500

ACTA ARITHMETICA 1.1 (1988)

On metrical theory of diophantine approximation over imaginary quadratic field

by

HITOSHI NAKADA (Yokohama)

For a complex number z, we consider a diophantine inequality

(1)
$$\left|z - \frac{p}{q}\right| < \frac{k}{|q|^2}, \quad k > 0, \ p, \ q \in o_d \text{ and } (p, q) = 1,$$

where d is a square free negative integer, o_d denotes the ring of integers of $Q(\sqrt{d})$ and (p, q) = 1 means ideals generated by p and by q are relatively prime.

In the case of d=-1, LeVeque [8] proved Khintchine type metrical theorem by using complex continued fractions. Moreover, Sullivan [11] established Khintchine theorem for any square free negative integer d by using the notion of disjoint spheres on the three-dimensional hyperbolic space $H^3 = \{(x_1, x_2, y): x_1, x_2 \in R, y > 0\}$. His method shows that the asymptotic property of solutions of (1) is related to an excursion of the geodesic flow on $H^3/\text{PSL}(2, o_d)$ to the point of infinity.

In this paper, we estimate the asymptotic number of solutions of (1) by using (generalized) Ford balls. Such a family of balls was first considered by Ford [4] and [5] to determine an approximating constant of (1) in the case of d = -1.

MAIN THEOREM. For almost all $z \in C$, we have

$$\lim_{N \to \infty} \frac{\#\left\{\frac{p}{q} \in Q(\sqrt{d}): \frac{p}{q} \text{ satisfies (1) and } |q| \leqslant N\right\}}{\log N} = C_d \cdot k^2$$

for any k > 0, where C_d is a constant depending on d.

Similar theorem also holds for some discrete subgroups, with a cusp at infinity, of PSL(2, C) acting on H^3 . (Such a class of subgroups corresponds to the class of zonal subgroups of PSL(2, R) acting on the upper half plane H^2 .) We prove the assertion in the general case in Section 3 and next apply it to the case of PSL(2, o_d) and its subgroups in Section 4. We also determine the

constant C_d . For preparation, we introduce the notion of Ford balls in Section 2.

Our argument is also available for an approximation of real numbers by cusps of a zonal Fuchsian group Γ . To do this, we use Ford disks and the geodesic flow on H^2/Γ . Then we see that the asymptotic numbers of solutions are in proportion to k (instead of k^2), see [10].

1. Preliminaries. Let H^3 be the upper half-space. We write $w \in H^3$ by

$$w = x_1 + x_2 i + yj$$
 with $x_1, x_2 \in \mathbb{R}$ and $y > 0$,

where 1, i, j, k are the basis of the quaternion fields. We consider

$$P^1(C) = C \cup \{\infty\} \quad (= \partial H^3).$$

The hyperbolic metric s on H^3 and its associated measure μ are defined by

$$ds^2 = \frac{dx_1^2 + dx_2^2 + dy^2}{y^2}$$
 and $d\mu = \frac{dx_1 dx_2 dy}{y^3}$,

respectively. Furthermore, the induced measure $\bar{\mu}$ on the unit tangent space $UT(H^3) = H^3 \times S^2$ is given by

$$d\bar{\mu} = d\mu \otimes (\cos\varphi \, d\theta \, d\varphi),$$

where θ and φ denote longitude and latitude, respectively. It follows that the geodesics are half-circles and half-lines perpendicular to C.

For any matrix $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{C})$, we define the Möbius transformation on H^3 by

$$g(w) = (aw+b)(cw+d)^{-1}$$

for $w \in H^3$. This preserves the hyperbolic metric and measure. It is also possible to define the transformation on $UT(H^3)$ by g. Since the transformation g is conformal, it follows that g also preserves the measure $\bar{\mu}$ on $UT(H^3)$. An element g of $SL(2, \mathbb{C})$ is said to be a parabolic element if (trace of g)² = 4.

For any $(w, \theta, \varphi) \in \mathrm{UT}(H^3)$ with $w = x_1 + x_2 i + y j$, there is a unique geodesic curve passing through w with the tangent vector (θ, φ) . We denote such a geodesic by $(\overline{z_1}, \overline{z_2})$, where z_1 and z_2 denote the initial and the terminal points in $P^1(C)$, respectively. We also denote by u the "signed" hyperbolic distance from the top of the geodesic $(\overline{z_1}, \overline{z_2})$ to w, if $(\overline{z_1}, \overline{z_2})$ is a half-circle, from $x_1 + x_2 i + j$ to w, if $(\overline{z_1}, \overline{z_2})$ is a half-line. Then we may regard

$$UT(H^3) = \{(z_1, z_2, u): (z_1, z_2) \in P^1(C) \times P^1(C) \setminus \{\text{diagonal}\}, u \in R\}.$$

In this representation, it follows by a simple calculation of the change of variables that

(2)
$$d\bar{\mu} = \frac{4dx_1 dx_2 dx_1' dx_2' du}{|z_1 - z_2|^4}$$

where $z_1 = x_1 + x_2 i$ and $z_2 = x'_1 + x'_2 i$.

For any $w = (z_1, z_2, u) \in \mathrm{UT}(\underline{H}^3)$, we consider the horosphere tangent to $P^1(C)$ at z_2 and perpendicular to $(\overline{z_1}, \overline{z_2})$ at the base point of (z_1, z_2, u) . Then for any z_1' $(\neq z_2) \in P^1(C)$, there is a unique point, say $\hat{w}' = (z_1', z_2, \tilde{u})$, in (z_1', z_2) , whose base point is on the above horosphere.

Lemma 1.1. The hyperbolic distance between the base points of $(z_1, z_2, u+t)$ and $(z_1', z_2, \tilde{u}+t)$ converges to zero exponentially as t tends to ∞ .

We consider a discrete subgroup Γ of the group

$$PSL(2, \mathbf{C}) = SL(2, \mathbf{C}) / \left\{ \pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\},$$

which is the group of all orientation preserving isometries for the hyperbolic metric. Γ acts discontinuously on H^3 as Möbius transformations. A parabolic fixed point $z \in P^1(C)$ of Γ is said to be a cusp of Γ if

$$\left\{ w: \begin{bmatrix} 1 & w \\ 0 & 1 \end{bmatrix} \in g \Gamma g^{-1} \right\}$$

is a lattice in C, where g is an element of PSL(2, C) such that $z = g^{-1}(\infty)$.

Suppose that ∞ is a cusp of Γ . For $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}(2, \mathbb{C})$ with $c \neq 0$, we denote by K_g the isometric hemi-sphere of g, that is,

$$K_q = \left\{ w \in H^3 \colon u_1^2 + u_2^2 + v^2 = 1 \text{ with } cw + d = u_1 + u_2i + vj \right\}.$$

We put

$$I(K_g) = \{ w \in H^3 : u_1^2 + u_2^2 + v^2 < 1 \text{ with } cw + d = u_1 + u_2 i + v j \}.$$

$$E(K_q) = \{ w \in H^3 \colon u_1^2 + u_2^2 + v^2 > 1 \text{ with } cw + d = u_1 + u_2i + vj \}$$

and r_g be the (Euclidean) radius of K_g . We also define $D_* \subset C$ by a fundamental region of the lattice induced from $\Gamma_\infty = \{g \in \Gamma \colon g(\infty) = \infty\}$ and put

$$D^* = \{ w = x_1 + x_2 i + yj \colon y > 0, x_1 + x_2 i \in D_* \}.$$

LEMMA 1.2. If we put

$$D=\bigl(\bigcap_g E(K_g)\bigr)\cap D^*,$$

then D is a fundamental region of Γ , where g runs over all elements in $\Gamma \backslash \Gamma_{\infty}$.

Proof. This follows from the facts: (i) $g(I(K_g)) = E(K_{g^{-1}})$ and (ii) y < v for $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $c \neq 0$, $w = x_1 + x_2i + yj \in H^3$ and $cw + d = u_1 + u_2i + vj$.

2. Ford balls. Let Γ be a finitely generated discrete subgroup of PSL(2, C) with $\mu(H^3/\Gamma) < +\infty$ and suppose that ∞ is a cusp of Γ . We put

$$F_k(\infty) = \{ w \in H^3: w = x_1 + x_2 i + yj, y > 1/(2k) \}$$

for k > 0 and define

$$F_k(g(\infty)) = g(F_k(\infty))$$

for
$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$$
. Since

(3)
$$g = \begin{bmatrix} 1 & a/c \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1/c \\ c & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & d/c \\ 0 & 1 \end{bmatrix}$$

for $c \neq 0$, we see the following:

LEMMA 2.1. $F_k(g(\infty))$ is the open ball in H^3 with the (Euclidean) radius $r(g)^2 \cdot k$ and tangent to C at a/c provided $c \neq 0$.

Proof. Since r(g) = 1/|c|, the assertion of the lemma follows from (3) easily.

Since ∞ is a cusp of Γ , it turns out that there exists $k_0 > 0$ such that for $0 < k < k_0$ we have

$$F_k(g(\infty)) \cap F_k(g'(\infty)) = \emptyset$$

provided $g(\infty) \neq g'(\infty)$ and $g, g' \in \Gamma$. We call

$$F_k(g(\infty))$$
: $g \in \Gamma$, $0 < k < k_0$

the k-Ford balls of Γ and the supremum of such k_0 the Ford radius of Γ .

Proposition 2.2 (Ford [6]). For $\Gamma=\mathrm{PSL}(2,o_d)$ with a square free negative integer d, the Ford radius is equal to 1/2.

Now we introduce a diophantine approximation with respect to cusps of Γ . For $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$, $c \neq 0$, and k > 0, we consider the inequality

$$(4) |z-g(\infty)| < r(q)^2 \cdot k \text{for } z \in C.$$

which corresponds to a problem of Lehner ([7], pp. 334-336) in the case of zonal Fuchsian groups. Since the set of k-Ford balls are invariant under the Γ -action, we see the next lemma.

LEMMA 2.3. The following are equivalent for $z \in C$:

- (i) $|z-g(\infty)| < r(g)^2 \cdot k$,
- (ii) $F_k(g(\infty)) \cap (\overline{\infty, z'}) \neq \emptyset$,
- (iii) $F_k((g' \cdot g)(\infty)) \cap (g'(\infty), g'(z)) \neq \emptyset$ for $g' \in \Gamma$,

where $(\overline{z_1}, \overline{z_2})$ denotes the geodesic curve in H^3 with the initial point z_1 and the terminal point z_2 .

If we take $g' = g^{-1}$ in (iii) of the above lemma, then we have the next lemma.

LEMMA 2.4. The inequality (4) holds if and only if

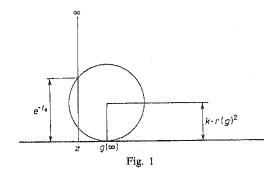
$$|g^{-1}(\infty)-g^{-1}(z)|>1/k.$$

From this lemma and the construction of D in Lemma 1.2, we have the following:

PROPOSITION 2.5. Let $\{\hat{w}_t: t \in R\} \subset \mathrm{UT}(D)$, $\mathrm{UT}(D)$ denotes the unit tangent space of D, be the geodesic path congruent to $\{(\infty, z, t): t \in R\}$ of $\mathrm{UT}(H^3)$ with \hat{w}_0 to be congruent to $(\infty, z, 0)$. Then it follows that if the base point of \hat{w}_t goes into $F_k(\infty)$ at $t_0 > 0$, then there exists $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfying (4) such that

(5)
$$k \cdot e^{t_0} < r(g)^{-2} < 2 \cdot k \cdot e^{t_0}$$

Proof. The existence of g follows from Lemma 2.3. Since \hat{w}_{t_0} is congruent to (∞, z, t_0) and the base point of (∞, z, t_0) is $z + e^{-t_0}j \in H^3$, we have the inequality (5), see Fig. 1.



3. Metrical theory of Γ -approximation. It is possible to count the entrance times of a geodesic path into Ford balls. In the sequel, we identify the unit tangent space UT(D) with a subset of

$$\lceil P^1(C) \times P^1(C) \setminus \{\text{diagonal}\} \rceil \times R.$$

For $\hat{w} \in \mathrm{UT}(D)$, we denote by $G_s(\hat{w})$ the geodesic flow on $\mathrm{UT}(D)$, that is, for $\hat{w} = (z_1, z_2, u)$, $G_t(\hat{w})$ is the point in $\mathrm{UT}(D)$ congruent to $(z_1, z_2, u+t)$. We put

$$D_k = D \cap \{w = x_1 + x_2 i + y j : y = 1/(2k)\}$$

and

 $\hat{D}_k = \{ \hat{w} = (z_1, z_2, u) \colon u < 0 \text{ and } w \in D_k, \text{ where } w \text{ is the base point of } \hat{w} \}.$

THEOREM 3.1. For μ -almost all $\hat{w} \in \mathrm{UT}(D)$,

(6)
$$\lim_{t \to \infty} \frac{\# \left\{ s \colon 0 < s < t, \ G_s(\hat{w}) \in \hat{D}_k \right\}}{t} = \frac{\lambda(D_*) \cdot \pi}{\bar{\mu}(\mathrm{UT}(D))} \cdot k^2$$

for any positive k less than the Ford radius k_0 , where λ denotes Lebesgue measure of C.

Proof. Since $k_0=\min\frac{1}{2}\cdot r(g)$, where g runs over all elements in $\Gamma\backslash\Gamma_\infty$, we see that

$$D_* = \left\{ x_1 + x_2 i \colon x_1 + x_2 i + \frac{1}{2k} j \in D_k \right\}.$$

For any fixed $k < k_0$, we can choose a small positive number ε such that

$$\{G_s(\hat{w}): -\varepsilon < s < \varepsilon\} \cap \hat{D}_k = \{\hat{w}\}$$

for any $\hat{w} \in \hat{D}_k$. For this ϵ , we define

$$D_{k,x} = \{ \hat{w} \in \mathrm{UT}(D) \colon \hat{w} \notin F_k(\infty), \text{ the base point of } G_s(\hat{w}) \text{ is in } F_k(\infty)$$
 for some $s, 0 < s < \varepsilon \}$

and

$$\varphi_k(w) = \begin{cases} 1/\varepsilon & \text{if } \hat{w} \in \hat{D}_{k,\varepsilon}, \\ 0 & \text{otherwise.} \end{cases}$$

From this definition of φ_k , it follows that

(7)
$$\int_{0}^{t} \varphi_{k}(G_{s}(\hat{w}))ds - 1 \leqslant \int_{0}^{t-\varepsilon} \varphi_{k}(G_{s}(\hat{w}))ds \leqslant \#\{s: \ 0 < s < t, \ G_{s}(\hat{w}) \in \hat{D}_{k}\}$$
$$\leqslant \int_{s}^{t} \varphi_{k}(G_{s}(\hat{w}))ds \leqslant \int_{0}^{t} \varphi_{k}(G_{s}(\hat{w}))ds + 1.$$

From (7) and the individual ergodic theorem, we have

(8)
$$\lim_{t \to \infty} \frac{\# \left\{ s \colon 0 < s < t, \ G_s(\hat{w}) \in \hat{D}_k \right\}}{t} = \frac{\int \varphi_k d\bar{\mu}}{\bar{\mu}(\mathrm{UT}(D))}$$

for almost all $\hat{w} \in UT(D)$, since the geodesic flow G_t on UT(D) is ergodic (e.g., see [3]). Furthermore, it follows from (2) that

$$(9) \int \varphi_k d\bar{\mu} = \iiint_{\{(z_1,z_2): |z_1-z_2| > 1/k, (z_1+z_2)/2 \in D_*\}} \frac{4dx_1 dx_2 dx_1' dx_2'}{|z_1-z_2|^4} = 4 \cdot \pi \cdot \lambda(D_*) \cdot k^2,$$

with $z_1 = x_1 + x_2 i$ and $z_2 = x'_1 + x'_2 i$. We put

$$E_k = \{ \hat{w} \in \mathrm{UT}(D) \colon (8) \text{ holds} \}$$

and choose $\{k_n\}$ to be a countable dense subset of the open interval $(0, k_0)$. Then it turns out that

$$\bar{\mu}\big((\bigcap_{n} E_{k_n})^{\mathcal{C}}\big) = 0$$

and (6) holds for any $\hat{w} \in \bigcap E_{k_n}$. This completes the proof of the theorem.

From this theorem, we compute the number of solutions of (4) for almost all $z \in C$.

THEOREM 3.2. For almost all $z \in C$,

$$\lim_{N\to\infty} \frac{\#\{g(\infty)\colon g\in\Gamma, (4) \ holds, \ r(g)\geqslant 1/N\}}{\log N} = \frac{8\cdot\lambda(D_*)\cdot\pi}{\bar{\mu}(\mathrm{UT}(D))}\cdot k^2$$

for any positive k less than the Ford radius of Γ .

Proof. For every geodesic curve (z', z'') in H^3 , there exists $g \in \Gamma$ such that $g(z', z'') \cap D \neq \emptyset$. Moreover, if we put

 $J = \{z_2 \in \mathbb{C}: \text{ there exist } z_1 \in \mathbb{P}^1(\mathbb{C}) \text{ and } s \in \mathbb{R} \text{ such that } (z_1, z_2, s) \in \mathrm{UT}(\mathbb{D})\},$

then for almost all $z_2 \in J$, there exist $z_1 \in P^1(C)$ and $u \in R$ such that (6) holds for $\hat{w} = (z_1, z_2, u) \in \mathrm{UT}(D)$. For such a complex number z_2 , it turns out that the point $\hat{v} \in \mathrm{UT}(D)$ congruent to $(\infty, z_2 \tilde{u})$ satisfies (6) by Lemma 1.1. Hence it is clear that $G_t(\hat{v})$ also satisfies (6) for any $t \in R$. Now by Lemma 2.4 and Proposition 2.5, we have

$$\begin{split} \#\{s\colon 0 < s < \log(N^2/2 \cdot k), \, G_s G_{-\vec{u}}(\vec{v}) \in \hat{D}_k\} \\ & \leqslant \#\{g(\infty)\colon g \in \Gamma, \, \text{ (4) holds with } z = z_2, \, r(g) \geqslant 1/N\} \\ & \leqslant \#\{s\colon 0 < s < \log(N^2/k), \, G_s G_{-\vec{u}}(\vec{v}) \in \hat{D}_k\}. \end{split}$$

Consequently, we get for z_2 ,

(10)
$$\lim_{N \to r} \frac{\# \{g(\infty): g \in \Gamma, (4) \text{ holds, } r(g) \geqslant 1/N\}}{2 \cdot \log N} = \frac{4 \cdot \lambda(D_*) \cdot \pi}{\bar{\mu}(\mathrm{UT}(D))} \cdot k^2.$$

If z'' is congruent to z_2 , in Γ , then we can prove (10) by the same way. This implies the assertion of the theorem.

Finally, we consider a cusp α of Γ that is not congruent to ∞ . For such a cusp α , there exists $h \in \mathrm{PSL}(2, \mathbb{C})$ such that $\alpha = h^{-1}(\infty)$ (clearly $h \notin \Gamma$). In this

case, we put $\Gamma_{\alpha} = h\Gamma h^{-1}$ so that Γ_{α} has a cusp at ∞ . Applying the above discussion, we have the following:

THEOREM 3.3. For almost all $z \in C$,

$$\lim_{N \to \infty} \frac{\# \{g(\infty): \ g \in \Gamma, \ |z - g(\infty)| < r(gh^{-1})^2 \cdot k, \ r(gh^{-1}) \geqslant 1/N \}}{\log N}$$

$$= \frac{8 \cdot \lambda ((D_{\alpha})_{*}) \cdot \pi}{\bar{\mu} (\mathrm{UT}(D_{\alpha}))} \cdot k^{2}$$

for any k, $0 < k < k_0$, where k_0 is the Ford radius of Γ_{α} , D_{α} and $(D_{\alpha})_*$ are the fundamental regions (in H^3 and C, resp.) of Γ_{α} and $(\Gamma_{\alpha})_{\alpha}$, respectively.

- **4.** Approximation over imaginary quadratic field. We apply Theorems 3.2 and 3.3 for $\Gamma = PSL(2, o_d)$ and its subgroups. In this case, the following facts are known (see [2] and its references):
- (i) ∞ is a cusp of Γ for any square free negative integer d and $\Gamma(\infty)$ is identical with

$$\{p/q: p, q \in o_d, (p, q) = 1\} \cup \{\infty\}.$$

In general, this is not identical with $Q(\sqrt{d}) \cup \{\infty\}$ (= the set of cusps of Γ). Let K_d be the set of cusps of Γ , then there are finite number of cusps $z_{1,i}, z_2, \ldots, z_{L-1} \in Q(\sqrt{d})$ such that

$$K_d = \Gamma(\infty) \cup \Gamma(z_1) \cup \ldots \cup \Gamma(z_{L-1})$$
 (disjoint union),

here L is the class number of $Q(\sqrt{d})$.

(ii) We recall that the discriminant and the zeta-function of $Q(\sqrt{d})$ are defined by

(11)
$$\hat{d} = \begin{cases} 4d & \text{if } d \equiv 2, 3 \pmod{4}, \\ d & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

and

$$\zeta_d(s) = \sum 1/N(I)^s$$
, respectively,

where I runs over all ideals in $Q(\sqrt{d})$ and N(I) denotes its norm. We have

(12)
$$\mu(D) = \frac{|\hat{d}|^{3/2}}{4 \cdot \pi^2} \cdot \zeta_d(2)$$

for any square free negative integer d.

THEOREM 4.1. For almost all $z \in \mathbb{C}$.

(13)
$$\lim_{N \to \infty} \frac{\#\left\{\frac{p}{q} \in Q(\sqrt{d}): \frac{p}{q} \text{ satisfies (1), } |q| \leqslant N\right\}}{\log N} = C_d \cdot k^2$$

for any k > 0 with

(14)
$$C_{d} = \begin{cases} \frac{\pi^{2}}{2 \cdot \zeta_{d}(2)} & \text{if } d = -1, \\ \frac{4 \cdot \pi^{2}}{9 \cdot \zeta_{d}(2)} & \text{if } d = -3, \\ \frac{\pi^{2}}{|d| \cdot \zeta_{d}(2)} & \text{if } d \neq -1, d \equiv 2, 3 \pmod{4}, \\ \frac{4 \cdot \pi^{2}}{|d| \cdot \zeta_{d}(2)} & \text{if } d \neq -3, d \equiv 1 \pmod{4}. \end{cases}$$

Proof. Since $\tilde{\mu}(\mathrm{UT}(D)) = \mu(D) \times 4\pi$ and

$$\lambda(D_{*}) = \begin{cases} 1/2 & \text{if } d = -1, \\ 1/2\sqrt{3} & \text{if } d = -3, \\ \sqrt{|d|} & \text{if } d \neq -1, d \equiv 2, 3 \pmod{4}, \\ \sqrt{|d|/2} & \text{if } d \neq -3, d \equiv 1 \pmod{4}, \end{cases}$$

it follows from Proposition 2.2 and Theorem 3.2 that for almost all $z \in C$, (13) holds with (14) for 0 < k < 1/2. (For $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $c \neq 0$, we note that $g(\infty) = a/c$ and r(g) = 1/|c|.)

Next we consider the case of k > 1/2. To do this, we consider the principal congruence subgroup Γ_m of $\Gamma = \text{PSL}(2, o_d)$ of level $m, m \neq 0, \in o_d$:

$$\Gamma_m = \left\{ g \in \Gamma \colon g \equiv \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \pmod{m} \right\}.$$

Every principal congruence subgroup is normal and of finite index. Moreover, there exist $g_1, g_2, ..., g_{l-1} \in \Gamma$ such that

(15)
$$\Gamma(\infty) = \Gamma_m(\infty) \cup g_1(\Gamma_m(\infty)) \cup \ldots \cup g_{l-1}(\Gamma_m(\infty))$$
 (disjoint union).

It is easy to show that the Ford radius of Γ_m is equal to m/2 for positive rational integer m. In the sequel, we always assume that m is a positive integer. If we apply Theorem 3.2 to Γ_m , then we have for almost all $z \in C$,

(16)
$$\lim_{N \to \infty} \frac{\# \{ p/q \in \mathbb{Q}(\sqrt{d}) : \ p/q \text{ satisfies (1), } |q| \leqslant N \text{ and } p/q \in \Gamma_m(\infty) \}}{\log N} = C_{d,m} \cdot k$$

for k, 0 < k < m/2, where $C_{d,m}$ is a constant depending on d and m. On the other hand, since

$$g_n \Gamma_m g_n^{-1} = \Gamma_m$$
 for $1 \le n \le l-1$,

we can apply Theorem 3.3 to Γ_m and get the following: for almost all $z \in C$

(17)
$$\lim_{N \to \infty} \frac{\#\left\{\frac{p}{q} \in \mathcal{Q}(\sqrt{d}): \frac{p}{q} \text{ satisfies (1), } |q| \leq N \text{ and } \frac{p}{q} \in g_n \Gamma_m(\infty)\right\}}{\log N} = C_{d,m} \cdot k^2$$

for $k, 0 < k < m/2, 1 \le n \le l-1$. From (13), (15), (16) and (17), we see that

$$C_{d,m} = C_d/l$$

and (13) holds for 0 < k < m/2. Since we can choose m arbitrarily large, we have the assertion of the theorem.

Remarks. (i) If it is possible to construct a normal subgroup of Γ with finite index whose Ford radius is greater than that of Γ , then it turns out that the assertions of Theorems 3.1, 3.2 and 3.3 hold with "for any k > 0".

- (ii) If the class number of $Q(\sqrt{d})$ is not equal to one, then we can discuss the similar property for each congruence class of cusps by Theorem 3.3.
- (iii) It is possible to establish a theorem similar to a result by Moeckel [9]. For example, it is easy to show that

$$\lim_{N\to\infty} \frac{\#\left\{\frac{p}{q}\in \mathbf{Q}(\sqrt{d}): \frac{p}{q} \text{ satisfies (1), } |q|\leqslant N \text{ and } \frac{p}{q}\in g_n\Gamma_m(\infty)\right\}}{\#\left\{\frac{p}{q}\in \mathbf{Q}(\sqrt{d}): \frac{p}{q} \text{ satisfies (1), } |q|\leqslant N\right\}} = \frac{1}{l}$$

for almost all $z \in C$ and any k > 0.

References

- L. V. Ahlfors, Möbius transformations in several dimensions, Univ. Minnesota Lecture Notes (1981).
- [2] J. Elstrodt, F. Grunewald and J. Mennicke, Eisenstein series on three-dimensional hyperbolic space and imaginary quadratic number field, J. Reine Angew. Math. 360 (1985), 160-213.
- [3] S. V. Fomin and I. M. Gelfand, Geodesic flow on manifold of constant negative curvature, Amer. Math. Soc. Transl. 2 (1955), 49-65.
- [4] L. R. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 19 (1918), 1-42.
- [5] On the closeness of approach of complex rational fractions to a complex irrational numbers, Trans. Amer. Math. Soc. 27 (1925), 146-154.

[6] L. R. Ford, Fractions, Amer. Math. Monthly 45 (1938), 586-601.

- [7] J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys 8, Amer. Math. Soc. (1964).
- [8] W. J. Le Veque, Continued fractions and approximations in k(i), I and II, Indag. Math. 14 (1952), 526-545.
- [9] R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergod. Th. and Dynam. Sys. 2 (1982), 69-83.
- [10] H. Nakada, Metric diophantine approximation on some Fuchsian groups, preprint.
- [11] D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers and the logarithm law for geodesics, Acta Math. 149 (1983), 215–239.

DEPARTMENT OF MATHEMATICS

KEIO UNIVERSITY

Hiyoshi 3-14-1,

Kohoku, Yokohama 223

Japan

DEPARTMENT OF MATHEMATICS AND INFORMATICS

DELFT UNIVERSITY OF TECHNOLOGY

Julianalaan 132

2628B1. Delft

The Netherlands

Received on 21.5.1987 (1723)