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Results on automorphisms of recursively saturated models of PA

by

R. Kossak and H. Kotlarski (Warszawa)

Abstract. We characterize those automorphisms of a countable recursively saturated model of
arithmetic which can be extended to automorphisms of a given elementary end extension of the
model. We calculate the cardinality of the set of nonextendable automorphisms and (in two special
cases) the cardinality of the set of extendable automorphisms.

1. Introduction. Throughout the paper the characters M and N denote countable
recursively saturated models of PA. If M is such a model then

E(M) = {(M,I): I< M and I is recursively saturated} .

A great deal is known about the family of elementary cuts in recursively saturated
models of PA (cf. [Kot], [Smo] and references in these papers). But many questions
still remain without answer. In this paper we present some results connected with the
problem of classificativn of isomorphism types of elements of E(M).

If Fis a function with a domain % and if X =%, then by Fx X we denote the
image of X under F. By Aut(2) we denote the set of all automorphisms of U and for
any X< U we write

A(X) = {F* X: Fe Aut()} .

Most of our re%sults concern the cardinality of 4(X), for some special X and .
A tool for calculating |4(X)| is given by the following lemma.

1.1. LeMMA (Kueker, Reyes [Ku]). Let X be a subset of a countable structure 2.
Suppose that for every finite sequence @ of elements of U there are by, b, e N, b, € X,
b, ¢ X such that (,d, b)) = (U, ad, by) then |4(X)] = 2%,

As a consequence we have the following theorem.

1.2. TeeoreM (Schlipf [Sch]). If X = U, (U, X) is a countable, recursively satu-
rated structure and X is not definable in N, then |A(X)| = 2%°.

In the above theorem and in the rest of the paper definability means definability
with parameters.

In Section 4 we give a generalization of Schlipf’s result to the case where X is
a subset of a recursively saturated model M and X can be coded in a recursively
saturated elementary end extension of M.
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We use standard notation. In particular, if @ is an element of a model M, then D,
denotes the set of elements coded by a in M and (a); denotes the ith term of thea
sequence coded by a. If I'is an initial segment of a model M, in symbols <, M,
then X<l is coded in M if for some ae M, X = In D,.

The language of PA is denoted by L, Form is the set of formulas of L and Term
is the set of all terms (= L-definable functions) of L.

2. (M, N)-isomorphisms. Let I <, M, J< N and let F be an isomorphism of /
onto J: We suy that Fis an (M, N)-isomorphism if for every 4 <I coded in M,
F % A is coded in N and for every BSJ coded in N, F~! % Bis coded in M (this
definition was introduced in [Kos1]).

We say that 7=, M is coded by o from above in M if there is an o e M coding
an descending sequence of skies of a nonstandard length such that

I = inf{(2),: new} L

2.1. THEOREM. Let M and N be countable, recursively saturated models of PA.
If (M, I)e E(M), (N, J)e E(N), neither of I and J is coded by o from above in M
and N respectively and F: I'=J is an (M, N)-isomorphism, then there exists
G: M = N such that F<G.

The proof of Theorem 2.1 can be given by the usual back and forth construction
based on the following lemma.

2.2. LeMMA. Let M, N, I, J-and F be as in Theorem 2.1. If a and b are finite se-
quences of elements of M and N, respectively, such that Jor every xel, (M,&, x)
(N, b, E(x)), then for every ae M there exists be N such for every xel, (M,a,a,x)
= (N, b, bF(x)). ’

Proof. Take ae M. Let we M be such that

Viel MEo@, a,x) < (¢ LxdeD,,
where 7 denotes the Godel number of ¢.
By the a_ssumption on F there exists fe N such that J n Dy=FxD,.
Since F is an isomorphism, for every ceJ and every @ € Form we have:

) NEJvVe<e (pB,v,x) < (ol x>eD,)
{to check this, for every ceJ replace by a suitable Be.elJ).
Let {¢,}se0 be a recursive enumeration of Form. Consider the type s(w):

{w), = max{z: Jo Vx<z£/7<(\"((/’i(5’l’, x) e o0, x € Dp)}: new}.

{We can assume that the enumeration {g,} is such that this maximum always éxists.)
In view of (%), s() is consistent and if e € N is its realization then for every

ne o, J<(e),. Further since J is not coded by from above in N, T < (e), for some’

nonstandard ¢. Hence the type z(v): s o IR

{Vx < (E)E/X\ ((pi(5> v, x) H <|_(/)i—|,"x> G'Dp)f’n‘e a)} ,v
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consistent. Now if b realizes #(v) in N then for all xe I we have (M, &, a, x)
(N, B, b, F(x)); this finishes the proof. B

2.3, COROLLARY. If M and N are countable, recursively saturated models then for
every (M, I) e E(M), (N,J) e E(N) such that neither of I and J is coded by w from
above in M and N respectively, (M, I) is isomorphic to (N,J) iff there exists an
(M, N)-isomorphism of I onto J.

2.4, COROLLARY. Let M and N be countable, recursively saturated models and
let (M, I)e E(M), (N, J) e E(N) be such that neither of I and J is coded by o from
above in M and N respectively. If F: I — J is an elementary embedding such that for
every A =1 coded in M there exists 8 € N such that F+ A = Dy Fx I, then there
exist K<.uN and G: M = K such that F=G.

Proof (sketch). To construct G it is enough to know that the conclusion of
Lemma 2.2 is true also under the assumptions of our corollary. Observe that the
statement (+) from the proof of Lemma 2.2 is true for all c € F* 1. Since we may
assume that F = I is cofinal in J, this is just enough for continuation of the proof and
the result follows. B

[N
©»

]

3. Extendable automorphisms. Now we consider the following question. Suppose
that (M, N e E(M), (N,J)e E(N) and (M, I) = (N,J).

What is the cardinality of the set of all (M, N)-isomorphisms of I onto J?
This can be reduced to the question: suppose that (A, I) € E(M); how many auto-
morphisms of / can be extended to automorphisms of M ? A partial answer is given

below.
If ¥ = M, then by Form(X) we denote the set of formulas of L with an addi-

tional predicate for X. If 7 is a finite sequence of elements of M, then
Tp(@, x) = {®(F): PF) € Form(¥) and (M, X) F 2(@)} -
Let {45,,},,&,,, be a recursive enumeration of Form(X); then for new we have
Tp'(@, X) = Tp(@, X) n {1, ... D,} -

3.1. LEMMA. If X is a subset of a countable model M such that (M, X) is recur-
sively saturated and X is infinite, then for every finite sequence @ of elements of M
there exists be M such that

{xe X: Tp(@, b, X) = Tp(@, ¥, X)}l = N
Proof. Suppose, on the contrary, that for some @
VbeXTFreo [{xeX: Tp@, b, X) = Tp@, x O}l =r.
Consider the type #(v)i " '

{|{xex: Tp'(a,'v, X) = Tpa, x, X} >r:rinew}ufre X},
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Since (M, X) is recursively saturated, #(v) cannot be consistent. Hence we can find,
Io, Mg € © such that

Vbe X |{xe X: Tp™(@, b, X) = Tp"@, x, X)}| <r, .

But this implies that X is finite, a contradiction. M

For I=,M let Auty(l) be the set of (M, M)-automorphisms of 1.
We say that 1<, M almost rigid in M if for some ae M

I=sup{t(a): t(@)e ] and e Term} or
I'=inf{t(a): 1{(a)¢ I and 1€ Term} .

3.2. THEOREM. Let M be a countable, recursively saturated model and let I<, M
be such that either (M, I) is recursively saturated or I, I # w, is almost rigid in M,
then |Auty(I)] = 2.

Proof. The proof can be carried out by the standard back and forth procedure
with Lemma 3.1 used to split automorphisms on elements of I. We leave the
details to the reader. When (M, I) is recursively saturated, the lemma applies to
X = I. When I is almost rigid in M, we first take an a € M witnessing the almost
rigidness of 7 and then we construct a family of automorphism satisfying the condi-
tion F(a) = a (hence F+I=1I). In this case the lemma applies to

X={xeM: x<c},

for any nonstandard ce/ B

Remarks. 1. Of course, if I is almost rigid then (M, I) is not recursively sa~
turated. We have many examples of cuts which are of neither of the forms mentioned
above. For instance, it can be shown easily that if IS, M, I 5 o is strong in M,
then I is not almost rigid in M and there are many nonrecursively saturated struc-
tures (M, I) with I strong in M.

2. One of the corollaries to the Arithmetized Completeness Theorem says that
for every nonstandard model M of PA there is a recursively saturated model N such
that M < N. If |Aut(M)] <2%, then, of course, (N, M) cannot be recursively
saturated. Theorem 3.2 implies that in this case also M cannot be almost rigid in &,

3. 'We conjecture that Theorem 3.2 is true for all (M, F) € E(M), for countable,
recursively saturated M.

4. Nonextendable automorphisms.
4.1. THEOREM. For every countable, recursively saturated model M and every
(M, I)e E(M), |Aut(D—Auty ()] = 2%.
Theorem 4.1 will follow from a more general Theorem 4.4 below.
Recall that for X = M, A(X) = {F» X: Fe Aut(M)}.
+ The proof of Lemma 3.4 from [Kos2] gives also the following result.
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4.2, LemMA. If X is a cofinal subset of a countable, recursively saturated model M
such that, for every ae M, {xe X: x<a} is finite, then |A(X)| = 2.

4.3. COROLLARY. If M and X are as in Lemma 4.2 and X can be defined in (M, Y)
by a formula of a countable language with a finite number of parameters, then
[4(Y)] = 2%,

4.4, THEOREM. Let M be a countable, recursively .saturated model and let

(M, Iye E(M). Then for every X <1 coded in M, if X is not definable in I, then
[A(X)} = 2%

Proof. Let o€ M be such that X = 7~ D, and let @ be a finite sequence of
elements of 1.

Let {(p,,},,w be a recursive enumeration of Form and let
tp*(@) = tp(@) 0 {@o5 s Pu} -

Consider the type (v, w, u,d):
{osw<u} U {tp(@,v) = '@, w): new}u{ve D,&w¢ D,}.

If for every @ in I there is a ¢ € I such that #(v, w, ¢, @) is consistent, then, using the
recursive saturation of M, we see that the assumption of Kueker-Reyes lemma is
satisfied and hence |4 (X)| = 2™. .

Now suppose that for some a in /, for every ¢ e I (v, w, ¢, @) is not consistent.
Let

S, u) = Vo, w<u [tp'@,v) = tp(@, w) —» ve X we X)].
By our assumption we have
Veeldrew &(r,¢).

We will consider two cases.

Case 1. rpew VYeel &(r, 0).
For every be M the ry-type of b is the set

{p@,v): M F @@, b) and ¢ €{pg, ... Pro}}-

Let #4(a@, v), ..., 4(a, v) be the collection of all distinct ry-types realized by ele-
ments of X.
Now, it can be easily verified that

k
VxelxeX«—TE W M t@, x.
(=0

This contradicts the fact that X is not definable in M.
Case 2. Vrew dcel 10(r, ).
Notice that if r, <r, then

TEYu (®(ry, )~ &y, ).
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Hence the function f: w - I, f(r) = max{u: @(r, u)}, is well defined and f« @
is a cofinal subset of M. Also, for every ael, {xef+®: x <a} is finite; hence
by Corollary 4.3 we have |4(X)] = 2°. &

Theorem 4.1 follows directly from Theorem 4.4 and the fact that if M is countable
and recursively saturated and if (M, I) € E(M), then the family of subsets of 7 coded
in M is countable and contains nondefinable sets (M is not a conservative extension
of I).

Theorem 4.4 gives also a new proof of a well-known lemma.

4.5. LemmA (Kaufmann [Kal). If X is a nondefinable subset of a countable,
recursively saturated model M, then there exists a recursively saturated model N such
that M<,N and X is not coded in N.

Let us also mention the following easy consequence of Theorem 4.4.

4.6. CoroLLARY, Let M be a countable, recursively saturated model. If
(M, I)e E(M) and F is an isomorphism of I onto J, then there exists N such that
(M,I) = (N,J) but F cannot be extended to any isomorphism of M onto N.

Combining Corollary 4.6 with the proofs of Theorems 2.4 and 3.5 from [Kos2]
we get the following result.

4.7. THEOREM (). For every countable, recursively saturated model M there is
a family of 2% pairwise nonisomorphic elementary end extensions of M, such that each
extension in this family is recursively saturated, w,-~like and rigid.

5. Sets coded in recursively saturated elementary end extensions. Theorem 4.4
gives rise to a natural question: which subsets of countable recursively saturated
models can be coded in recursively saturated elementary end extensions ? Let us state
a few remarks in this direction.

5.1. OBSERVATION. If S is a partial inductive satisfaction class on a model M
and X < M is such that the structure (M, S, X) satisfies the full induction schema,
then there exists a recursively saturated elementary end extension N of M in which X
is coded.

5.2. CoroLLARY. If S is a partial inductive satisfuction class on a countable mo-
del M, then |A(S)| = 2%°.

Proof. This follows from Theorem 4.4 and Observation 5.1. #

5.3. COROLLARY. If X is a subset of a countable model M such that the structure
(M, X) is recursively saturated and (M, X) satisfies the induction schema, then there
exists a recursively saturated elementary end extension N of M in which X is coded.

Proof. This follows from Observation 5.1 by an easy resplendency argument. B

A characterization of subsets of countable models of PA which can be coded
in elementary end extensions was given in [KP]. Using this characterization, the
assumptions of Observation 5.1 and Corollaries 5.2, 5.3 can be essentially weakened.

A precise formulation lies slightly outside the scope of this paper. Let us only mention
the following corollary.
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5.4. COROLLARY. If M is countable, X < M is such that (M, X) is recursively
saturated and X can be coded in an elementary end extension of M, then X can be
coded in a recursively saturated elementary end extension of M.

We have cxamples showing that for every countable recursively saturated
model M there are X¥ < M such that (M, X) satisfies the induction schema and X
cannot be coded in any recursively saturated elementary end extension of M, but still
14 (X)| = 2%.

ProsLEMS. 1. Assume that (M, X) satisfies the induction schema. Is the con-
verse of Observation 5.1 true? '

2. A subset X of a model M is called a class if for every ae M,

Xn{xeM: x<a}
is coded in M.
Assume that X is a nondefinable class of a countable recursively saturated
model M. Is it true that |A(X)] = 2%°?
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