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Coding that preserves Ramseyness
by

P.D. Welch (Bonn)

Abstract. We show how a transitive model, M, of ZFC + GCH + “x is Ramsey” can
be coded by a subset CCx in a generic extension M [G], a model of ZFC + “x is
Ramsey + ¥ = K. (This is an analogue of a theorem of Jensen with Ramseyness replacing
measurability and K replacing L[z, C1.)

§ 1. Introducrion. In [CU] Jensen showed how a transitive model ¥ of
ZF + GCH could be “coded” by a subset r of @ in a generic extension N = V[G]
so that NE“V = L[r]” and further that the cardinality and cofinality structure
of ¥ was that of N. He further showed that most “large cardinal” properties were
preserved by his forcing conditions; that is those consistent with ¥’ being L of a real.
We consider the question of forcing to obtain a coding extension in the same spirit
but preserving a particular property: that of Ramseyness. Clearly for no rs o
can a cardinal in L[r] be Ramsey; further if » is a cardinal in a model of the form
L[C]for C <, then still x is not Ramsey: it is easy to see that C* must exist if x is
to be Ramsey. But we could consider forcing M to be a model N of the form K¢
where by K¢ we mean the class of C-mice (that is, the notion of mouse, cf. [CM;
9.25], relativised to a predicate C < x.)

This we do here, subject to a provise (*) below. (Remark 3 indicates why such
a tequirement may be needed.) The preservation of the Ramsey property is an
example of some rather general conditions on forcing which preserves Erdds pro-
perties which Jensen formulated in the unpublished [J]. We use his techniques to -
prove preservation when we have used the method of [CU; 9.9] to set up our coding
conditions.

The more difficult question of coding ¥V by a real so that V[GlF “V = K™
and still preserving a cardinal’s Ramsey property looks impossible with the coding
techniques at present available, although the kind of considerations we use here,
that our coding structures (the 4, below) contain enough suitably large mice does
iltustrate a prime ingredient of the K-coding technique. We refer to [CU] for coding
techniques and a familiarity with its Ch. 1 will be very useful. For background on
mice the reader should refer to [CM].
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2 P.D. Welch

I would like to thank Dieter Donder for many discussions on these preserva-
tion questions. This presentation owes much to his insistence that the question be
answered and to his suggestions as to how to go about it.

§ 2. Coding that preserves Ramseyness. Suppose that ¥ is a model of ZF and
GCH and “x is a Ramsey Cardinal”. Suppose further that 4 = On is such that
H, = L[4 n <] for all cardinals r. (There is no harm in this ¢f. [CU; p. 26].)

THEOREM. Let V, A and » be as above, and that
(*) VEVEen,x*) K4 A E] F “x is Ramsey”

then there is a definable class of forcing conditions, P, so that if G is P-generic over V'
then

VIG] k “ACsn(V = K A x is Ramsey)” .

Some remarks, 1. This, as for standard coding techniques, is a cardinal
preserving extension.

2. By KJ[B] we mean {(L,[D*n 2 4,B],e, D* A 2 4, B>, where the
predicate D* codes mice “over” the predicate 4. We assume a knowledge of [CM]
throughout and that the reader can relativise all the appropriate definitions. So,
such mice have their measurable cardinals > sup4, but their projecta are allowed
to drop into A itself.

3. % Ramsey s x Ramsey in K for C = x in general. Thus we require the se-
cond condition to enable us to find sufficient indiscernibles in small enough structures.
The statement that % is Ramsey is taken to mean that models whose domain includes 5
and have similarity type of size <, have “good” sets of indiscernibles of order
type %. This is known to be equivalent to the x-FErdds property: that if Cis a closed
and unbounded (cub) subset of %, f: [C] “®— On is regressive, i.e. is such that for
all a f (a) <mina, then there is a subset C’ of C of order type x that is homogeneous
for f.

For simplicity we first perform a coding extension to code 4  [x*, o) by
a subset 4y of [x, x*) — using the L-coding conditions of [CU]. This is a »-distri-
butive coding and thus in L[4 n x*, A,] x is still Ramsey. We now set 4 = 4 N %
and Bg [x, %™) recursively coding 4, and 4 A [x, x*).

We note that if we now take the ‘¥ of our theorem as L[4, B] that cach

K*[Bn €] (for £ e [x, %)) still thinks that  is Ramsey, simply due to the fact that
no new x-sequences have been added.

We code B by a C; < » much as in [CU; Thm. 9.9]. Our final C will recursively
code C, and 4. To this end:

DrrmNiTiON. We define. by recursion on & e [, %), Hes M

M = least p>supp, so that
I<

D .
. M =K{BOEF “xis Ramsey A ZF™ A L[4, BNE] F E = >
CLaM 1. pg exists for <™,
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Proof. This is clear from our requirement on K*[B n &] (taking x being Ramsey
in the sense already described) once we note that the final coding extension yields
that )

Lidnx,BAgEd=x

for all ¢<x™ (cf. [CU; 2.4.3]).

CLAIM 2. Every x € | M| is Mg definable with parameters from .

Proof. {u| { < &) is definable in ., in the same way it is definable in K*[B].
So ¢ is definable as the least point for which pe does not exist. If X' <.#, so that
% < X it is easy to see, by the simple minimality argument that X is transitive and
equals K;fE[B n €&l

DEFINITION. X, the smallest X< . such that t+1<SX,

Tt My, & X the transitive collapse and Q;(’E) the ordinal code of %, In
some definable well-order of K“[B].

P is the set of p: dom(p) — 2 such that

(2) dom(p) = w, »);

(b) For all cardinals 7, card(dom(p) n [r,z*) <7,

Set |p| = the least ¢ € [x, »*) such that pe ;.
(c) If ¢ <|p|, then there is a cardinal = such that for all larger cardinals v

1 if B,
o) = {p it e

DEFINITION. P, is defined exactly as P using 7 in the place of . We set P for ¢
a cardinal to be the set of p, p: dom(p) — 2, such that

(@) dom(p) = o, 1);
(b) For v a cardinal, card(dom(p) n [v,v*)) <v.

For pe P, v a cardinal, set
@Ev=p! % ad @' =ptlov).

With the above P, = {(p),: pe P}, P’ = {(p)": pe P} and P = P,xP".

For the extendability of any condition p € P we may use the proof of [CU;
1.4] using the fact that L[4, BN £} E “Z = %" yields [J, which was used there for
proving the “limit stage” of such extensions was possible. Similarly the fact that P,
was 7-distributive for 7 < % is as in 1.7 there and is too similar to the proof of the
preservation of Ramseyness which is to follow to warrant being written out here
again in full.

Then as before

" LeMMA. If G is P-generic over V then in V]G] we can find C coding G and 4 such
that VIGIEV = K°.

1=
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4 P.D. Welch

Proof. Clearly Be K*[G] doing the previous inductive decoding of Bn &
for £<x™. Let C code G and A. Then

VIGl k ¥V = K*[G] = K*[C] = K©.

We are then only left to show that Ramseyness is preserved. The proof is model-
led on that of [CU; 9.9] and that of [J] where some rather general conditions for the
preservation of the Ramsey property are given.

DeFINITION. Suppose CSx is cub. For a,be [C]°° define

d(a, b) = max {v] %,00) # %()} ;
a<b iff  y(d(a, b)) <y(d(a, b)) .
Then it is easy to see that < is a well-order of type x.
In the above we have set max@ = 0.
DErFINITION. e(a, b) = max{b n d(a, b)}.

Suppose f'is a function in the extension V[G] such that fis regressive on C < x
cub. We suppose without loss of generality the domain (f) is actually [C]°° where
C = the set of infinite cardinals less than s. Suppose p, e G is such that

2o b - [C?]“E — On regressively”

where f names 7. We show that there is a g<pand Ie ¥ such that ¢ I “Iis homo-

geneous for f”. This then suffices by standard arguments. We inductively define
Do p such that

() pa ke f@) = &
(2) pa = U (Pb)e(a,b) d=f qa'
b<la e

Set 4, to be the set of » < p, such that r “decides” f(a), i.e. there exists & such that
r I £(@) = & Then each 4, is open dense below p,. We define recursively X, b,,
9,5 @, and o, as follows:

Xioy = least X<L,+. [d, B] such that f, po (4, ae [C]**)e X

and such that x <X .
Suppose a* is the <-successor of a

Xa+ = least X <L,++[4, B] such that X, U {X}=x.

I aisa <-limit set X, = | X,.
bga
b, is the transitive collapse of X, via 6,, thus

0at by =L;[4,Bro] S X, .

Now we define p, by induction on < satisfying (1) & (2) and showing that s
is always well-defined as a condition and that p, € b,+, as is g,.

icm®
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Do is defined.
Py = L[4, B] —least p<po so that [p] Z #upA P € Aoy -
Set Guogy = Po; then Piog € g+ .
If p, and g, are defined satisfying the above requirements then
pu+ = L[4, Bl-least p<p, so that [p|=>a,, ped,+,

PS U (pb)e(n*‘,b) E_“ Ga+ »
bda® ef

We claim that g,- as defined above is a condition: we note that
Gor & U (pb)e(a B Y (pa)lz(n“‘,a) =(qaV (pn)e(a+,a) .
b<ga

Now the only reason that the first inclusion is not an equality is that for finitely many
b<a we may have e(a®, b) > e(a, b); actually a simple argument s'hows .tha.t this
can only happen when e(a, b) = w, i.e. when either B\{w,} or b itself is a final
segment of the sequence «. Since then no cardinality violations can occur and that
as functions g,+ and g, U (P)ea+,q) are the same on a final segment we have that g,+
is a proper condition. And so p,+, and ¢,+ are members of b«-.

Lastly- if a is a <-limit set g = bL<Ja (Pb)eqat ay- Then (py} b<a), and

{qy| bea) are definable in X, and hence in the same way in b, from
0_1(<j: <Aal ae [C]>w > >Po>)

as they were from f, po, {4, ae[CI®®) in L,++[4, B].
We note that <o, ae [C]°) is a normal sequence.

CLAM 3. b, e M,,.
Proof. M, E “B,=x V=KBnal”
b, =L;JA, Brag] B “ay = %"

Clearly if u, > &, we are finished, so suppose not. It is easy to see in thi's case that
My = “V =LA, bna,]” since o, is collapsed inside .#,,. There is thus an
A-r;mouse, M, in M, L[4, B~ a,]"s. A standard argument shows that the .xth
iterate of such a mouse has as measurable cardinal an ordinal that is one of the Silver
indiscernibles for (4, B n a,)*. Clearly such an ordinal is bigger than &,. But M
and x are members of ,, F ZF~. Thus the xth iterate of M is in .#,,. A contra-
diction. W

Since now &, € .#,, we then obtain that the sequence {pl b<a) is in M,,
and |p,| > o, and that ge .#,,. Also ¢ = | bU'n (pp)y = ky)r, say.

e(a, )=y
Note that card({b] b<anA e(a,b) = y}) <7y, so for r,
() dom(r,) N y* has cardinality less than or equal to y. Thus
(I1) g = U, as a function has card(dom(g) N y*) <y. But
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6 P.D. Welch
() If ¢ e [x, a,) then ¢ <|p,| some b~<a. So

e C VveC (v=n= qlo0) = xa&))

since ¢ = (py), for some v,
But (D)-(III), together with q e .#,, imply that g is a condition.
Let p, = the L[4, B] —least p< gy, pe 4,; p, is thus againe b, |p] >a,.
Thus {p,| ae[CT*®) is defined. Let p,If(2) = &,. Let X; = U x, anad

as[C]<w
analogously b¢, 8¢, o are also defined. Then b = L[4, B nag] b “ag= x*”,

As in Claim 3 bce #,, and further since {p,| ae[C]®, (£, ac[C]°®> are
fieﬁnable over bg the same way as from L.+ +[4, B], we have a good set of indiscern-
ibles of order type x, I say, in .#,, for

<L6c[A: Bn “C], €, A, Bn ¢, {(a,pa, éa>as[C]‘<°}> -

Then Jensen’s analysis shows that

Lemva L Ifa. belIl" and anv = b v then (p,) = (p,).

IL a, be [I]', max(o) < min(b) then p, <p,.
‘ Proof. I follows from a simple argument using the “goodness” of the indiscern-
ibles. For II let a = {v(, .., %}, b = {74, ..., 7,}. Then, by I, (2" = (pp)'* and

V), v,

for the same reason (p,)"'*! = Diit v tst, o up - BY the definition of our conditions
pbs(p{v‘,-.-,V(,‘Ii.}-i,-.-,in})\’i; hence Pbs(@a)wﬂ)\'i fOF I ‘<~ ZSI’I Again by deﬁnition
P5 S (Po)v,- All these together prove part II B

Thus the “goodness” of our indiscernibles ensures that we have a certain
coherence property on the bottom parts of our conditions. We shall be finished if
we show: ’

CLam 4. p, = r say, is a condition.
as[J]%e®

,Proo.f. We are then finished since then r I “J is homogeneous for f*. Since b,
and I are 111<J!ac, 1€ M. Firstly note that as [/]1°°is <-cofinal in [C]<®r¢ .4, '
ff: ae [C'g ®. Likewise [I]" is also <-cofinal in [C]"“. By Lemma I we may deﬁng
Oy = (p,)” where ae[Il, v = min(a). Let Q" = J 0", the union of the lower
parts. By Lemma II and I, Q"< p, for all ae [I]", if we establish:

SuscLam 1. Q" is a proper condition.

Pr"o?f. Clr?arlhy Q" does not violate any cardinality restrictions on its domaii.
And Q" is again in 4, being definable from {p.y and [I]". Again
VaelIl" Q"¢ M., but Y¢<ae Jae[I] (lpd =9

Thus Q" codes such ¢ correctly. So it is a condition.
SuscLam 2. () Q" is a condition.
n
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Proof. Notice if @ e [I]", max(a) = v and we choose be [I]" with v <min(b)
then (using Lemma II for the first inequality):

DPaZ Db Zp{v}ubz Qn+1 since e(b v {V}, b) =0.

But {J 0" = r. B (Claim 4 & Theorem.)

Our final model only has H,,+ closed under the 4 operation; with some additions
to the arguments concerning the X, sub-structures, we could use K-coding techniques
to provide an extension KC where the universe was closed under #, had ¥ been so.
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