC)—N-u(C) < 3°-N-J§

and the result follows.
LemMA 2. For a given ieN let g' be the largest best approximation
denominator less than q:= g, to Pq1 cers %’), then, with certain constants ¢, ¢,,

we have:

s—1 5111
q(M)MH( ) <<y 1“( )

Proof. Without restriction of generality let (p;,,¢)=1 and ip,
= [ (mod g), then the set

(kl,{k?—zf},...,{k?ff}), k=1.2,...q
q q q

is equal to the set of the sequence values of w,.

We have M, < 4, and 4; < \/EM ¢ and so by Beispiel c) in [8] the result
follows.

Remark. For s =2 the estimate reduces to the simple form

(4] — [
Lo T o -2
.

gM, ="
Lemma 3. For given ie N with q:= g, > 2° we write § instead of q,_,; then

M, < M, <2M

i
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Proof. a; = p/q-+r; with 7,:= 8,/g-g},. We have
P
g

AJRE(A)

g
grily < max (Ilgoc,l1D +max dgr;h
J J

a) M, = max(

J

q

= max (e~
i

= M,ﬁmgx (lgryh) =
J

A,
= ’q—.’l—fs
q-qi¥y
¢ = max(
J

P

M, +max (flgr i)
i

(because |gr|

< 2M,.

1 .
éq‘”“<—2~) and the last is equal to M,+M,

)

Py /
gL+ g7,
\ q

)-i—max (flgr) =M, +%max (gr,D
J I

= Mq.+%Mq < Mq,x—k%Mq for ¢ > 2%

If ¢ <g¢/2, then IM; < M,

If ¢ > ¢q/2, then 0 < q—¢ < g/2, My = M__
IM;< M, . =M, and the proof is finished.

We need two further general lemmata:

o and apalogously we get

LeMMa 4. Let w:i= X, Xy, ..., Xy be a sequence in I and for a xe R* let W
be the sequence {x;+x}, i=1,2,..., N, in I*. Then

Ty <20,

Proof. Let C be a convex subset of I* and C(x) = I° shall be the set C
translated in R® by —x and taken modulo I°. C(x) is the union of at most 2°
convex pairwise disjunct subsets C,(x) of I°. We have

1A(C)—N-u(C)| = |A(C(x)—N-u(C0)
=z (A(c;-(x))wN-u(Cl-(x)))|

ZlA =N p(Cx))| < 2y,
Lemma S. Let N =b,q,+b,_,q,_,+ .. +blql+b with b, < a, and let
now J,, be the isotropic discrepancy of w, = {ka:} k=1,...,na= (cxl, ey Ol

in I%, then:
N-J; <

}_:q”,
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Proof. Let w(i, b) be the sequence {{x+ka}, k=1, ..., q;, with { = b, g + -
+ san +-bi+ 1 qf+1. +(b““‘ l)q!.
Further let C be a convex subset of I°, then we have:

AC) - N0l = |3 3 (AD(C)~qu(C))

i=0b=1

>

r b
<3 3 |AC)~qulC)|

=0b

<2y b,
i=0

.
-

by Lemma 4,
Now we are able to prove the following upper bound:

Lemva 6. For the N of before and with constants cg, ¢, we have:

rop 8 '(Al(i)) ", bgf e
NIy <€e TV vy Toa | tTe TR
" 6i=ZO My, Y™ =2 \ 4yl 7-';0 ai®

‘ 2% .
Proof. By Lemma 1 we have Jy < 35'74["(117‘ This ig by Lemma 2 less
it+1

than

3 T ’11(1')) Cq
- = )bt
g7 (M, ¥~ jgz(l;(l) gi"al’

where by /;(i) we note, that this is the jth minimum of the ith lattice, The last
expression, by Lemma 3, is less than:

Cs ° '1.1(")) Ca
A g =1 TS +“_“‘s"'"_"_;.
%'(Mqiui) ! j1=_[2 (Aj(l) gi*al*
(Here M, stands for 1) Finally by Lemma 5 we get the result.

Remark. Of course we can estimate [] A1 (/4,00 to get the simpler
i=2

estimate:
r b r b qgshl)/s
NJIy€eg Y ————te AL
—] 7 .
iZ:O (M,Ii_l)’ ! e

It is difficult to use information contained in the original formula, for still very
little is known on the behaviour of the successive minima of such lattices. (See
for example [14].)
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Lower bounds

LevMa 7. Let ie N and q:= g, be such that q > Q for a certain fixed O, and
such that 4\/5qu,11 o dgey € 1. Then there is a N with g < N<gq,, , and

——cz—-——m-min(a 1 )
A Ay ey P My iy )

Proof We take N:= Bg, with BeN and choose B later. First we
consider the points of the sequence Wyi= Xy, ..., x,. Let E be the hyperplane
spanned by s— 1 linearly independent vectors of the corresponding lattice with
length 4,, ..., A,_y. If we take E’ parallel to E in distance /g4y ... Ae.q, then
for q large enough it is clearly always possible to find a point P such that: If we
place E such that P& E, then for every hyperplane E” parallel to E and lying
between E and E, E'nF has s—I1-dimensional volume larger than
€1/4%y ... A;_, With an absolute constant ¢, depending at most on s. Between E
and E’ there is no"point of %,. Now we consider Wgg = Vi, .oe» Vp, Let d
denote the euclidean distance on the s-dimensional torus, then we have for

b < B: .
r; Iy 0.
A0 Yivg) < ‘/Em?x(’ IEJ—UJFbQ)(EJJrq-qj‘fl) )

1

N‘JN;

0
= /smax{ {({+b s ) if g > 2°
J i ( ( Q)‘I‘Q;'liﬂ (4 )
0. I+b
< o/5(1+bg) max(‘—# ) — /M, < fiBM,,
i q'4gi+1 q

Since 4\/5qu21 ... Ay <1, we may choose

i
Bi=min| a,, ;
( [4-\/5qu21 S A’s*l])

then we consider the convex éc,; Cin I, which is formed by the inner parallel

region of the set of points lying between E and E''with distance \/EBM o
dissected with I'. In C there is no point of wy, and so we have:

1 . Be
e 2 JSBM | ——L
FY R V/sBM, 2, ... A

s~ 1

N-Jy = Bge,

€ . 1 )
2 ————min| q, .
2% A, ( 8. /sqM Ay ... A_,

Remark. We have

1 i
> J
4\/5,;,.Mqizl i heey Asey

4 — Acta Arithmetica Li4
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with ¢, depending only on s, by the theorem of Minkowski on successive
minima {see [2]). So the condition in the lemma is for example fulfilled

whenever g, > (4.\/.;(:3)5.

Now we consider more carefully the case s = 2, to avoid the restriction of
Lemma 7:

Lemma 8. For all (&, a,) and infinitely many N we have:

i 2

V2. fe 2| l——==] = 0.0433...
N 2( \/55>

Proof. Since the assertion is clearly true if 1, a,, a, are linearly
dependent over @, we may assume in the following, that 1, o, and a, are
linearly independent over Q.

Davenport and Mahler [3] have shown: There are infinitely many
4, Py, P €N with

pi 01
o = E-I_qm’ i=1,2
and
1% 4+0% < 2/./23.

Let p,, p,, g be fixed with the above property, and let g' be the largest best
Buba) g BB G

approximation denominator less than ¢ to -
g g g

i=1,2.
By the theorem of Dirichlet on simultaneous approximation we have:

1 I
—ymax (&)} € =,
q /2 ; (E ) quz

q 1/2 1
) I —
(q> max({|,], [£,))

Without restriction of generality let &, < &,. We consider the case &,, £, » 0
the other cases can be treated quite analogously. Let

(i)

On the line through x, and the edge of the unit square lying next to x, there

are at least I:= (,p'”2/¢c of the points x;; i = 1, ..., g. We denote these. points
by x;,, ..., x;,. Let

t_hat is:

icm
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il fhas) = (o2

(O

0,

330

0,

q3/2

e
o)

+ ke

32

)

)

S

343

We consider the following stripe P with boundary, modulo I?: P:= P, U P,

(see Figure 1) 7 shall be minimal, such that y,,, ..

see, that

10,

1/‘2

0,
r<—m~+'§l l—”i_

€ 4

Therefore for P we have:

A4 (P)

1/2
ql

A(P)
q

1/2

) > (q'>1f21 2

D+10,] . 2 s

quz 1/2 1+0
R

Y

qu Xg . PZ

&

g
Fig. 1

——quP) =5

q

1
2

and from this the result follows.

Conclusions and special boands.

LEMMA 9.

A

B, :=

i

3_

£

2
= 1— .
¢ 4/23 /23

So for at least one of the two parts P,, P, we have:

(-7

at's
Ajdy oo Ay gl
( 1 )lls
min | ¢;,, ——————
4iMy Ay Ay
EH Y

?

) = 0.0433. ..

~

. ¥ arein P. Since k £ g we
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ajls N
Cim o —, IeN,
i qgs 1}/«“.(M 1-1) 1

are bounded if and only if the form L:=( Z myo)—m is extremal.
Jj=1
Proof. L extremal means, that there is a constant ¢; >0 such that for all
NeN and all my, ..., m, m with |m] < N for all j, we have N°|L| 2 ¢,.
By the transference principle of Khmtchme (see [11). this is equivalent to:
qi*M,, > ¢, for a fixed ¢, >0 and all ie N, and this is equivalent to:

= ‘L—”%—J; is bounded.
Since 4,4, ... 4,-14¥7 1 is always less than a fixed constant ¢,, and since
PP
My Ay . s

itis easy to see that A4; is bounded if and only if B, is bounded. We show now:
(a) C; beunded + D, bounded.

Let C; be bounded. Since ¢/*M,,_, < 1, we get that 4, and 1/gt*M
must be bounded. Therefore

- _ I s 1
q:'l',thIi-x a (Qf/al'“ l)l/st 2”3 Uj M

is bounded, and therefore D, is bounded.
If D; is bounded, then because of

‘ q 1/s 1 1/s
¢ < gi" M, < aTl; S a,
i 1

we have that g; is bounded, and further, because of
1 1

1fs <

4" Mg, ~ qil qui 1

we see, that C, is bounded, ‘
(b) A, bounded « C; bounded.

qi~1

di-1

Because of M, _, <21, we have C, 2 A so one direction is clear.

1
7ot
Let now 4, be bounded. From the theorem of Minkowski on
successive minima it follows that gff "4, ... 2,_, <e¢, and so g, and
I/q(‘“”/% . d;—1 are bounded, and because of ,1 < 2\/:;1\.4,5,,_1 we only have
to show, that 1/g¥ 1, is bounded,

icm
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We have ¢F~ D51, ... A > ¢; and so by Minkowski A g} < ¢, and

because of ¢4, ... A, = 1, it follows that

g, 2 Yt >0 for all i

and the proof is finished.

Remark. We also have the relation B; = min(4,, A{"/c,).

THEOREM 1. We have

limsup N'/*-J, < o0
N-+w
if and only if L:= (3 mu)-m is an extremal form.
i=1
Proef. If L is extremal, then by Lemma 9 and by the proof of Lemma 9:

1
Cii= 4

i -1 -1
f qgs ”S'(Mm— 1)3

and ¢; are bounded.
By Lemma 6 and by the remark after this lemma, and by noting that

N = b,q,, we get:
<o Er: bl_[s (E)(rms(giyx_lm
6 1,'qu” 1)5— 1 br Qr

N zr: B, 1/s bi)(s—llls qi)(s— 1)fs
¢ “i i} 1
! i=0 \H b, a,

r q; (s—1)/s
< (CsBiags— 1),’s+c7a§s—1)1‘s) Z (_‘) .

i=0 \dr

By Lagarias [7] we have for the best simultaneous approximation denomina-
tors with respect to the maximum norm:

NY-Jy,

Qi+zs+v
T =3

a;

4 (s—1)/s o 1 s~ 1)is
(@ e 5 () a
i= i=0

and so N'%.J, is bounded.
If L is not extremal, then by Lemma 9 A; and B; are not bounded. And

becaunse of

4\/EqiMqi'11

for all i

and so

2 A, >1 for infinitely many 1,
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we get by Lemma 7, that N'*-J, > B, and this is, by the remark after
Lemma 9, larger or equal to min(A,, A/c,) and the result easily follows.

THEOREM 2. For the case s = 2 moreover we get: For N e N let i(N) be such
that qiwy, < N < qum+1, then

(a) If for a ¢, >0 and a ¢ = 1/2 we have

gie 1 M, > ¢, for all i,

then

N°-Jy < ¢,(max a)' 7.
1<i(v)

by If for @ ¢3 >0 and & o = 1/2 we have

g1 M, < cy  for infinitely many i,

then for every J large enough, there is a N < q;4., with

N?-Jy 2 comax(l, max min(g;, g7~ a0
icdr

where

— I 1/2
Api={i<J @®M,_ <5 and giM,_ < ¢y}

Proof. (a) By Lemma 6 we have, like in Theorem 1:

Ny <o 3 Jb“(q ) ib/b”( )

i=1 Cl =

r b ) a
<cs Y b_;(ﬁi) \ca(bl_"+b1_”—l—b,+_ (q'"1> +)
i=0Q%r Qr Qr‘ -
< ¢p(max a)t 7.
1IN
(b) If 4; is empty for all J, then ¢ = 1/2 and the result follows by
Lemma 8.

Otherwise let J be so large that 4 is not empty and let i 4, be such that
min(a;, g7~ Y*al"?) is maximal.

We take N = By, like in Lemma 7, and from this lemma the result easily
follows if we remark that

1
>
~ 16417 M,

4\/2'qiM¢1i’&l

and that

1 > 1 1 ~ 1 12 4172
= . = = ::rm it
M, 2 q}’MQMQ\/E a ‘M, 2 2c3q ¢
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Remark 1. In Theorem 2(b) ¢ always is less or equal 1.
Remark 2. Theorem 2(a) of course can be shown quite analogously for
general s = 2.

THEOREM 3. For s = 2 and for almost all a:= (x,, ..., oy in R in the sense
of Lebesgue-measure, we have for every & > 0:

JN — O(N—l,’s(log N)(s—l)]s-?-a)-

Proof. For example from Davenport-Schmidt [4] it follows, that for
almost all & we can choose ¢ in the s-dimensional form of Theorem 2(a) equal
to 1/s. Further (see for example [8]) we have g, = O{(logg)' ") forevery £ > 0
and almost all . So by the general form of Theorem 2(a) the result follows.
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