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&> 0 such that N*(g, 56) = {x e X: d*(x, q) < 5e} = f (U). Choose 0<8 <& such

that, for ¥ = N*(p,d), we have V< U and (V)= N*(q, ¢). We claim that for
all x,yeV, d*(f(x),/(») = Ed*(x, y). For, suppose d*(f(x), ()< Ed*(x,)
for some x, y e V. Then there exists a continuum K containing f'(x) and f() such
that diam K < Ed*(x, y). Since d*(x, y) < 2¢, diam K < 4g, and since d*(f(x), ¢) <,
this implies that K< N*(g, 5¢) = f(U). Thus, for L = f~Y(K)n U, the restriction
fIL: L — K is a homeomorphism. It follows that L is a continuum containing x
“and y, with diamL < E™1-diamK < d*(x, y), a coniradiction.

COROLLARY 7. No compact connected manifold with boundary admits an open
local expansion.

QuesTiON. Does there exist a local expansion for any compact connccu,d
manifold with boundary?

" A final observation: if the definition of local expansion is relaxed by requiring
only that, for some open cover % of X, d(f(x), () > d(x, y) forall x,ye Ue%,
X # ¥, then Theorems 1 and 2, and their corollaries, remain valid (but we do not
see how to prove Theorem 3 in this setting).

References

[1] J.J. Charatonik and M. Kalota, On local expansions, Fund. Math. 117 (1983), 187-203,

INSTITUTE OF MATHEMATICS
WROCLAW UNIVERSITY

Pl Grunwaldzki 2

50-384 Wroclaw

Received 10 April 1986

icm

On infinite words and dimension raising homomorphisms
by

R.P. Hunter (University Park)

Abstract, There exists a 2-generator compact zero dimensional semigroup which admits a con-
tinuous homomorphism onto a one dimensional semigroup. An abelian finitely generated compact
zero dimensional semigroup admits no dimension raising homomorphisms.

It is well known that a compact topological group cannot admit dimen-
sion raising homomorphisms. Indeed, if G is such a group of dimension », then any
continuous homomorphism must decrease the dimension by that of the kernel.

It is also well known that a compact semigroup may admit dimension raising
homomorphisms. See, for example, [1], [7], and [8]. The first example of a dimension
raising homomorphism of a compact semigroup was observed by R.J. Koch.

From the nature of the various examples there is an understandable viewpoint
that such homomorphisms are part of a theory that somehow is essentially abelian
in nature. This is consistent, of course, with the fact that any pathology in the topo-
logical structure of a compact connected group is due to the abelian part. Similar
considerations hold for compact connected monoids.

Playing a central role in such constructions are compact semigroups which are
zero dimensional. Cone constructions will then easily yield appropriate higher
dimensional examples. The earliest examples were of this sort.

Now among the compact zero dimensional semigroups, those which are (topo—
logically) finitely generated would appear, as is the case for groups, to be more
predictable. Indeed, it is the case that a compact finitely generated zero dimen-
sional abelian semigroup admits no dimension raising homomorphisms.

It is, therefore, mildly surprising that a finitely generated compact semigroup
may well admit such homomorphisms. -

The semigroup in’ question is due to Boasson and Nivat and is of interest in
the theory of languages [5]. It is studied there for entirely different reasons from
those considered here.

The purpose of this note is to present the following two contrasting results.

THEOREM A. There exists a two generator compact zero dimensional semigroup
which admits a (continuous) dimension raising homomorphism. The semigroup may
‘*
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be taken as a zero dimensional compactification of the frée semigroup on two gene~
rators, )

THEOREM B. A compact finitely generated zero dimensional abelian semigroup
admits no dimension raising homomorphisms.

Proof of Theorem A. We recall the semigroup of Boasson and Nivat as
in [5]: Let ¥ be a finite alphabet. ¥* the free monoid on ¥, ¥° the set of all infinite
words on V and let ¥® = V*UV®, Define the distance between two different
elements of ¥"* as 27* where k is the length of the longest common left factor of
the two elements. In this semigroup, V* is as given, V® consists of left zero ele-
ments. If ve V* and we V® the product is juxtaposition vw. Now ¥V® is known
to be a compact semigroup. In ¥ the seimigroup V* is open and dense. Moreover,
the set ¥ can be seen to be homeomorphic to the cantor set. ’
) For simplicity we limit ourselves to the case where ¥ has two clements say 0
anid 1. Note that the topology we are using on V2 is equivalent to the usual product
topology where an infinite word is viewed as an infinite tuple, i.e. a point of
X{0,1} = P.

_ Let C denote the usual cantor ternary set taken from the unit interval by the
removal of middle thirds. Let ¢ denote the classical and canonical homeomorphism
between C and the (countable) cartesian product P = X{0, 1}.

, Letti.nfg C, denote the nth stage in the construction of the cantor set we recall
the definition. of ¢: C ~ P

o) = (a1, a5, az, ...)
where
o = 0 xean odd interval in Cn,
" |1 xean even interval in C,.

Recall that C,, is composed of 2" disjoint i [ '
sjoint intervals, the first odd th
and so forth, from. left to right. oeseonderen
. _,We I{avc‘.already noted that P may be canonically identified with ¥, Com-
posing this Wlth ¢ we obtain the homeomorphism Y '

Y(X) = ajaza,...

"Now suppose that x and y are complementary endj:oints of C. That is to say,

they are endpoints of the same bounded complementary domain of C. 'We suppose

then that x < y-and x and y are’endpoints of some component of the complement

zfuc;:, where m is taken as a minimum. Then the first m letters of y(x) must be
n; t;s i, f zx)_lodand those of ){( y). must be v 0,050, 1. (The frst m~1 co-ordi-
o g andy (») must co-incide.) Moreover, at the stage Cly+1 In the construc-
ton of C the point x must belong to.an even interval which forces y to belong to

an odd‘_intgryal. This is also tru¢ at all succeeding stages. Thus
‘ . BEEE T e el e Rt A Eaad

1¢)) = 3 Ug'.%';,lu,,.q;()'] lilli o
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and
7(¥) = 405 ... 1,1 10000 ...

The first m—1 letters are equal, the nth letters are 0, 1, réspective]y, and the kth
letters are 1,0, respectively, for k> n.

Let ~ denote the decomposition whose classes consist of points or pairs of
complementary endpoints. Now ~ is a closed relation on C and C/~ is an arc.
Under y the decomposition ~ is carried into another decomposition ~ defined
on ¥° which is also closed. Thus, V*/~ is an arc.

Now the decomposition ~ extends to all of F® by taking classes as singletons
outside of ¥ that is on V*.

The decomposition ~ defined now on ¥*, is also a congruence. (One need
only note that ¥ is composed of left zeros and if W, and W, are & equivalent
words in ¥® and v* e V* then clearly v*W, ~ v*W,e V°) -

- Thus, it follows that ¥ ®/=~ is one dimensional, consisting of a discrete, dense
(free) semigroup whose boundary is an arc of left zeros. C

_ Here is an alternative brief description of the semigroup discussed above:

‘Let N, denote the one poifit compactification of N = the natural numbers.
Let Y denote the cartesian product I x N, where I is the unit interval. Let ¥, denote
the space obtained from Y by removing all open middle thirds from all components.
Let Y, be obtained from Y; by removing all middle thirds from all components .
except those whose second co-ordinate is 1. Obtain ¥}, from Y; by removing
all middle thirds from all components except those whose second coordinate is < k.

Let Y, denote the common part of the ¥, and let Y{ denote that subset of ¥,
whose second coordinate is j. Note that ¥ is the usual cantor set ¢ as above. Now
for n< oo let T be a component of ¥j. Then T corresponds to & unique word
W= w,Ww,..w, as follows: w; is 0 or 1 as T'is an odd or even component of Ys
(from left to right as usual) and in general w; is 0 or 1 as the projections of T to Y4
is in an odd or even component. '

In this way the midpoints of the components and words in {0, 1} are in one to
one correspondence. ,

Thus, ¥'® can be viewed as a closed subspace of Y.

Thus, as we see, the compact zero dimensional semigroup ¥ admits a dimen-
sion raising continuous homomorphism. It is of course a monoid and removing the
identity (which is an isolated point) provides a 2 generator semigroup. The resulting
semigroup ¥°\{1} is a continuous  homomorphic image of the zero dimensional
compactification of the free semigroup on two generators. Thus one has the following;

COROLLARY. Let F, denote the free semigroup on two generators and let F, denote
its zero dimensional compactification. F, admits a dimension raising homomorphism.
Proof of Theorem B. Let 4 be a compact finitely generated abelian semigroup
and let x,X, ..., X, be the generators. Note that 2{x;) = the closure of the semi-
group generated by x;, has a countable number of # -classes. This is clear from
the well known structure of any compact momothetic semigroup. (See, for
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example, [6]) Now 2{x;, xo) = the closure of the semigroup generated by Xy
and x, is just the set product (2{x;))(2{x,)) which has again a countable of
# -classes. By induction then, 4 has but a countable number of 3 -classes.

Now if « is any continuous homomorphism defined on 4 then o cut down to
any #-class H is topologically equivalent to a homomorphism defined on the
Schiitzenberger group of H, (See [3]). In particular, «(H) is again zero dimensional.
Then, by the classical sum theorem of dimension theory, a(H) must be zero
dimensional,
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On satorated ideals and P 1
by

C. A, Johnson (Keele)

Abstract. We present some results concerning saturated ideals on P,A. In particular, we prove
that if A<%* = } and x is ethereal or A-Shelah then NS,;, the ideal of non-stationary subsets of P4
fails to be A*-saturated. Indeed, in the former case i holds. ‘

In this paper we present some results concerning saturated ideals om P,A.
In § 1 we generalise some well-known properties of saturated ideals on » to the P, A
context. For instance, we show that if » = p* then P,A carries no A-saturated
ideals, that certain restrictions of NS,,, the ideal of non-stationary subsets of P, 4
cannot. be A*-saturated and that saturation is related to the GCH and a closure
property of the generic ultrapower..

Our main results concerning NS,; appear in §§ 2 and 3. In [1], Baumgartner,
Taylor and Wagon introduced the notion of an M-ideal, and used in to prove (for
instance) that if » is weakly compact then the ideal of non-stationary subsets of »
is not %™ -saturated. § 2 contains analogous results for ideals on P, A: If  is ethereal
or A-Shelah (and A** = 1) then NS, is not A*-saturated. :

In [10], Ketonen proved that if 2* = w and  is ethereal then <>, holds. In§ 3
we adapt his argument to show that if 2% = J and x is ethereal then <, holds.

Our set-theoretical motation and terminology is standard. Throughout x will
denote a regular uncountable cardinal and A a cardinal > %. P4 = {x= A |x] <=}
and 2<% is the cardinality of this set. For xe P4, £ = {y e P, 4| x S P} Ry = HOX
and ¥ denotes the order type of x, For A SP,4,

[4]% = {(x,») e 4% x<y and |x| <|enyl}.

4 is said to be unbounded i (VxeP,h) (An% # @) and I, denotes the ideal of
not unbounded subsets of P,A.

Throughout, J will denote a proper, %-complete ideal on P, A extending I,
and I* the filter dualto 1. If A € It (= {X S P,A| X ¢I})then I|4is the ideal on P4
given by 7|4 = {X< P, A XnAdel}. A

Clearly, all these concepts could be similarly defined for P, X where X is any
set of ordinals of cardinality > .
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