214

R. P. Hunter

example, [6].) Now $2\langle x_1, x_2 \rangle =$ the closure of the semigroup generated by x_1 and x_2 is just the set product $(2\langle x_1 \rangle)(2\langle x_2 \rangle)$ which has again a countable of \mathcal{H} -classes. By induction then, A has but a countable number of \mathcal{H} -classes.

Now if α is any continuous homomorphism defined on A then α cut down to any \mathcal{H} -class H is topologically equivalent to a homomorphism defined on the Schützenberger group of H, (See [3]). In particular, $\alpha(H)$ is again zero dimensional. Then, by the classical sum theorem of dimension theory, $\alpha(H)$ must be zero dimensional.

References

- L. W. Anderson and R. P. Hunter, Homomorphisms and dimension, Math. Ann. 147 (1962), 248-268.
- [2] The \mathcal{H} equivalence in compact semigroups, Bull. Soc. Math. 14 (1962), 274-296.
- [3] The H equivalence in compact semigroups II, J. Australian Math. Soc. 3 (part 3) (1963), 288-293.
- [4] On the infinite subsemigroups of certain compact semigroups, Fund. Math. 74 (1972), 1-19.
- [5] L. Boasson and M. Nivat, Adherences of languages, J. Comput. System Sci. 20 (1980), 285-309.
- [6] E. Hewitt and K. Ross, Abstract harmonic analysis, Springer, 1963.
- [7] K. H. Hofmann, M. Mislone and A. Stralka, Dimension raising maps in topological algebra, Math. Zeit. 135 (1973), 1-36.
- [8] K.H. Hofmann and P.S. Mostert, Elements of compact semigroups, Merrill 1966.
- [9] R. P. Hunter, Some remarks on subgroups of the Bohr compactification, Semigroup Forum, 26 (1983), 125-137.
- [10] On homogroups and their applications to compact connected semigroups, Fund. Math. 52 (1962), 69-102.

DEPARTMENT OF MATHEMATICS
THE PENNSYLVANIA STATE UNIVERSITY
215 McAllister Building
University Park, Pennsylvania 16802
U. S. A.

Received 24 April 1986

On saturated ideals and $P_{\nu}\lambda$

by

C. A. Johnson (Keele)

Abstract. We present some results concerning saturated ideals on $P_{\varkappa}\lambda$. In particular, we prove that if $\lambda^{<\varkappa} = \lambda$ and \varkappa is ethereal or λ -Shelah then $NS_{\varkappa\lambda}$, the ideal of non-stationary subsets of $P_{\varkappa}\lambda$ fails to be λ^+ -saturated. Indeed, in the former case $\diamondsuit_{\varkappa\lambda}$ holds.

In this paper we present some results concerning saturated ideals on $P_{\kappa}\lambda$. In § 1 we generalise some well-known properties of saturated ideals on κ to the $P_{\kappa}\lambda$ context. For instance, we show that if $\kappa = \mu^+$ then $P_{\kappa}\lambda$ carries no λ -saturated ideals, that certain restrictions of $NS_{\kappa\lambda}$, the ideal of non-stationary subsets of $P_{\kappa}\lambda$ cannot be λ^+ -saturated and that saturation is related to the GCH and a closure property of the generic ultrapower.

Our main results concerning $NS_{\kappa\lambda}$ appear in §§ 2 and 3. In [1], Baumgartner, Taylor and Wagon introduced the notion of an M-ideal, and used in to prove (for instance) that if κ is weakly compact then the ideal of non-stationary subsets of κ is not κ^+ -saturated. § 2 contains analogous results for ideals on $P_{\kappa}\lambda$: If κ is ethereal or κ -Shelah (and κ - κ) then κ - κ is not κ -saturated.

In [10], Ketonen proved that if $2^{<\kappa} = \kappa$ and κ is ethereal then \diamondsuit_{κ} holds. In § 3 we adapt his argument to show that if $\lambda^{<\kappa} = \lambda$ and κ is ethereal then $\diamondsuit_{\kappa\lambda}$ holds.

Our set-theoretical notation and terminology is standard. Throughout \varkappa will denote a regular uncountable cardinal and λ a cardinal $\geqslant \varkappa$. $P_{\varkappa}\lambda = \{x \subset \lambda \mid |x| < \varkappa\}$ and $\lambda^{<\varkappa}$ is the cardinality of this set. For $x \in P_{\varkappa}\lambda$, $\hat{x} = \{y \in P_{\varkappa}\lambda \mid x \subset y\}$, $x_x = \varkappa \cap x$ and \bar{x} denotes the order type of x. For $A \subseteq P_{\varkappa}\lambda$,

$$[A]_{<}^{2} = \{(x, y) \in A^{2} | x \subset y \text{ and } |x| < |x \cap y| \}.$$

A is said to be unbounded iff $(\forall x \in P_x \lambda)$ $(A \cap \hat{x} \neq \emptyset)$ and $I_{x\lambda}$ denotes the ideal of not unbounded subsets of $P_x \lambda$.

Throughout, I will denote a proper, \varkappa -complete ideal on $P_{\varkappa}\lambda$ extending $I_{\varkappa\lambda}$ and I^* the filter dual to I. If $A \in I^+$ (= $\{X \subseteq P_{\varkappa}\lambda | X \notin I\}$) then I|A is the ideal on $P_{\varkappa}\lambda$ given by $I|A = \{X \subseteq P_{\varkappa}\lambda | X \cap A \in I\}$.

Clearly, all these concepts could be similarly defined for $P_{\varkappa}X$ where X is any set of ordinals of cardinality $\geqslant \varkappa$.

§ 1. In this section we briefly mention some simple properties of saturated ideals on $P_{\nu}\lambda$.

In [4], Jech proved that if \varkappa is a successor cardinal and λ is regular, then $NS_{\varkappa\lambda}$ is nowhere λ -saturated. In fact, we may easily show that if \varkappa is a successor cardinal then no ideal on $P_{\varkappa}\lambda$ is λ -saturated. Firstly, we need the following

LEMMA 1.1. Suppose $\eta \geqslant \varkappa$, $\varkappa = \mu^+$ and there is a family of functions $\{f_{\sigma} | \sigma < \eta\}$ such that $f_{\sigma} \colon P_{\varkappa} \lambda \to \mu$ and $\{x \in P_{\varkappa} \lambda | f_{\sigma}(x) = f_{\varrho}(x)\} \in I$ whenever $\sigma < \varrho < \eta$. Then I is not η -saturated.

Proof. Let the family $\{f_{\sigma} \mid \sigma < \eta\}$ be as given; then, by \varkappa -completeness, for each $\sigma < \eta$ we may find a $\delta_{\sigma} < \mu$ such that $A_{\sigma} = f_{\sigma}^{-1}(\{\delta_{\sigma}\}) \in I^{+}$. By a well-known result of Tarski (see [5, Lemma 17.6]) there is a regular cardinal ν such that $\varkappa \leq \nu \leq \eta$ and I is ν -saturated. Choose $\delta < \mu$ such that $X = \{\sigma < \nu \mid \delta_{\sigma} = \delta\}$ has cardinality ν ; then the family $\{A_{\sigma} \mid \sigma \in X\}$ is easily seen to contradict the ν -saturation of I. Theorem 1.2. If $\varkappa = \mu^{+}$ then I is not λ -saturated.

Proof. For each $x \in P_x \lambda$ let h_x : $x \to \mu - \{0\}$ be injective, and for each $\alpha < \lambda$ let f_α : $P_x \lambda \to \mu$ be given by $f_\alpha(x) = h_x(\alpha)$ if $\alpha \in x$; $f_\alpha(x) = 0$ otherwise. It is clear that $\{x \in P_x \lambda | f_\alpha(x) = f_\beta(x)\} \in I$ whenever $\alpha < \beta < \lambda$, and the result now follows immediately from Lemma 1.1.

Using the method of almost disjoint functions we may also show that certain restrictions of $NS_{\varkappa \lambda}$ cannot be λ^+ -saturated. We first need the following

LEMMA 1.3. There exists a family $\{g_{\sigma}|\ \sigma<\lambda^+\}$ such that $g_{\sigma}\colon\lambda\to\lambda$ and $\bigcup\{\alpha<\lambda|\ g_{\sigma}(\alpha)=g_{\varrho}(\alpha)\}<\lambda$ whenever $\sigma<\varrho<\lambda^+$. If $2^{<\lambda}=\lambda$ then we may find 2^{λ} such functions.

The proof for λ regular is given in [2, III Lemma 4.10]. The case when λ is a singular cardinal is similar.

THEOREM 1.4. Suppose $\kappa = \mu^+$, $\mu^{\eta} = \mu$, $I \supseteq NS_{\kappa\lambda}$ and $\{x \in P_{\kappa\lambda} | cf\overline{x} = \eta\} \in I^*$. Then I is not λ^+ -saturated.

Proof. Let $\{g_{\sigma}|\ \sigma<\lambda^+\}$ be as in Lemma 1.3. For each $x\in P_{\kappa}\lambda$ such that $cf\overline{x}=\eta$ let $h_x\colon x^\eta\to\mu$ be injective and $g_x\colon \eta\to x$ be such that $g_x''\eta$ is cofinal in x. For each $\sigma<\lambda^+$ let $C_{\sigma}=\{x\in P_{\kappa}\lambda|\ cf\overline{x}=\eta\ \text{and}\ (\forall\alpha\in x)\ (g_{\sigma}(\alpha)\in x)\}$, then $C_{\sigma}\in I^*$ and for each $x\in C_{\sigma}$ let $f_{\sigma}(x)=h_{\kappa}\langle g_{\sigma}(g_{\kappa}(\delta))|\ \delta<\eta\rangle$. Suppose $\sigma<\varrho<\lambda^+$ and $A=\{x\in C_{\sigma}\cap C_{\varrho}|\ f_{\sigma}(x)=f_{\varrho}(x)\}\in I^+$. Pick $\gamma<\lambda$ such that

$$\{\alpha < \lambda | g_{\sigma}(\alpha) = g_{\varrho}(\alpha)\} \subseteq \gamma$$
,

then for each $x \in A$ and $\delta < \eta$, $g_x(\delta) < \gamma$; hence $\gamma \notin x$, contradicting $A \in I^+$. The result now follows from Lemma 1.1.

If in addition $2^{<\lambda} = \lambda$, then it is clear (using Lemma 1.3) that I is not 2^{λ} -saturated.

A $P_{\kappa}\lambda$ -generalization of Kurepa's Hypothesis yields a similar result. Let $KH_{\kappa\lambda}$ denote the assertion "there exists a family $F \subseteq P(\lambda)$ such that $|F| = \lambda^+$ and for every infinite $x \in P_{\kappa}\lambda$, $|\{a \cap x| \ a \in F\}| \leq |x|$ ".

THEOREM 1.5. If $P_{\varkappa}\lambda$ carries a normal λ^+ -saturated ideal then KH_{$\varkappa\lambda$} fails. Moreover, if $\varkappa = \mu^+$, then the assumption of normality is unnecessary.

We leave the details to the reader. It is well-known (and indeed follows easily from Lemma 1.3) that the ideal on \varkappa , $I_{\varkappa} = \{X \subseteq \varkappa | |X| < \varkappa\}$ is not \varkappa^+ -saturated. Analogously we have the following

THEOREM 1.6. $I_{\kappa\lambda}$ is not λ^+ -saturated.

Proof. We have two cases.

Case 1. λ is regular. Let $\{Y_{\sigma} | \sigma < \lambda^{+}\} \subseteq I_{\lambda}^{+}$ witness that I_{λ} is not λ^{+} -saturated. For each $\sigma < \lambda^{+}$ let $X_{\sigma} = \{x \in P_{x}\lambda | \bigcup x \in Y_{\sigma}\}$; then $X_{\sigma} \in I_{x\lambda}^{+}$ and the family $\{X_{\sigma} | \sigma < \lambda^{+}\}$ is easily seen to witness that I_{α} is not λ^{+} -saturated.

Case 2. λ is a singular cardinal, say of $\lambda = \eta$. Let $\langle \mu_{\delta} | \delta < \eta \rangle$ be a strictly increasing sequence of regular cardinals cofinal in λ such that $\kappa \leqslant \mu_{0}$ and for each $\delta < \eta$, $\mu_{\delta} > \cup \{\mu_{\gamma} | \gamma < \delta\}$. For each $\delta < \eta$ let $Y_{\delta} = \mu_{\delta} - \cup \{\mu_{\gamma} | \gamma < \delta\}$ and (by case 1) let $\{X_{\delta}^{q} | \varrho < \mu_{\delta}^{+}\} \subseteq I_{\kappa Y_{\delta}}^{+}$ witness that $I_{\kappa Y_{\delta}}$ is not μ_{δ}^{+} -saturated. For each $f \in \prod \{\mu_{\delta}^{+} | \delta < \eta\}$ let

$$X(f) = \left\{ x \in P_{\kappa} \lambda | \ (\forall \delta < \eta)(x \cap Y_{\delta} \in X_{\delta}^{f(\delta)} \cup \{\emptyset\}) \right\}.$$

It is straightforward to check that $X(f) \in I_{\kappa\lambda}^+$ and $X(f) \cap X(g) \in I_{\kappa\lambda}$ whenever $f, g \in \prod \{\mu_{\delta}^+ | \delta < \eta\}, f \neq g$. Since $|\prod \{\mu_{\delta}^+ | \delta < \eta\}| > \lambda$, this completes the proof.

We close this section by mentioning three results concerning saturation whose proofs are similar to that of the corresponding result for ideals on \varkappa .

Firstly, recall ([9]) that I is said to be (1) seminormal iff whenever $A \in I^+$, $\eta < \lambda$ and $f: A \to \eta$ is regressive, there is a $B \in P(A) \cap I^+$ such that $f \nmid B$ is constant; (2) weakly lean iff for each $A \in I^+$ there is a $B \in P(A) \cap I^+$ such that $|B| = \lambda$. If D is $P(P_*\lambda)/I$ -generic over V (the ground model), let M denote the associated generic ultrapower (see [6, § 2]).

THEOREM 1.7 (cf. [8, § 5]). Suppose $\eta \leqslant \lambda$ and I is seminormal and weakly lean. Then $P(P_{\times}\lambda)/I \Vdash$ "M" \subseteq M" iff $P(P_{\times}\lambda)/I$ is $(\eta, < \lambda^+, \infty)$ -distributive.

THEOREM 1.8 (cf. [6, THEOREM 3.1.2]). Assume that $2^{\alpha} = \alpha^{+}$ for each $\alpha < \kappa$. If $\sigma > \lambda$ and $P_{\kappa}\lambda$ carries a normal σ -saturated ideal, then $2^{\lambda} \leq \sigma$.

The following theorem will be needed in §§ 2 and 3.

THEOREM 1.9 (cf. [1, Theorem 3.11]). Suppose I is normal, then I is λ^+ -saturated iff the ideals I|A (for $A \in I^+$) are the only normal ideals on $P_n\lambda$ extending I.

§ 2. M-ideals and $NS_{\times \lambda}$.

DEFINITION 2.1. I is said to be an M-ideal iff I is normal and $M(A) = \{x \in A | \varkappa_x \text{ is a weakly inaccessible cardinal and } A \cap P_{\varkappa_x} x \in \operatorname{NS}^+_{\varkappa_x x} \} \in I^*$ whenever $A \in I^*$.

The important fact concerning M-ideals is contained in the following

THEOREM 2.2. If $A \in NS_{*1}^+$ then $NS_{*2}|A$ is not an M-ideal.

Proof. Suppose not; then there exists a closed unbounded set $B \subseteq P_{\kappa} \lambda$ such that $B \cap A \subseteq M(A)$. By a result of Menas ([11, Corollary 1.6]) we may find a func-

tion $g: \lambda^2 \to P_x \lambda$ such that $\{x \in P_x \lambda | (\forall \alpha, \beta \in x) (g(\alpha, \beta) \subseteq x)\} \subseteq B$. Clearly, κ is weakly inaccessible, and hence $C = \{x \in P_x \lambda | (\forall \alpha, \beta \in x) (g(\alpha, \beta) \subseteq x \text{ and } | g(\alpha, \beta) | < |\kappa_x|)\} \in \mathbb{NS}_{x\lambda}^*$. Pick $x \in C \cap A$ such that $C \cap A \cap P_{\kappa_x} x = \emptyset$, then $x \in M(A)$ and hence $A \cap P_{\kappa_x} x \in \mathbb{NS}_{\kappa_x}^+$. Also κ_x is weakly inaccessible and so $C \cap P_{\kappa_x} x \in \mathbb{NS}_{\kappa_x}^*$, a contradiction.

In [3], Carr proved that if $\lambda^{<\kappa} = \lambda$ and κ is λ -Shelah, then for each $S \in NS_{\kappa\lambda}^+$, $\{x \in P_{\kappa}\lambda \mid \varkappa_x \text{ is an inaccessible cardinal and } S \cap P_{\kappa_x}x \in NS_{\kappa\kappa}^+\} \in NSh_{\kappa\lambda}^*$. (Here $NSh_{\kappa\lambda}$ is the normal ideal on $P_{\kappa\lambda}$ induced by the λ -Shelah property.) This together with Theorems 1.9 and 2.2 immediately yields the following

Corollary 2.3. ($\lambda^{<\kappa} = \lambda$). If κ is λ -Shelah then for each $A \in \mathrm{NSh}_{\kappa\lambda}^+$, $\mathrm{NS}_{\kappa\lambda}|A$ is not λ^+ -saturated.

Recall ([10]) that \varkappa is said to be *ethereal* iff whenever $C \subseteq \varkappa$ is closed unbounded in \varkappa and $\langle t_{\sigma} | \sigma < \varkappa \rangle$ is a sequence such that $(\forall \sigma < \varkappa)$ $(t_{\sigma} \subseteq \sigma \text{ and } |t_{\sigma}| = |\sigma|)$, there exists ϱ , $\sigma \in C$ such that $\varrho < \sigma$ and $|t_{\varrho} \cap t_{\sigma}| = |\varrho|$.

The following characterisation of ethereal cardinals follows immediately from results of Ketonen ([10, § 2]).

Theorem 2.4. \varkappa is ethereal iff whenever C is closed unbounded in \varkappa and $\langle t_{\sigma}, C_{\sigma} | \sigma < \varkappa \rangle$ is a sequence such that $(\forall \sigma < \varkappa) \ (t_{\sigma} \subseteq \sigma, |t_{\sigma}| = |\sigma| \text{ and } C_{\sigma} \text{ is closed unbounded in } \sigma)$, there exists weakly inaccessible cardinals ϱ , $\sigma \in C$ such that $\varrho < \sigma$, $|t_{\varrho} \cap t_{\sigma}| = \varrho$ and $\varrho \in C_{\sigma}$.

Let $M_{\kappa\lambda} = \{x \in P_{\kappa}\lambda \mid \ \omega_x \text{ is a weakly inaccessible cardinal and } |x| = \varkappa_x\}$. Let $E_{\kappa\lambda}$ denote the set of all $X \subseteq P_{\kappa\lambda}$ which do not have the property "whenever $C \in \mathbb{NS}_{\kappa\lambda}^*$, $q \colon X \to \lambda$ and $\langle S_x, C_x | x \in X \rangle$ is a sequence such that $(\forall x \in X \cap M_{\kappa\lambda})$ $(S_x \subseteq x, |S_x| = |x| \text{ and } C_x \in \mathbb{NS}_{\kappa\kappa}^*$, there exists a pair $(y, x) \in [X \cap M_{\kappa\lambda} \cap C]^2$ such that $|S_y \cap S_x| = |y|$, $y \in C_x$ and $q(y) \in x$ ".

The reasons for introducing the sequence $\langle C_x | x \in X \rangle$ and the function $q: X \to \lambda$ are twofold; firstly, to make $E_{x\lambda}$ an M-ideal and, secondly, to ensure that Lemma 3.4 is true.

Following Menas ([11, Lemma 1.12]), we have

THEOREM 2.5. The following are equivalent:

- (a) x is ethereal;
- (b) $(\forall \lambda \ge \varkappa)$ $(E_{\varkappa\lambda} \text{ is a normal ideal on } P_{\varkappa}\lambda);$
- (c) $(\exists \lambda \geqslant \varkappa)$ $(E_{\varkappa\lambda} \text{ is a normal ideal on } P_{\varkappa}\lambda);$
- (d) $(\exists \lambda \geqslant \varkappa) (P_{\varkappa} \lambda \notin E_{\varkappa \lambda}).$

Proof (a) \rightarrow (b). We show that $P_{\varkappa}\lambda \notin E_{\varkappa\lambda}$. Suppose $C \in \mathbb{NS}_{\varkappa\lambda}^*$, $q: P_{\varkappa}\lambda \rightarrow \lambda$ and $\langle S_x, C_x | x \in P_{\varkappa}\lambda \rangle$ witness that $P_{\varkappa}\lambda \in E_{\varkappa\lambda}$. Since \varkappa is ethereal, it is weakly inaccessible, and hence we may pick a sequence of elements of C, $\langle x_{\sigma} | \sigma < \varkappa \rangle$ such that for each $\sigma < \varkappa$, $x_{\sigma} \cup \{q(x_{\sigma})\} \subseteq x_{\sigma+1}$, $|x_{\sigma}| < |\varkappa \cap x_{\sigma+1}|$, $\varkappa \cap x_{\sigma}$ is an ordinal and if $\lim_{n \to \infty} (\sigma) = \bigcup_{n \to \infty} \{x_{n} | \varrho < \sigma\}$.

Let $k: x = \bigcup \{x_{\sigma} | \sigma < \varkappa\} \to \varkappa$ be a bijection and let $h: \varkappa \to \varkappa$, $g: \varkappa \to \varkappa$ be functions such that for each $\sigma < \varkappa$, $k''x_{\sigma}$ is an ordinal, $h(\sigma) = k''x_{\sigma}$ and $g(\sigma) = \varkappa_{\pi\sigma}$.

The functions h and g are monotone increasing and continuous; hence we may find a closed unbounded subset of κ , H such that for each $\sigma \in H$, $\lim(\sigma)$ and $h(\sigma) = g(\sigma) = \sigma$.

If $\sigma \in H$ is regular then clearly $\{x_{\varrho} | \varrho < \sigma\}$ is closed unbounded in $P_{\sigma}x_{\sigma}$, and hence $C_{\sigma} = \{\varrho < \sigma | x_{\varrho} \in C_{x_{\sigma}}\}$ contains a closed unbounded set in σ . For each $\sigma \in H$ let $t_{\sigma} = k''S_{x_{\sigma}}$; then by Theorem 2.4 we may find weakly inaccessible cardinals ϱ , $\sigma \in H$ such that $\varrho < \sigma$, $\varrho \in C_{\sigma}$ and $|t_{\varrho} \cap t_{\sigma}| = \varrho$. But then $|S_{x_{\varrho}} \cap S_{x_{\sigma}}| = |x_{\varrho}|$, $x_{\varrho} \in C_{x_{\sigma}}$ and $q(x_{\varrho}) \in x_{\sigma}$, a contradiction.

The proof that $E_{\kappa\lambda}$ is κ -complete and normal is similar to [10, Proposition 2.3(3)].

- (b) \rightarrow (c) and (c) \rightarrow (d) are trivial.
- (d) \rightarrow (a). Suppose C is closed unbounded in \varkappa and $\langle t_{\sigma} | \sigma < \varkappa \rangle$ is a sequence such that $(\forall \sigma < \varkappa)$ $(t_{\sigma} \subseteq \sigma \text{ and } |t_{\sigma}| = |\sigma|)$. For each $x \in P_{\varkappa}\lambda$ let $S_x = t_{\varkappa_x}$ if $x \in M_{\varkappa\lambda}$: $S_x = x$ otherwise. Clearly, $C' = \{x \in P_{\varkappa}\lambda | \varkappa_x \in C\}$ is closed unbounded in $P_{\varkappa}\lambda$, and hence, since $P_{\varkappa}\lambda \notin E_{\varkappa\lambda}$, we may find a pair $(y,x) \in [M_{\varkappa\lambda} \cap C']^2 < w$ such that $|S_y \cap S_x| = |y|$. But then $\varkappa_y, \varkappa_x \in C, \varkappa_y < \varkappa_x$ and $|t_{\varkappa_y} \cap t_{\varkappa_x}| = |S_y \cap S_x| = |y| = \varkappa_y$.

It is easy to see from the definition of $E_{\kappa\lambda}$ that for each $A \in E_{\kappa\lambda}^+$, $E_{\kappa\lambda}|A$ is an M-ideal, and hence from Theorems 1.9 and 2.2 we have

COROLLARY 2.6. If \varkappa is ethercal and $A \in E_{\nu 1}^+$ then $NS_{\nu 1}|A$ is not λ^+ -saturated.

§ 3. Etheral \varkappa and $\diamondsuit_{\varkappa\lambda}$. For $A \subseteq P_{\varkappa}\lambda$ let $\diamondsuit_{\varkappa\lambda}(A)$ denote the assertion "there exists a sequence $\langle S_x | x \in A \rangle$ such that for each $a \subseteq \lambda$, $\{x \in A | S_x = a \cap x\} \in \mathrm{NS}_{\varkappa\lambda}^+$ ". The following lemma gives a useful characterisation of $\diamondsuit_{\varkappa\lambda}(A)$.

LEMMA 3.1 ([10]). For $A \subseteq P_{\kappa}\lambda$, $\diamondsuit_{\kappa\lambda}(A)$ holds iff there exists a family $\{N_a|\ a \subseteq \lambda\} \subseteq P(A) \cap \operatorname{NS}^+_{\kappa\lambda}$ such that for each $x \in A$ and $a, b \subseteq \lambda$, if $x \in N_a \cap N_b$ then $a \cap x = b \cap x$.

Proof. If $\langle S_x | x \in A \rangle$ witnesses that $\diamondsuit_{x\lambda}(A)$ holds then for each $a \subseteq \lambda$, $N_a = \{x \in A | S_x = a \cap x\}$ is the required stationary set.

Conversely, if $\{N_a|\ a \subseteq \lambda\} \subseteq P(A) \cap \operatorname{NS}_{\kappa\lambda}^+$ satisfies the given property, then for each $x \in A$ let $S_x = a \cap x$ whenever $x \in N_a$: $S_x = \emptyset$ if no such a exists. The sequence $\langle S_x |\ x \in A \rangle$ is then easily seen to witness that $\diamondsuit_{\kappa\lambda}(A)$ holds.

Lemma 3.1 immediately yields the following (well-known) corollary.

COROLLARY 3.2. If $\diamondsuit_{\kappa\lambda}(A)$ holds then $NS_{\kappa\lambda}|A$ is not 2^{λ} -saturated.

Ketonen ([10, Theorem 2.8]) proved that if $2^{<\kappa} = \kappa$ and κ is ethereal then \diamondsuit_{κ} holds. We now adapt his argument to prove the following

THEOREM 3.3 ($\lambda^{< \times} = \lambda$). If \varkappa is ethereal and $A \in E_{\times \lambda}^+$ then $\diamondsuit_{\times \lambda}(A)$ holds.

Proof. For each $x \in P_{\kappa}\lambda$, let $<_{x}$ be a well ordering of x in order type |x| and let $f_{x} : P(x) \to \lambda$ be injective such that $f_{x}''P(x) \cap f_{y}''P(y) = \emptyset$ whenever $x, y \in P_{\kappa}\lambda$, $x \neq y$. Given $\alpha \in x$ and $\alpha \subseteq \lambda$, let $h(x, \alpha, \alpha) = f_{y}(\alpha \cap y)$ where $y = \{\beta \in x | \beta <_{x}\alpha\}$. Let

 $Q_a = \left\{ f_{\mathbf{x}}(a \cap \mathbf{x}) | \ \mathbf{x} \in P_{\mathbf{x}} \lambda \right\} \quad \text{ and } \quad C_a = \left\{ \mathbf{x} \notin P_{\mathbf{x}} \lambda | \ | \left\{ \alpha \in \mathbf{x} | \ h(\mathbf{x}, \alpha, a) \in \mathbf{x} \right\} | = |\mathbf{x}| \right\};$ then

LEMMA 3.4. For each $a \subseteq \lambda$, $C_a \in E_{\times \lambda}^*$.

Proof of Lemma 3.4. Suppose not; then there exists an $a \subseteq \lambda$ such that $M_{\kappa\lambda} - C_a \in E_{\kappa\lambda}^+$. For each $x \in M_{\kappa\lambda} - C_a$ there exists an $\alpha_x \in x$ such that if $\alpha \in x$ and $\alpha_x <_x \alpha$ then $h(x, \alpha, a) \notin x$; hence

$$C_x = \{ \{ \beta \in x | \beta <_x \alpha \} | \alpha \in x, \alpha_x <_x \alpha \} \in \mathbb{NS}_{x = x}^*.$$

But then since $M_{\kappa\lambda} - C_a \in E_{\kappa\lambda}^+$, we may find a pair $(y, x) \in [M_{\kappa\lambda} - C_a]_{<}^2$ such that $y \in C_x$ and $f_y(a \cap y) \in x$, a contradiction.

Now suppose that $A \in E_{\kappa\lambda}^+$. For each $x \in P_{\kappa\lambda}$, a set $r \subseteq x$ is said to be an f-x-set iff |r| = |x| and $r \subseteq \{h(x, \alpha, a) | \alpha \in x\}$ for some $a \subseteq \lambda$.

We define a sequence $\langle r_x | x \in P_x \lambda \rangle$ by induction on |x| as follows: If $x \notin M_{x\lambda} \cap A$ let $r_x = \emptyset$. Suppose $x \in M_{x\lambda} \cap A$ and r_y has been defined for each $y \in P_{x_x} x$. If there exists an f-x-set $r \subseteq x$ such that $\{y \in P_{x_x} x | |r_y \cap r| < |y|\} \in NS^*_{x_x x}$, then let r_x be such an r. If no such f-x-set exists let $r_x = \emptyset$. Suppose $a \subseteq \lambda$; then we claim that

$$N_a = \{x \in P_x \lambda - \{\emptyset\} | |r_x \cap Q_a| = |x|\} \in NS_{\omega_1}^+$$

Suppose not then as in Theorem 2.2 we may find a function $g: \lambda^2 \to P_x \lambda$ such that $\{x \in P_x \lambda | (\forall \alpha, \beta \in x) (g(\alpha, \beta) \subseteq x)\} \subseteq P_x \lambda - N_a$ and since \varkappa is weakly inaccessible, $B = \{x \in P_x \lambda | (\forall \alpha, \beta \in x) (g(\alpha, \beta) \subseteq x \text{ and } |g(\alpha, \beta)| < |\varkappa \cap x|)\} \in \mathbb{NS}_{\varkappa\lambda}^*$. Clearly, $\{x \in M_{\varkappa\lambda} | r_x \neq \emptyset\} \in E_{\varkappa\lambda}$ and hence by Lemma 3.4 we may find an $x \in M_{\varkappa\lambda} \cap A \cap B$ such that $r = \{h(x, \alpha, a) | \alpha \in x\} \cap x$ has cardinality |x| and $r_x = \emptyset$. Since $x \in M_{\varkappa\lambda} \cap B$, $P_{\varkappa_x} x - N_a \in \mathbb{NS}_{\varkappa_x}^*$, and, for each (non-empty) $y \in P_{\varkappa_x} x - N_a$, $|r_y \cap r| \leq |r_y \cap Q_a| < |y|$ (since $r \subseteq Q_a$), thus contradicting the fact that $r_x = \emptyset$.

Suppose now that $b, c \subseteq \lambda$ with $x \in N_b \cap N_c$. r_x is of the form

$$r_x \subseteq \{h(x, \alpha, a) | \alpha \in x\}$$

for some $a \subseteq \lambda$ and hence, since $x \in N_b \cap N_c$, $b \cap x = a \cap x = c \cap x$. Finally, for each $a \subseteq \lambda$, $N_a \subseteq A$, and hence, by Lemma 3.1, $\diamondsuit_{x\lambda}(A)$ holds.

References

- [1] J. E. Baumgartner, A. D. Taylor and S. Wagon, On splitting stationary subsets of large cardinals, J. Symbolic Logic 42 (1977), 203-214.
- [2] J. E. Baumgartner, A. D. Taylor and S. Wagon, Structural properties of ideals, Dissert. Math. 197 (1982).
- [3] D. M. Carr, A note on the λ-Shelah property, preprint.
- [4] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198.
- [5] Set Theory, Academic Press, 1978.
- [6] T. J. Jech and K. Prikry, Ideals over uncountable sets, Mem. Amer. Math. Soc. 18 (2) (1979).
- [7] C. A. Johnson, Distributive ideals and partition relations, J. Symbolic Logic, to appear.

- [8] More on distributive ideals, Fund. Math., to appear.
- [9] Some partition relations for ideals on P_νλ, preprint.
- [10] J. Ketonen, Some combinatorial principles, Trans. Amer. Math. Soc. 188 (1974), 387-394.
- [11] T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359.

DEPARTMENT OF MATHEMATICS UNIV. OF KEELE Keele, Stanffordshire, ST5 5BG England

Received 20 May 1986