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For a complex number z, we consider a diophantine inequality

k
(1 ‘ZMMZ <W, k>0, p, geo, and (p, q) = 1,

where d is a square free negative integer, o, denotes the ring of integers of

Q(\/c;) and (p, q) = 1 means ideals generated by p and by g are relatively
prime.

In the case of d = —1, LeVeque [8] proved Khintchine type metrical
theorem by wusing complex continued fractions. Moreover, Sullivan [11]
established Khintchine theorem for any square free negative integer d by using
the notion of disjoint spheres on the three-dimensional hyperbolic space
H? = {(x,, x,, ¥): x,, x,€R, y > 0}. His method shows that the asymptotic -
property of solutions of (1} is related to an excursion of the geodesic flow on
H?*/PSL(2, 0,) to the point of infinity.

In this paper, we estirate the asymptotic number of solutions of (1} by
using (generalized) Ford balls. Such a family of balls was first considered by
Ford [4] and [5] to determine an approximating constant of (1) in the case of
d= —1,

MAIN THroreM. For almost all ze C, we have

4 {ge Q(./dy: Z satisfies (1) and |g| < N}
Alrl—?; logN

Jor any k > 0, where C, is a constant depending on d.

Similar theorem also holds for some discrete subgroups, with a cusp at
infinity, of PSL(2, C) acting on H>. (Such a class of subgroups corresponds to
the class of zonal subgroups of PSL(2, R) acting on the upper half plane H?.)
We prove the assertion in the general case in Section 3 and next apply it to the
case of PSL(2, o,} and its subgroups in Section 4. We also determine the

= Ck?
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constant C,. For preparation, we introduce the notion of Ford balls in
Section 2.

Our argument is also available for an approximation of real numbers by
cusps of a zonal Fuchsian group I'. To do this, we use Ford disks and the
geodesic flow on H?/T. Then we see that the asymptotic numbers of solutions
are in proportion to k (instead of k%), see [10].

1. Preliminaries. Let H® be the upper half-space. We write we H? by
W=x+x,i+y with x;, x;eR and y > 0,
where 1, i, j, k are the basis of the quaternion fields. We consider
PHC)=Cu{w} (= 0H).
The hyperl?olic metric s on H> and its associated measure u are defined by

2 _ dx%+d>;§+dy2 and = dx,dx,dy

y y 7

ds

respectively. Furthermore, the induced measure ji on the unit tangent space
UT(H?) = H*x §* s given by

dji = du@(cospdbdy),

where 0 and ¢ denote longitude and latitude, respectively. It follows that the
geodesics are half-circles and half-lines perpendicular to C.

A abhb
For any matrix g= L cJ eSL(2, C), we define the Mobius transforma-

tion on H? by
giw) = (@w+b)cw+d)~?!

for we H*. This preserves the hyperbolic metric and measure. It is also possible
to define the transformation on UT(H?) by g. Since the transformation g is
conformal, it follows that g aiso preserves the measure i on UT(H3). An
element g of SL(2, €) is said to be a parabolic element if (trace of g)* = 4,

For any (w, 0, )e UT(H®) with w = x,+x,i+yj, there is a unique
geodesic curve passi_xgg_t}lrough w with the tangent vector (@, ). We denote
such a geodesic by (z,, z, ), where z, and z, denote the initial and the terminal
points in P*(C), respectively. We also denote by u the “signed” hyperbolic
distance from the top of the geodesic (z,, z, ) to w, if (z,, 2, ) is a half-circle,
from x;+x,i+j to w, if (z,, z;) is a half-line. Then we may regard

UT(H?) = {(z,, z,, w): (24, 2,) € P1(C) x PY(C)\{diagonal}, ue R}.

icm

Metrical theory of diophantine approximation 395

In this representation, it follows by a simple calculation of the change of

variables that v

- Adx dx,dx)dxhdu
2 d,u — 1 2
@ |zy—2, |4

where z, = x,+x,i and z, = x| +x5i.
For any w = (z,, z,, &)= UT(H?3), we consider the horosphere tangent to
Sl -
PY(C) at z, and perpendicular to (z,, z, ) at the base point of (z,, 2,, ). Then
for any 2 (s z,)e PYC), there is a unique point, say W = (2, z,, 4},
e . .
in {z}, z, ), whose base point is on the above horosphere.

Limma 1.1, The hyperbolic distance between the base points of (2, 24, U+1)
and (zy, z,, 4+1L) converges to zero exponentially as t tends to oo.

We congider a discrete subgroup I' of the group

10
PSL{2, €) = SL(2, C)/{i-[o J},

which is the group of all orientation preserving isometries for the hyperboli.c
metric. I acts discontinuously on H® as Méabius transformations. A parabolic
fixed point ze PHC) of T is said to be a cusp of I if

[ oot

is a lattice in C, where g is an element of PSL(2, C) such that z = g~*(<0).
Suppose that oo is a cusp of I'. Forg = [z Z} eSL{2, C) with ¢ # 0, we
denote by K, the isometric hemi-sphere of g, that is,
K,={weH" ul+ui+v" = 1 with cw+d = U iy i1}
We put
IK) = {we B ui+uj+v* <1 with ew+d = w,+uyi+oj},
E(K )= {weH: ul+uj+v* > 1 with ew+d = u,+uyi-+uj}

and r, be the (Euclidean) radius of K,. We also define D, = C by a funda-
mental region of the lattice induced from Iy, = {geI'; g(c0) == oo} and put

DY = {w = x,+X,i+yj: y >0, x +x,ie D}
Lemma 1.2. If we put
D = ([ E(K,) n D*,
g

then D is a fundamental region of I'. where g runs over all elements in I'\I' .
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Pro of. This follows from the facts: (i) g(I(K,)) = E(K,-1} and (ii} y < v for

b . -
g= ]:j d} c#0, w= x1+x2i+ijH3 and cw+d = u, +u,i+u.

2. Ford balls. Let I' be a finitely generated discrete subgroup of PSL(2, )
with p(H3/I") < + o and suppose that co is a cusp of I, We put

Fuloo)={weH w=x,+x,i+yj, y > 1/(2k)}

for k > 0 and define
Fk(g(oo)) = Q(Fk(oo))

for g = l:z Z:’EF. Since
_|tajfei|0 —lec||1 dfc
3 g_[Ol][c 0][01]

for ¢ # 0, we see the following:

LEMMA 2.1, Fi(g(o0)) is the open ball in H* with the (Euclidean) radius
r(gy-k and tangent to C at ajc provided c # 0.

Proof. Since r(g) = 1/|¢/, the assertion of the lemma follows from (3)
easily,

Since oo is a cusp of I', it turns out that there exists k, > 0 such that for
0 < k < k, we have

Filg(oo)) n Filg'(o0)) = @
provided g(cc) # g'(c0) and g, g’eI'. We call
Filg(oo): gel, 0 < k <k,

the k-Ford balls of I' and the supremum of such ky, the Ford radius of T.

ProposrTioN 2.2 (Ford [6]). For I' = PSL(2, o0,) with a square free negutive
integer d, the Ford radius is equal to 1/2.

Now we introduce a diophantine approximation with respect to cusps

ab ‘
of I'. For g = [C d]e[’, ¢#0, and k>0, we consider the inequality

) iz—g(oo)l < r(g)*-k for zeC,

which correszponds to a problem of Lehner ([7], pp. 334-336) in the case of
zonal Fuchsian groups. Since the set of k-Ford balls are invariant under the
T-action, we see the next lemma.

icm
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LemMa 2.3. The following are equivalent for z e C:
() Iz—g(e0)] < rgf:k,

(i) Fulg(oo))n{o,z) %8,

(iti) Fi((gg)(o0)) N (g'(c0), g'(z) ) # D for g’ €T,

T ) . 3 ry o wa
where (zy, z, ) denotes the geodesic curve in H® with the initial point z, and the
terminal point z,.

! in (iif) of the above lemma, then we have the next

If we take g' =g~
lemma.

Lemma 24, The inequality (4) holds if and only if

g™ {e0) =g~ ()] > 1/k.
From this lemma and the construction of D in Lemma 1.2, we have the
following:

PROPOSITION 2.5. Let {W,: te R} = UT(D), UT(D) denotes the unit tangent
space of D, be the geodesic path congruent to {(00, z, t): te R} of UT{H?) with
W, to be congruent to (oo, z, G). Then it follows that if the base point of W, goes

b
into F (o) at ty > 0, then there exists g = :I satisfying (4} such that

a
¢ d
(3) k-eo <rig)™?* < 2-k-e'®,

Proof. The existence of g follows from Lemma 2.3. Since W, is congruent
to (¢0, z, t,) and the base point of (o0, z, ;) is z+e *je H>, we have the
inequality (5), see Fig. 1.

T
N

P gleo)

Tk-rlglz

Fig. |

3. Metrical theory of I'-approximation. It is possible to count t.he entrance
times of a geodesic path into Ford balls. In the sequel, we identify the unit
tangent space UT(D) with a subset of

[P(C) x P*(C)\[diagonal}]x R.
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For we UT(D), we denote by G,(#) the geodesic flow on UT(D), that is, for
W = (z,, 25, u), G,(W) is the point in UT(D} congruent to (z,, z,, u+1t). We put

D, =D {w=x, +x,i+yji y = 1/2K)}
and

D, = {W=1(z,,2,,1): u<0 and weD,, where w is the base point of W}.
TrrorREM 3.1. For p-almost all we UT(D),

{0 <s<t, GWeD} ADYm
(6) lim - D)

=0 t
for any positive k less than the Ford radius kg, where 1 denotes Lebesgue measure
of C.

Proof. Since ky = min$-r(g), where ¢ runs over all elements in '\l ,, we
see that

2

1
D, = {x1+x2i: x1+x2i+ﬁjel?k}.

For any fixed k < k,, we can choose a small positive number .¢ such that
{G,h): —e<s< el nD, =W}
for any we D,. For this £ we define
D.. = {WeUT(D): w¢ F. (), the base point of G (W) s in F ()
for some 5, 0 < s < &}
and

/e if wel,,,
oi = {0 re

From this definition of ¢, it follows that

otherwise.

t t—e

N gfpk(GS(W))ds—l < § oG (W)ds < #{s: 0 <s <t, G eD,)
0

3 t
< | 0{G,00)ds < [ (G, (W)}ds+1.
g O
From (7) and the individual crgodic theorem, we have
® iy s 0<s<s, Gy eDy _j (Pkdﬁ
e St A(UT(D))

for almost all we UT(D), since the geodesic flow G, on UT(D) is ergodic {e.g.,
see [3]). Furthermore, it follows from (2) that

icm
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_ ) Adx, dx., dx} dx’
©) [oudit = ) R = e 4D, ),
z1.220 |z1 — 22| > k{21 +22)2eDsd |z, —z,]

with z; = x; +x,i and z, = xj +x5i. We put
E, = {Wwe UT(D): (8) holds}

and choose {k,} to be a countable dense subset of the open interval (0, k).
Then it turns out that

ﬁ((ﬂ Ek,.)c) =0

and (6) holds for any we () E,. This completes the proof of the theorem.
From this theorem, we ';:ompute the number of solutions of (4) for almost
all zeC.
TuworeM 3.2. For almost all zeC,
m ¥ {g(o0): gel’, (4) holds, r(g) 2 1/N} 8'A(D*)'E.k2

f ~ A(UTD)

N oo logN

for any positive k less than the Ford radius of T.
Proofl. For every geodesic curve (7, z”) in H?, there exists ge I’ such
—..—a—*»} .
that g(z', 2 ) n D % . Moreover, if we put
J = {z,eC: there exist z, € P*(C) and seR such that (z,, z,, sye UT(D)},

then for almost all z, € J, there exist z, € PY{C) and u & R such that (6) holds for
W = (z,, 75, u) & UT(D). For such a complex number z,, it turns out that the
point # € UT(D) congruent to (oo, z,i) satisfies (6) by Lemma 1.1. Hence it is
clear that G(3) also satisfies (6} for any teR. Now by Lemma 24 and
Proposition 2.5, we have
#{s: 0 < s < log(N*/2-k), G,G_,(F)e By}
< 4 {g(oo): geT, (4) holds with z = z,, r{g) = 1/N}
< 4 {s: 0 < 5 < log(N*/k), G,G_s{d) e Dy}.

Consequently, we get for z,,

4 {g(oo): gel’, (4) holds, r(g) > 1/N} _ 4-AD)ym

2logN a(UT(D)) k.

{10) lim

N 1
If 2 is congruent to z,, in I, then we can prove (10) by the same way. This
implies the assertion of the theorem.

Finally, we consider a cusp o of I' that is not congruent to o. For suc‘h
a cusp a, there exists he PSL(2, C) such that ¢ = h™'(co) (clearly R ¢ I). In this
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case, we put I, == hI'h™! so that I, has a cusp at co. Applying the above
discussion, we have the following:

THEOREM 3.3. For almost all zeC,

lim 3 {g(c0): gel, (z—g(w0)| < r(gh™ "V -k, r(gh™*) = 1/N}
N-—+wm IOgN

_8A(D),)
-~ AUT,)

Jor any k, O < k < ko, where k, is the Ford radius of I,, D, and (D,), are the
Sundamental regions (in H* and C, resp.) of I, and (T'),. respectively.

i-z

4. Approximation over imaginary quadratic field. We apply Theorems 3.2
and 3.3 for I' = PSL(2, 0,) and its subgroups. In this case, the following facts
are known (see [2] and its references):

(i) co is a cusp of I' for any square free negative integer d and (o) is
identical with

plg: pogeon (p.g) = 1} u{oo}.

In general, this is not identical with Q(ﬁ) U {co} (= the set of cusps of I'). Let
K, be the set of cusps of I, then there are finite number of cCusps

215 5, eres I EQ(\/E) such that

Ky=T(@)ul(z)u...ul'(z,-)) (disjoint union),

here L is the class number of Q(\/:D.

(i) We recall that the discriminant and the zeta-function of Q(\/c—l) are
defined by

a1 i {44 ¥f d =2, 3(mod 4),
d ifd=1{mod4)
and

Lfs) =3 1/N (.  respectively,
where I runs over all ideals in Q(,/d) and N(I) denotes its norm. We have
4132
(12) u(D) = %F-;,(z)

for any square free negative integer 4.
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Tueorem 4.1, For almost all zeC,

:H;{EEQ(\/E): S satisfies (1), |q] < N}

' = Cyk?
(13) ;m; logN d
for any k > O with
g 2
T
A ifd=~1,
o !
4-n
i d= =3,
9-¢,(2
(14 ¢y =< 5D
oo d g~ 1, d =2, 3 (mod 4),
ity 7
AT g —3, d= 1 (mod 4).
\_Ifﬂ":a(z)
Proof. Since ji(UT(D)) = u(D)x4r and
2 ifd=—1,

1/2./3 ifd=-3,
MDN=2 i itas-1,d=2,3moda),
Sz if d# -3, d=1(mod 4),
it follows from Proposition 2.2 and Theorem 3.2 that for almost all ze C, (13}

ab
holds with (14) for 0 < k< 1/2. (For g =|:

, ¢#0, we note that
cd

g(e0) = afc and r(g) = 1/icl) | . -
Next we consider the case of k > 1/2. To do this, we consider the principal
congruence subgroup I, of I' = PSL(2, o) of level m, m # 0,0,

F,n:{gel“: gg[i;)l :L(')l] (modm)}.

Every principal congruence subgroup is normal and of finite index. Moreover,
there exist gy, Yas--.0 Y11 1 such that

(15) I'{o0) = I, (c0) U g, (o) v ... W gr-1(Tu(0))  (disjoint union).

It is easy to show that the Ford radius of I, is equal to m/2 _fgr ?ositive
rational integer m. In the sequel, we always assume that m is a positive integex.
If we apply Theorem 32 to I, then we have for almost all zeC,

. #{pjacQ(/dy: piq satisfies (1), lg < N and p/geI,{c0)}
(16) lim
logN 5
N+ ) - Cd‘m'k
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for k, 0 <k < m/2, where C,,, is a constant depending on 4 and m. On the
other hand, since

gilagit="r, forl<ngl-1,
we can apply Theorem 3.3 to I, and get the following: for almost all zeC
(17)

p P . P
# 5 Q(/d): £ satisfies (1), gl < N and Ze g, I, (o0)
lim —2 1 : &
N =z log N

= Cd’,m.kz

for k,0 <k «m/2, 1 € n<I—1. From (13), (15), (16) and (17), we sec that
Com = Cd/l

and (13) holds for 0 < k < m/2. Since we can choose m arbitrarily large, we
have the assertion of the theorem.

Remarks. (i) If it is possible to construct a normal subgroup of I' with
finite index whose Ford radius 1s greater than that of I, then it turns out that
the assertions of Theorems 3.1, 3.2 and 3.3 hold with “for any k = 0.

(i) If the class number of Q(./ZO 1s not equal to one, then we can discuss
the similar property for each congruence class of cusps by Theorem 3.3.

(iii) It is possible to establish a theorem similar to a result by Moeckel [9].
For example, it is easy to show that

#{Eeg(\/é): E satisfies (1), gl < N and Eegﬂfm(oo)}

e #{IZ;E Q(/d): g satisfies (1), |g| < N}

L
I

for almost all zeC and any k > 0.
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