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example, [6]) Now 2{x;, xo) = the closure of the semigroup generated by Xy
and x, is just the set product (2{x;))(2{x,)) which has again a countable of
# -classes. By induction then, 4 has but a countable number of 3 -classes.

Now if « is any continuous homomorphism defined on 4 then o cut down to
any #-class H is topologically equivalent to a homomorphism defined on the
Schiitzenberger group of H, (See [3]). In particular, «(H) is again zero dimensional.
Then, by the classical sum theorem of dimension theory, a(H) must be zero
dimensional,
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On satorated ideals and P 1
by

C. A, Johnson (Keele)

Abstract. We present some results concerning saturated ideals on P,A. In particular, we prove
that if A<%* = } and x is ethereal or A-Shelah then NS,;, the ideal of non-stationary subsets of P4
fails to be A*-saturated. Indeed, in the former case i holds. ‘

In this paper we present some results concerning saturated ideals om P,A.
In § 1 we generalise some well-known properties of saturated ideals on » to the P, A
context. For instance, we show that if » = p* then P,A carries no A-saturated
ideals, that certain restrictions of NS,,, the ideal of non-stationary subsets of P, 4
cannot. be A*-saturated and that saturation is related to the GCH and a closure
property of the generic ultrapower..

Our main results concerning NS,; appear in §§ 2 and 3. In [1], Baumgartner,
Taylor and Wagon introduced the notion of an M-ideal, and used in to prove (for
instance) that if » is weakly compact then the ideal of non-stationary subsets of »
is not %™ -saturated. § 2 contains analogous results for ideals on P, A: If  is ethereal
or A-Shelah (and A** = 1) then NS, is not A*-saturated. :

In [10], Ketonen proved that if 2* = w and  is ethereal then <>, holds. In§ 3
we adapt his argument to show that if 2% = J and x is ethereal then <, holds.

Our set-theoretical motation and terminology is standard. Throughout x will
denote a regular uncountable cardinal and A a cardinal > %. P4 = {x= A |x] <=}
and 2<% is the cardinality of this set. For xe P4, £ = {y e P, 4| x S P} Ry = HOX
and ¥ denotes the order type of x, For A SP,4,

[4]% = {(x,») e 4% x<y and |x| <|enyl}.

4 is said to be unbounded i (VxeP,h) (An% # @) and I, denotes the ideal of
not unbounded subsets of P,A.

Throughout, J will denote a proper, %-complete ideal on P, A extending I,
and I* the filter dualto 1. If A € It (= {X S P,A| X ¢I})then I|4is the ideal on P4
given by 7|4 = {X< P, A XnAdel}. A

Clearly, all these concepts could be similarly defined for P, X where X is any
set of ordinals of cardinality > .
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§ 1. In this section we briefly mention some simple properties of saturated
ideals on P,A. :

In [4], Jech proved that if » is a successor cardinal and 4 is regular, then NS,,
is nowhere A-saturated. In fact, we may easily show that if x is a successor cardinal
then no ideal on P, 4 is A-saturated. Firstly, we need the following

LemMA 1.1. Suppose 11> %, % = u* and there is a family of functions {f,) o < n}
such that fo: PoA ~ p and {x e P, A| f,(x) = f(x)} € I whenever o <g <#. Then I is
not -saturated.

Proof. Let the family {f,| o <n} be as given; then, by »-completencss, for
each o<n we may find a &, < u such that 4, = £, *({5,}) e I'*. By a well-known
result of Tarski (see [5, Lemma 17.6]) there is a regular cardinal v such that s < v <
and 7'is v-saturated. Choose & < u such that X = {o <v| 8, = &} has cardinality v;
then the family {4,] ¢ X} is easily scen to contradict the v-saturation of J.

" TuEOREM 1.2. If % = p* then I is not A-saturated.

Proof. For each x € P,4 let h,: x — u—{0} be injective, and for each a< A
letf,: P4 — pbe given by fi(x) = h(«) if @ € x; £(x) = 0 otherwise. It is clear that
{xe P, £,(x) = f3(x)} € T whenever « < f < 2, and the result now follows imme-
diately from Lemma 1,1.

Using the method of almost disjoint functions we may also show that certain
restrictions of NS,, cannot be A*-saturated. We first need the following

Lemva 1.3. There exists a family {g,| o <A*} such that g,: A — L and
U{o<4] go(@) = g,(0)} <A whenever o <@ <A*. If 2%* = ) then we may find 2*
such functions. :

The proof for A regular is given in [2, ITI .Lemma 4.10]. The case when 1 is
a singular cardinal is similar. ;

THeoREM 1.4. Suppose x = p*, p" = p, I2NS,, and {xeP,| ofx = n}el*
Then I is not A*-saturated.

"Proof. Let {g,] 6<1*} be as in Lemma 1.3, For each xeP,A such that
off =y let h,: X" — 4 be injective and g, : 1 = x be such that gl/n is cofinal in x.
For each ¢ <A* let C, = {x € P, 4| cf% = 1 and (Va € %) (94(%) € %)}, then C, & I*
and for each x€C, let fy(x) = 1{<g,(9-)| & <n)). Suppose ¢ <g<Ai" and
4= {xe C,nCJ £,(x) = fi(x)} e I"*. Pick y < A such that

‘ {Ot < A’I gu'(‘x) = ga(‘x)} _C_!yh’)
then for each xe 4 and <7, gx(0) <7; hence y ¢ x, contradicting 4 e I'*. The
result now follows from Lemma 1.1.

- Ifin addition 2<% = J, then it is clear (using Lemma 1.3) that I is hot 2*satu-
rated,
A P, -generalization of Kurepa’s Hypothesis.yields a similar result. Let KH,,
denote’ the assertion “there exists'a family F<P(1) such that |F| = A% and for
every infinite x€ P, A, |[{anx| ae F}| < x| ;
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THEOREM 1.5. If P, A carries a normal A.*-saturated ideal then KH,, fails. More-
over, if % = u*, then the assumption of normality is unnecessary. '

We leave the details to the reader. It is well-known (and indeed follows easily
from Lemma 1.3) that the ideal on %, I, = {X < x| [X| <} is not x*-saturated.
Analogously we have the following

TeeoreM 1.6. I, is not A*-saturated.

Proof. We have two cases. 7

Case 1. A is regular. Let {¥,| 0 <A*} < I witness that I; is not A*-saturated.”
For each ¢<2" let X, = {xeP,A| UxeY,}; then X,el}; and the family
{X,] <A™} is casily seen to witness that I,; is not A*-saturated.

Case 2. A is a singular cardinal, say cfA = n. Let (u,| § <7 be a strictly in-
creasing sequence of regular cardinals cofinal in A such that % < p, and for each
&<, iy>{ml y <8} For cach § <nlet ¥; = p— u{u,| y <5} and (by case 1)
let {X¢| ¢ < 43 } S Ly, witness that Iy, is not p; -saturated. Foreachfe [] {1716 <n}
let : ‘ )

X(f) = {xeP A (Vo <n)(xn Ve X{P0{O))}.

It is straightforward to check that X(f) e I;; and X(f)n X(g) € L,; whenever
fraell{usl 6 <n}, f+# g. Since |[] {u5| §<n}|> 4, this completes the proof.

We close this section by mentioning three results concerning saturation whose
proofs are similar to that of the corresponding result for ideals on 2.

Firstly, recall ([9]) that I is said to be (1) seminormal iff whenever Ael*,
n <A and f: A — 5 is regressive, there is a Be P(A)nI* such that £ } B is con-
stant; (2) weakly lean iff for each 4 e I'* there is a Be P(4) nI™ such that |B| = A
If D is P(P,A)/I-generic over V (the ground model), let M denote the associated
generic ultrapower (see [6, § 2]). )

Treorem 1.7 (cf. [8, § 5]). Suppose n < A-and I is seminormal and weakly lean.
Then P(P /I “M"< M” iff PP/ is (n, < i¥, 0)-distributive.

TrrorEM 1.8 (of. [6, THEOREM 3.1.2]). Assume that 2° = o* for each o <x.
If o> and P, carries a normal ¢-saturated ideal; then 2*<o.

The following theorem will be needed in §§ 2 and 3. )

THEOREM 1.9 (cf. [1, Theorem 3.11]). Suppose I is normal, then I is ZI* -saturated
1ff the ideals I|A (for AeI™) are the only normal ideals on P, extending L

§ 2. M-ideals and NS,,.

DErINTTION 2.1, Tis said to be an M-ideal iff I is normal and M(4) = {xe 4|,
is a weakly inaccessible cardinal and AnP, x€ NS; .} e I* whenever 4 el*

The important fact concerning M-ideals is contained in the following

THEOREM 2.2. If A € NS}, then NS,,[4 is not.an M-ideal.

Proof. Suppose not; then there exists a closed unbounded set B P, A such
that Bn .4 < M(A). By a result of Menas ([11, Corollary 1.6]) we may find a func-


Artur


218 ‘C.A. Johnson

tion g: A2 - P,A such that {xeP, | (Yo, fex) (9(z, f) S x)} € B. Clearly,  is
weakly inaccessible, and hence C = {x € P, 4| (Yo, f& x) (9(, By s x and |g (o, B)|
<|uy|)} e NSY,. Pick xe Cn4 such that CnAnP,x = &, then x e M(4) and
hence AnP,,xvceNSw Also x, is weakly inaccessible and so CnP, xe NSk,
a contradiction.

In [3], Carr proved that if %% = A and s is A-Shelah, then for each Se NSJ,
{x e P,A| ,is an inaccessible cardinal and SnP,, x € NS, o) € NShy¥, . (Here NSh,,
is the normal ideal on P,A induced by the A-Shelah property.) This together with
Theorems 1.9 and 2.2 immediately yields the following

COROLLARY 2.3, (A% = A). If » is A~Shelah then for each A e NShy;, NS,,|d
is not A*-saturated.

Recall ([10]) that x is said to be ethereal iff whenever C & x is closed unbounded
in % and {t,| o <x) is a sequence such that (Yo <) (¢, S o and |z, = |o]), there
exists g, o € C such that ¢ <o and |,nt,] = |g].

The following characterisation of ethereal cardinals follows immediately from
resulis of Ketonen ([10, § 2]).

TueoreM 2.4. % is ethereal iff whenever C is closed unbounded in % and
{tgs Co| o <) is a sequence such that (Vo <) (t,< 0, |t,| = |o| and C, is closed
unbounded in o), there exists weakly inaccessible cardinals ¢, o € C such that ¢ <o,
ltent,) =@ and g€ C,.

Let M,, = {x e P,A| x,is a weakly inaccessible cardinal and |x| = x,}. Let E,,
denote the set of all X = P, A which do not have the property “whenever C & NS¥,,
q: X - Aand {S,, G| xe X) is a sequence such that (Yx e XnM,,;) (Sx S x, S
= |x| and C,eNS},), there exists a pair (p,x)e[XnM,,nCl% such that
|Synsx| = |yl, ye C, and g(y) e x”.

The reasons for introducing the sequence {C,| x & X and the function g: X —» 4
are twofold; firstly, to make E,; an M-ideal and, secondly, to ensure that Lemma 3.4
is true.

Following Menas ([11, Lemma 1.12]), we have

THEOREM 2.5. The following are equivalent:

(a) » is ethereal;

) (VA2 %) (E,; is a normal ideal on P,J);

(©) @A=%) (E,, is a normal ideal on P,J);

@ @iz%) (P,2¢E,).

Proof (a) - (b). We show that P,1¢E,,. Suppose CeNSY, g: P4 — A
and {S,, C,| xeP,A) witness that P,/ e E,;. Since x is ethereal, it is weakly inac-
cessible, and hence we may pick a sequence of elements of C, {x,| ¢ <) such that
for each o <%, x,U{g(x,)} S x40y, %] < |omx,H 1|, XX, is an ordinal and if
lim (o) then x, = | {x,| ¢ <o}

Let k: x = U {x,] o<x} - % be a bijection and let h: x — %, g: % — %
be functions such that for each o < x, k'/x, is an ordinal, x(c) = k''x, and g(0) = %y
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The functions & and g are monotone increasing and continuous; hence we may
find a closed unbounded subsct of %, H such that for each oe H, lim(s) and
h(o) = g(o) = o.

If o e H is regular then clearly {x,| o <o} is closed unbounded in P,x,, and
hence C; = {g < a} x, & C, } contains a closed unbounded setino. For cach o e H
let ¢, = k"Sx”; then by Theorem 2.4 we may find weakly inaccessible cardinals
o, o€ M such that ¢ < 0, ¢ & C; and |1, 1,] = g. Butthen [S%, NS, | = X5 x, € Cy,
and ¢(x,) € X4, a contradiction,

The proof that E,, is x~complete and normal is similar to [10, Proposition 2.3(3)].

(b) = (©) and (¢) - (d) are trivial.

(d) = (). Suppose C is closed unbounded in » and <{t,| o <) is a sequence
such that (Vo <x) (t, S0 and [t = |o]).  For each xeP,i let S,=t,,
if x& M,: Sy = x otherwise. Clearly, C' = {xeP,A| %, C} is closed unbounded
in P,A, and hence, since P, A ¢ E,;, we may find a pair (¥, x) € [M,,n C'T% such
that [, NSy = {p]. But then %y, x. € C, %, < e and |1, O, | = [S,0 8] = |y] = %,.

It is easy to see from the definition of E,, that for cach 4 & By, E,;|4 is an

- M-ideal, and hence from Theorems 1.9 and 2.2 we have

COROLLARY 2.6. If % is ethercal and A € Ey; then NS,,|A4 is not A*-saturated.

§ 3. Etheral » and . For A< P, let {,,(4) denote the assertion “there
exists a sequence {Sy| x € AD such that foreachac A, {xe 4] Sy =anx}e NS5
The following lemma gives a useful characterisation of ,(4).

Lemma 3.1 ([10])). For AP, &.u(d) holds iff there exists a family
{N,| as A} S P(A)NNS}, such that for each xe A and a,b<), if xeN;n Ny
then anx = bnwx.

Proof. If (S, x&d) witnesses that ,:(4) holds then for each a=4,

= {xe | S, = anx} is the required sta’cmnary set.

Convexqely, it {N,| as A} =P(4) NSy, satisfies the given property, then for
cach xed let S, = anx whenever x e N,: S, = @ if no such a exists. The se-
quence {Sy| x e 4) is then easily seen to witness that Oa(4) holds.

Lemma 3.1 immediately yields the following (well-known) corollary.

COROLLARY 3.2. If (pa(A) holds then NS,,|4 is not 2'-samurated.

Ketonen ([10, Theorem 2.8]) proved that if 2% = % and  is ethereal then Ou
holdq We now adapt his ar, gument to prove the fol]owmg

TrEOREM 3.3 (A<* = 1). If x is ethereal and A & Ey, then > (A) holds.

Proof. For each x € P, A, let <, be a well ordermg of x in order type |x| and
& whenever x,y € P4,
X # . leen nex and as A, let h(x o, d) = fany) where y = {€ x| f <ya}.
Let

0, = {fanx)| xeP,A} and C,= {x¢P,A [{aex| h(x,0,aex}|= |}

then
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LemMa 3.4. For each ac ), C,e EJ,.

Proof of Lemma 3.4. Suppose not; then there exists an a <A such that
M,;—C,€ Ey;. For each x& M,,—C, there exists an o € x such that if « e x and
oy <0 then A(x, o, a) ¢ x; hence

C.={{fex| f<.a}| nex,a, < o} e NSk,

But then since M,,—C,€ E;, we may find a pair (p, x) € [M,,—C,1% such that
yeC, and fi(any) ex, a contradiction.

Now suppose that 4 € E,;. For each x & P,A, a set r < x is said to be an S-x-set
i Jr] = |x] and r< {h(x, o, a)| «ex} for some ac A

We define a sequence (ry| x € P, 4) by induction on |x] as follows: If x ¢ Mand
let r, = @. Suppose x & M,;n 4 and r, has been defined for each ye P, x. If there
exists an f-x-set r<x such that {yeP, x| [rynr| <[y} e NS¥,, then let r, be
such an r. If no such f-x-set exists let re = @. Suppose a < A; then we claim that

No={xeP,i—{0} |r,n Q. = |x|]} eNS],.

Suppose not then as in Theorem 2.2 we may find a function g: A% - P,J such that
{xeP.2 (Yo, Bex) (g(z, p) S x)} SP,A— N, and since x is weakly inaccessible,
B={xePJ (Yo,Bex) (g(x,f)cx and [g(x, Bi<xnx])} e NS, Clearly,
{xe M| r, # @} e E, and hence by Lemma 3.4 we may find an xe M,; nANRB
such that r = {h(x,ua,a)| aex}nx has cardinality |x| and r,= @. Since
xeM,nB, P, x—N,eNS} ., and, for each (non-empty) ye P, x—N,, rynvr
<N @l <yl (since re Q,), thus contradicting the fact that r, = @,
Suppose now that b, c< 1 with xe NynN,. r, is of the form

res{h(x, a, )] aex}

for some @< A and hence, since XeNyNN,, bnx = anx = cnx. Finally, for
each ac i, N, <4, and hence, by Lemma 3.1, O ui(4) holds,
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