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Residuality of the set of embeddings into Nagata’s n-dimensional
universal spaces
by

Elzbieta Pol (Warszawa)

Abstract, We prove that the set of homeomorphic embeddings of an n-dimensiorfal metriza-bIe
space X of weight 77+ into the universal n-dimensional Nagata's space K,.(r)'C S(T)““,. S@) bel:og
the standard 7-star-space, is residual in the function space of all continuous mappings of Xinto $(z) °.
This answers in a strong form a question posed by K. Kuratowski (see [N2], p. 260). The proof is

based on a classical Baire-category method.

1. Introduction. The aim of this paper is to extend some classical embedding
results for n-dimensional separable metrizable spaces to nonseparable spaces. More
specifically, we show that, given an n-dimensional metrizable space X of .wexght
7 28, the embeddings of X into Nagata’s universal space K,(t) (a generahzgnon
of the clussical Nobeling’s universal space; see [E], Theorem 1.1.1.5) form a resxdu:(t)l
set in the space of all mappings of X into the universal metrizable space S(z),

; ‘(1) is the star-space of weight <.
thl';h?s( r)csult answors](in a strong form) a guestion in [N2], which J. Nagata
attributes to K. Kuratowski; an answer to the original question follow§ also tjrqm [P1],
where some refinements of Nagata’s embedding theorems for n-dimensional and
countable-dimensional metrizable spaces ([N3], Theorems VI. 5 and [N1], Theo-
o 1911) 1?1:: 521‘/;;1' embedding theorems are obtain-ed by the classical Bajre-ca.tegory
method, while the cmbedding problems dealt with in the paper [P1]do not gdmlt.suck;
an approach. In particular, the set of all embeddings of a countable-dimensiona

o
metric space of weight 7 =¥, into K (1) = U] K,(7), which is dense in (X, S@™)
n=1i
by [P], Corollary 2.2, may not be residual in C(X, S(x)*) (see Remark 3.7).

2. Notation and definitions. Our terminology follows [E] and .[N3]' By dimension
we understand the covering dimension dim. The term function and a ‘symbol
[+ X — Y always denotes a continuous function. By 7 we.denote the unit :onterval
[0, 1], by Q — the set of rationals in I, by N —~th§ set of integers gnd by-I — th‘ef
Hilbert cube. A family & of subsets of a metric space (X, @) is d-discrete, i
0(4, B)x & for every distinct A, Be s, where

o(4, B) = min{o(a, b): ae 4, beB}.
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2.1. Given an arbitrary space X and a metric space ¥ with a fixed bounded
metric g, we denote by C(X, ¥) the space of all continuous mappings from X
into Y endowed with the metric d( f, g) = sup{o(f(®),/()): x.ye X 1If g is
a complete metric in ¥, then 4 is a complete metric in C(X, Y).

2.2. A subset 4 of a space X is residual if its complement XA is a first cate-
gory set (i.e. X\4 is the union of countably many nowhere dense sets). A countable
intersection of residual subsets of X is residual in Y. Note that if X is a complete
metric space then by the Baire theorem every residual subset of X is dense in X
(hence A is residual if and only if 4 contains a dense Gj-subset of X).

2.3. Let © be a cardinal number =8, By S(z) we denote the 7-star-space,
i.e. the set S(4) obtained by identifying all zeros in the set U {Z,: ae A}, where
I.=1for we A, and [4| = 7, equipped with the complete metric

o5, = {7

if x, y belong to the same interval 7, ,
if x, y belong to distinct intervals .

A countable power S(z)™ of S(c) is the universal space for all metrizable spaces of
weight 7 (see [K]). By K,(7) (K,(r)) we denote the subspace of S(r)™ consisting of
all points in ()™ which have at most n (only finitely many) rational coordinates
distinct from 0. By Nagata’s embedding theorems (see [N1], Theorem 9 and [N3],
Theorem V1. 5) a metrizable space X of weight z > 8, has dimension < » (is countable
dimensional) if and only if X is homeomorphic to a subset of K,(v) (K,.(7)). We fix
a complete metric ¢ in S()™ by putting

Q({xi}ﬁ—*] ) {.}'l}:?—‘ 1) = [igll/ziﬁo'(xi: .L'i)z]l/z .

2.4. Given a cardinal number © 38y, we denote by B(z) the generalized Baire
space of weight <, i.e. the countable power D(z)* of the discrete space of weight t.
The space B(z) x I is a universal space for the class of strongly metrizable spaces of
weight 7 (see [M]). Recall that a space X is strongly metrizable if it has a base which
is the union of countably many star-finite open coverings of X, Lot NSNS be the
subspace of the Hilbert cube /° consisting of all points which have at most n (only
finitely many) rational coordinates. As proved by Nagata (see [N1] and [N3]),
a strongly metrizable space X of weight >, has dimension % n (is countable-
dimensional) if and only if X is homeomorphic to a subset of the product
B@@)x N,'(B(z) x N2).

3. The results. The main results of this paper are the following two theorems.
3.1. THEOREM. If X is a metrizable n-dimensional space of weight © 28, then
the set )
# = {he C(X,S)™): his a homeomorphic embedding and h(X) e K,()}
is residual in C(X, 8(z)*).
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3.2. TuxoroM If' X is a strongly metrizable space of weight © =Ny, then the set
#={he C(X,B)x1 Y: his a homeomorphic embedding and

A(X) = B(z) x N2}
is residual in C(X, B(xyxT®), .
The theorems are immediate consequences of the following four propositions.
3.3. PROPOSIION. If X is a normal n-dimensional space, then for any cardinal
aumber T the set
Ay = {he C(X, S@™): h(X) < K ()}

is residual in C(X, S(x)%).
3.4. PrOPOSITION [T). If' X is a metrizable space of weight =%, then. the set

Ay = {he C(H,S@"): h is a homeomorphic embedding}

is residual in C(X, S17)*).

Note that the analogue of Proposition 3.4 for C(X, S(z)™) equipped with the
limjtation topology was proved by H. Toruriczyk (see [T], Lemma 3.8, by [Tl
Remark after Theorem 5.1, S(z)¥° is homeomorphic to a Hilbert space).

3.5. ProyosITION. If X is « normal n-dimensional space, then for every cardinal
number v the set

H'y = {he C(X, BxyxI1%): f)c B(z)x N’}

is residual in C(X, B(x)xI®).
3.6. PROPOSITION. If' X is « strongly metrizable space of weight © =%, then
the set
Ay = {he C(X,B()xI®: I is a homeomorphic embedding}

is residual in C\X, B(t)x1%),

3.7. Remark. In [P1] we proved that, given a sequence Xy, X,, ... of 0-dimen-
sional subspaccs of a metrizable space X of weight 7 >, the set # of all home(?-
morphic embeddings /1: X — S()™ such that /(X,) = K, .,(z) for every ne N is
dense in C'(X, S(1)*°). This result applics to n-dimensional space as well as to coun-
table-dimensional ones. Note that the set . eeed not be residual, even if ;=@
for i3 2, since the set of all embeddings of 1 into I such that 2(P) < P™°, where P is

the set of irrationals, is of the first category (see [P1], Remark 5.2). In the case when
X = G X; the set & also need not be residual, even if X is compact. This follows
=1

from the following result obtained recently by the author: .
Let X be a complete metric separable space. Then the set of all embeddings

of X into Nagata’s universal space Ng is residual in C(X, I®) if and only if X is
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strongly countable-dimensional, j.e. X is the union of countably many closed finite-
dimensional subsets.
 The proof can be found in [P2].

3.8. Remark. By the completion theorem (see [E], Theorem 4.1.20) every
metrizable space has a completion of the same weight and dimension. Note that,
by Theorem 3.1, for every n-dimensional metrizable space X of weight T 2 ¥, the

set of all embeddings % of X into §(z)™ such that the complete space / h(X) ) is n-di-
mensional, is residual in C(X, S()*).

4. The proofs.
4.1. Proof of Proposition 3.3. Define
H = {K={q1, 0 Gusr}: ¢:6 ON{O} for i=1,..,n+1} and
F={T={i\, ., iss}: ;e N and i; i, for j # k,
where 1 <j, k<n+1};
note that the sets 2 and # are countable.

For K={gy, .. @uus} €A and J = {iy, ..,y } € F let
FK,J) = {{x}iz; e S@™: 6(x;,,0) = g, for j=1,...,n+1}
and
F(K,J) = {fe C(X, S@)™): o £(X). F(K,]))>0}.
We have

1) S@\K, (1) =
It is easy to see that

(2) every set # (K, J) is open in C(X, S(z)™).
We will show that, for every K = {g,, ..., Gor1) €A and J = {i

(3) the set F(K,J) is dense in C(X, S(D)™); i.e.

(4) for eve1y function f* = {fi}Z,: X = S@™ and cvery &>0 there exists
a function g’ = {g;};2,: X - S(z)"" such that d(g',f") <& and

Q(g’(X), FK, J)) >0.

We can 'Lssume without loss of generality that {iy, ...,y } = {1, ..

U{FK,7): Ked, Je 7).

13 0vs in+1}€f;

Y l; az Jy,
Let S(D)* = P S(4;), where S,(A,) = S(d) and A, = A for i =1,2,.. ., where

4] = 1. Let n: S - Syt bo the projection, where S(t)""! =
and let ¢ be a metric in S(v:)"“ defined by =1

nt1

& (rtzd, ) = T3, 1120 0a )72
Put F={x={x}lZ{eS@": o(x,0)=g, for i=1

o1} we have
F(K,Jp) = n~}(F). To prove (4) it suffices to show that
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(5) fm every ¢>0 and f= {f}"+1 X — 8(zf""* there exists a function
g ={g}i31 1 X~ S@'*" such that 2(9(X), F)>0 and o(fix), g,(x) <e for
every xe X and i =1, ..,n+1.
Indeed, if a function g = {g,}{2] satisfying (5) is defined, then we put g’ = {g;}2
where g, = f; for i2n+2; since n(g'(X)) = g(X) and F(X,J,) =
conaition (4) is satisfied.

i=1>

n~(F), the

Put 7= A" and for t = {ay, .. ttyy;} € T let p, = {xis o X ) € S@M,
where x, = ¢;€J,,. We have F = (J {p,: teT}. Take 4 >0 such that
n<min{g, ., g4, 82} .
For .
t= oy, oy Oy b el
put
Up= {{x1, 0, %0} €S x €, and
x—gq| <n for i=1,..,n+1},
K.=U, and §,=K\U,.

Then LU,},.ﬂ is a discrete family of open neighborhoods of the points p, and the
family { £~ KD} rer v {f 7Y S(r)"“)\ U U} is a locally finite closed covering of X.

Observe that every set K, is an (n+1)- dxmenmonal cube. Suppose that (i) ¢;-+n <1
for every i = 1, ..., n+1. Then for every ¢t & T the set S, is the union of all faces of
the cube K;, hence it is homeomorphic to the n-dimensional sphere. Since £~ 1(K;) is
a closed subset of a normal space X, we have dim f~*(K,) < dim X < n. By a theorem
on the extension of mappings to spheres (see [E], Theorem 3,2.10), for every te T'
there exists a function g, = {g,}i2]: F"UK) - S, such that g/ %S)
= f1f7(S). Now suppose that (i) g;+7n> 1 for some ie {1,..,n+1}.

Then, for every teT, S, is the union of < 2n—1 faces of the (n+1)-cube K;;
hence, there exists a continuous retraction. r,: K, — S,. In this case we put
ge=rof|f "} K) — S, for every teT. In both cases (i) and (if), for every teT
we have

1
(Ftagtf (Kr)))>Q(Pn r)>2..+"I n

for every xeX and i =1,..,n+1.

o(gulx), fi(X) <2n< e

Let g: X ~» S(¢)"** be the combination of the functions g,, # € T and the function
SIS @ INU {U;: teT)). Since these functions are compatible and definied
on a locally finite family of closed sets, the function g is continuous. From the con-
struction it follows that (g (X), F)> 0 and g(gi(x), fi(x)) <& for every xe X and
i=1,..,n+1, This ends the proof of (5). If

feN{#F(K,J): KeA and Je £},
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then f(_X_) NF(K,J)=@ for every Ke " and Je #; hence by (1) we have
f(X) = K,(c). Thus

(6) # 15 N {HA(K,J): Ke A and Je 7},
and so by (2) and (3) the set 2, is residual in C(X, §(x)*).

4.2. Proof of Proposition 3.4. Let X be a metrizable space of weight t ¥,
Take a o-discrete base of X, which is the union of discrete families

W= { Wyt 064y}

form = 1,2, ... We can assume without loss of generality that there exist open sets

Viea» @€ Ay, m = 1,2, ..., such that F,,, = V,,, < W, and for every neighborhood

U(x) of any point x € X there exist m and « € 4,, for which x € F,, = W, = U(x).

We can assume that 4, = 4 for m =1, 2, ..., where |4| = 7. Put

Wy = {Wy: ced,}and F, = J {F,,: aeA4,}; W,and F, are open and closed
o

sets, respectively, such that F, = U,. Let S@)™ = P S(4,). For me N put
i=1

T ={fe CX, S@): o(f(X\W,).f(F,))>0}
and

4, = {fe C(X, S()™): the family {/(Wpluea,, is
d-discrete for some &> 0} .
It is easy to see that
(7) the sets #,, and ¥, are open in C(X, S(z)™).
We will show that )
(8) the sets #,, and &, are dense in C(X, S@™).
Take an arbitrary = {/,}n=1 € C(X, S(c)*) and arbitrary &> 0.

Let ke N be such that 27 < ¢. Let g,: X - S(z) be any continuous function
such that g(X\W,) = 0 and g,(F,) = 1 € I, for some o & 4, and let e X - Sk)
be any continuous function such that A(W,,) = 1el, (hence the family
{M(W,): aeA,} is 2-discrete in S@). Put g, = h, =f, for m+# k and let
9 = {Gu}m=1 and & = {1, }_,. Then g & Fushe¥,, dg,f)<eand dih, f) <.
This ends the proof of (8).

We will show that

(9) ﬂ ('grm 0 @’m) < yfz
m=1

Let fe N (F, N %,). We claim that
m=1

(IQM for every xe X and every closed subsct F of X such that x ¢ F we have
S Ef(F).
There exist m € N and ¢ € 4, such that x € F,, = Wia & XNF, Let F' == F r (X\W,,)
and F" = FaU{W,y: fed, and f # a}; then F= F' U I, Since fe F,,
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we have o(f(F,).F(X\W,))>0, and hence e(f (), f(F))>0. Since fec¥,,
the family {f (W,o}zea,, is S-discrete for some 6> 0 and hence o(S (), F(F)
26>0. Thus o(f(x),f(F))>0, proving the claim (10).

Condition (10) implies that f is a homeomorphic embedding, i.e. that fe#,.
From (7), (8) and (9) it follows that o is residual in C(X, S(2)*).

4.3. Proof of Proposition 3.5. Since the space C(X, B(x) xI”) is homeo-
morphic with C(X, B(r)) x C(X, I°) in a nataral way, with the set # 3 corresponding
to a set containing the set C(X, B(r)) x #%, where

Hy = {fe C(X, I°): f(X)=N?},

is suffices to prove that

(11) the set 273 is residual in C(X, I®).
But this was in fact proved in Proposition 3.3, since we can identify J with S(4),
where |4| = 2 (the only modification of the proof consists in replacing " by the
family " = {K = {q;, e Gua1}: g€ Q for i =1, ..., n+1}).

4.4. Proof of Proposition 3.6. Recall that if 4 is a member of a family &7
of subsets of X, then S(4, o) = S' (4, ) = |J{Bed: Bn oA # @},

S"d, &) = S(S"" (4, 52), )

and S® (4, A) = | S"4, o).
1

Let A"y, A5, ... be a sequence of star-finite coverings of X such that the family
{SC,#):i=1,2,..} is a neighborhood basis at each point x € X. For ie N
let

P ={S°(N, ¥): Ne &}.
Since 7, is star-finite, we have &;= {S,: ae 4,}, where S, N Sy=@ for o #

and S, = U {Ny: jeN}, where N,;e #';. We can assume that for each ie N,
A; = 4, where [4] = 7. For each ie N take an open covering &, of X such that

P, = {P,;: € 4;,je N}, where P,;=N,; and define Uy =U{N,: wed;} and
Fy=1 {Ej: aed;}. For i,je N define
Fiy = {(/’ € C'(X, B(T)le)5 Q((P(Fij): GD(X\Uij)) > 0}

and

9, = {pe C(X, B(x)xI°): the family {o(S)}rca, is

§-discrete for some 6> 0}.

It is easy to see that

(12) the sets &;; and &, are open in C(X, B(r) xI®) for every i,jeN.
We will show that

(13) the sets #;; and %; are dense in C(X, B(z)xI®) for every i, je N.

5 — Fundamenta Mathematicae 129 z. 1
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Take an arbitrary &>0 and ¢ = (¢, f): X - B(7)xI°, ‘whete
«0
¢c={c}* 1: X+ B@x)= P D,
m=1

and D, is the set 4 with the discrete topology for every me N and

o0
f= {.f;n ?';:1: X 1% = P 1m7
m=1
where I, = I for m = 1,2,.. Take ke N such that 27 < ¢/2.

Define yy = (d, g): X - B(x)xI° as follows: d = {d,}n.; and ¢ = {g,}7°-,
where d, = ¢, and g,, = f,, for m # k, dyx) = «, if xe 8, for somc « e 4;, and
gi: X — I'is any function such that g,,(Fij) = 1 and g X\U,) = 0. It is casy to
verify that Y e #,;n ¥, and d(¥, @) <e.

Now we check that

(14) N (Fyns)cH,
i j=1

oW
Let pe () (F; 0 ¥%;). We will show ihat
1

ij=

(15) for every x & X and a closed sct F < X such that x ¢ F we have p(x) ¢ (p (I~: ).

Indeed, there exist 7,je N and aed; such that xeP,c Ny = XNF. Lot
F'=Fn(X\Uy)and F' = Fo Uy FonJ {Ny,: fe A, B # a}. Since pedF,,
we have ¢((¢(x), (F))>0.

Since p e %; and N =S, the family {p(N,)}pes, is S-discrete for some
5>0, and ‘thus ¢(@(x), p(F")=6>0. It follows that e(p(x), plF)) >0,
ie o(x) ¢ (TF) The condition (15) implies that ¢ is a homeomorphic embedding,
L.e. ¢ € #,4. By (12), (13) and (14) the set #, is residual in C(X, B(r) x %)

Added in proof. As was proved by H. Torusiczyk [T], for every completely metrizable space
X of weight <, the set of all closed embeddings of X iinto S@N0 is residual in (X, S(T)N“)
equipped with the limitation topology. Let us note that the methods of our paper can be modificd
to show that Proposition 3.3. and Theorem 3.1 also hold if C(X, $(z)™) is considered with the
limitation topology. In particular, we obtain the following result:

For every n-dimensional completely mictrizable space X of weight <7 the set of all embed-
dings of X onto a closed subsct of $(z)N° contained in K,(7) is residual in the space C(X, S(r)“ﬂ)
equipped with the limitation topology.

This strengthens some results of A. Wadko, Bull. London Math. Soc, 18 (1986), 293198 and
Y. Hattori, A note on universal spaces for finite dimensional complete metric spaces, proprint,
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