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Images of arcs — a nonseparable version of the Hahn-Mazurkiewicz
theorem

by

Jacek Nikiel (Wroctaw)

Abstract. Some conditions equivalent to the following one: “X is a Hausdorff space which is

‘a continuous image of some arc”, are given. The most important of them are: “Xis a locally con-

nected continuum which is a continuous image of some compact linearly ordered topological space”
and “X is a continuum which can be approximated by finite dendrons”.

1. Introduction. The classical Hahn-Mazurkiewicz theorem ([5], [11]) states
that a Hausdorff space X is a continuous image of a metrizable arc (i.e., a space
homeomorphic to [0, 1]) if and only if X is a locally connected metrizable con-
tinuum. The purpose of this paper is to characterize spaces which are continuous
images of arcs.

There are two fine survey articles, [9] and [23], dealing with continuous images
of arcs and compact linearly ordered spaces. Therefore in this paper we will not try
to give any survey of the known results. Note only that there are some new pa-
pers, [15], [16], [21], [22] and [30], related to the topics which will be discussed
below (however, there is a serious mistake in [15] ~ the set X constructed there on
page 339 is not compact; see also Theorem 4.5 below).

First, we recall some basic definitions and facts and introduce some notation.

A continuum is a compact connected Hausdorff space. An arc is a continuum
with exactly two non-cut points. Arcs are precisely compact connected linearly
ordered topological spaces. Each separable arc is homeomorphic to the closed in-
terval [0, 1] of real numbers.

A continuum X is said to be a dendron if for any two distinct points p and ¢
of X there is a point re X so that p and ¢ lie in distinct components of X—{r}.
Metric dendrons are precisely dendrites. A point x of a dendron X is said to. be an
end-point of X provided x is a non-cut point of X. A dendron is said to be finite
if it has only finitely many end-points. Dendrons are often called “trees”, however,
we reserve the word “tree” for quite different mathematical objects (see Chapter 3).
An interesting survey of results on dendrons can be found in [12].
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We assume that the reader is familiar with the theory of cyclic elements in me-
trizable locally connected continua (see for example [28]). The theory can be extended
to the general case (see [29], [2] and [207) and we will use immediate generalizations
of some of its definitions and theorems without comment.

We often use nets in general topological spaces. All needed definitions and facts
concerning nets can be found in [4].

If X is a topological space, x,y € X, and there is exactly one arc in X with
end-points x, y, then this arc will be denoted by [x, ] (or [x, ¥l if a confusion is
possible). As usual, we write ]x,y] = [x, 1—{x} and Ix,y[ = [x, y]—{x, 7}

Let X be a continuum and J a family of finite dendrons contained in X. We
say that J approximates X provided: (1) J is directed by inclusion, (2) U J is dense
in X, and (3) if U is an open covering of X, then there exists Ty e J such that if TeJ
and T is a component of T—Ty, then 7" is contained in some member of U (this
notion was introduced by L. E. Ward in [26]). If, in addition, 2') UJ = X; then
we say that J strongly approximates X.

Let X be a locally connected continuum ‘and 4 a subset of X. We say that 4
is a T-setin X if A is closed and each component of X— 4 has a two-point boundary.

Now we can state the main result of the paper:

1.1. TeEoREM. If X is a continuum, then the following conditions are equivalent:

(i) X can be strongly approximated by finite dendrons;

(i) X can be approximated by finite dendrons;

(iti) X is a continuous image of some arc;

(iv) X is locally connected and is a continuous image of some compact linearly
ordered topological space;

) X is locally connected and for each nondegenerate cyclic clement Y of X
the following conditions hold:

(a) if p, g and r are any points of Y, then there is a separable T-set E in Y such
that p,q,r€ E,

(b).if Ec E'< Y and E' is separable, then E is also separable, and

(c) if E' is a continuous and monotone image of Y and E is a separable continuum
in E' then E is metrizable;

- (vi) X is locally connected and if Y is a nondegenerate cyclic element of X and
P, q.1€ Y, then there is a metrizable T-set A in Y such that p,q,re d;

(vii) X is locally connected and if Y is a nondegenerate eyclic element of X, then
there is a collection {A;, 4,, ...} of T-sets in Y such that forn = 1,2, ... the following
conditions hold:

(A) An < An—!- 1

(B) if Z is a component of Y~ A,, then the set of all cut points of Z is contained
in An+,1s

(C) if Z is a component of Y~ A, and C is a nondegenerate cyclic element of Z,
then the set C O\ A,y is metrizable and contains at least three points, and

(D) A, is metrizable.
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Note that Theorem 1.1 solves some old problems. Namely, the implication
(iv) — (iii) answers affirmatively a question of S. Marde§i¢ and P. Papi¢ ([10]; see
also [23], Problem 1, p. 97), and the implication (iif) - (ii) shows that a conjecture
of L. E. Ward is true ([26], p. 371; see also [23], Problem 2, p. 100).

When the paper was ready, the author got to know that the implication
(iv) - (iii) was somewhat earlier shown by L. B. Treybig ([22]; Treybig’s proof
differs from the one given here). :

In the forthcoming papers we will use condition (vii) to obtain further pro-
perties of spaces which are continuous images of compact linearly ordered topo-
logical spaces.

The proof of Theorem 1.1 will be given in Chapter 6; it is preceded by various
auxiliary results. In Chapter 2 we gather some facts on T-sets; most of them have
recently been proved by L. B. Treybig in [21]. Chapter 3 contains some simple results
on T=sets and open coverings of continua. Chapter 4 deals with special kinds of T-sets
and Theorem 4.9 is a key to the proof of Theorem 1.1. The proof of the implication
(vii) = (i) of Theorem 1.1 is prepared in Chapter 5.

2. T-sets.

2.1. LemMA ([21], Theorem 6). Let X be a locally connected contipuum and A
a T-set in X. There exists an upper senti-continuous decomposition G, of X into closed
sets so that if X, denotes the quotient space and f,: X — X is the quotient map,
‘then:

(@) X4 is a locally connected continuum;

(ii) f, restricted to 4 is a homeomorphism from A onto fo(4);

(iii) if Z is a component of X, T i(A), then Z, Z are homeomorphic o 10, 1],
[0, 11, respectively, and so fu(A) is a T-set in X4;

(iv) for each comporient Z of X— f4(A) there is a unigue component Yzof X—4
such that f(¥Yz) = Z; this gives a one-to-one and onto correspondence between the
Samily of all components of X~ FA) and the family of all components of X—A.

The notation of Lemma 2.1 will be used in the sequel without comment.

2.2, LemMa ([21], Theorem 8). Let X be a locally connected continuunt without
cut points and let {4,: s€ S} be a family of T-subsets of X, indexed by a well-ordered

set S which has no last element, such that As< A, if s<t Put A= Us Ay, and for
Se

each se S let Y, be a component of X— A4, such that Ye< Yy if s, te S and s <1. Then
the sets bd(Y,), s€ S, can be labelled {ay, by}, where there exist points a, be A such
that the nets {a,: s €S}, {b,: 5€ S} comverge to &, b, respectively. Moreover, either
N Y, = {a} = {6} or N7, is a nondegenerate continuum which is the disjoint union
ses ses
of {a,b}, Zy, ... Z,, where each Z is a component of X—A and bd(Zy) = {a, b},
k=1,..,n Therefore 4 is a T-set in X.
2.3. LemmMa ([21], Theorem 7). Let X be a locally connected continuum, 4 a T-set
in X and a, b two distinct points of A. Let I be an arc in X, with end-points Ful@,
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F4®), and put
L=(dnfri@)vU{Y: Yis a component of XA such that f(¥Y) <1},

Then L is a subcontinuum of X such that if M = {x} for some x €L 0 4~{a, b},
or M is a component of X—A so that M < L. then L—M is a union of two mutually
separated connected sets P Q such that ae P and be Q.

2.4, LEMMA. Let X be a locally connected continuum without cut points and let E
be any subset of X. If A is a T-set in X such that E < A, then there exists a minimal
(in the sense of inclusion) T-set B in X such that Ec B A,

Proof. If |E| < 3 then let B be any subsct of 4 such that B consists of exactly
two points and Ec B. Suppose that E contains three distinct points p, ¢ and r.
By the Kuratowski-Zorn Lemma, to prove the existence of B it suffices to show
that if (S, <) is a well-ordered set of indices without last element and 4,, s &S,
are T-sets in X such that E« 4, and 4, = 4, for all s, 1€ S, s<t,then 4" = [} 4,
is a T-set in X. ses

Let x be a point of X~ A’. Hence there is an s, € § s0 that x ¢ 4, for each s € §,
s>s5,. Let ¥, denote the component of X—4,, 5> 5y, such that x& ¥, and let
bd(Y,) = {a,, b} and B, = Y,. Note that each component of X—.B, has a two-
point- boundary. Moreover, B, is closed and Bs< B, provided s, <s <t By
Lemma 2.2, we may assume that the nets {a,: s> 5o} and {b,: 5> 5o} converge
to some points @ and b, respectively. Observe that ¥* = (J ¥, is a component of

5> 50

X—A’ so that xe ¥* — indeed, the connected sets ¥*, x' € X— 4', constitute an
open covering of X—A’ and if Y¥ n ¥¥ % @, then ¥¥ n ¥ s @ for some
seS and therefore ¥¥ = Y*'; so ¥¥ = ¥*'. Moreover, a,be A" and {a, b}
= bd(Y").

Now, it suffices to show that a # b. Suppose that a = b. Since X has no cut
points, it follows that ¥* = X~ {a}. Moreover, 4’ N ¥* = @, and so 4' < {a},
a contradiction because Ec A4”.

3. Remarks on open coverings and T'-sets.

3.1. LEMMA. Let X be a locally connected continuum, A a T-set in X, S a directed
set, and {Y,: s€ S} a family of components of X—A. If the net Y, s€ 8, is not

eventually constant and converges, then lim Y, is a single point which belongs to A.
s&S

Proof. Obviously, ¥ = lim ¥, is a subcontinuum of X. Suppose that Y is

seS

nondegenerate. Let Y,, ze T be a net finer than Y,, se S, such that lima, =«
. . tel
and lim b, = b exist, where bd(Y,) = {a,, b,}. Note that ¥ = lim ¥,. Let ¢ be any

tel teT
. point gf Y—{a, b} and let U be a connected neighbourhood of ¢ in X such that
a,b¢ U. There is an element #, & T such that ¥, " U # @ and a,, b, ¢ U for ¢ > t,.
Hence @ # Y, n Uc ¥, and therefore U is not connected, a contradiction.
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3.2. LemMA. Let X be a locally connected continuum, U an open covering of X
and A a T-set in X. Then the family

{Y: Y is a component of X—A and Y is not contained

in any member of U}
is finite.

Proof. Let U = {Uy, ..., U,}. Suppose that there are infinitely many distinct
components Yy, ¥, ... of X—4 so that Y, is not contained in any U, for
k=1.2,..and [ = 1,..,n Since the hyperspace C(X) of all subcontinua of X is
compact, there is a convergent net Y, se S, which is finer than the net ¥,
ke{l,2,..}. By Lemma 3.1, lim ¥, consists of a single point a. Let U, e U be

ses

such that ae U,. Since lim ¥, = {a}, there exists an s, €S such that Y, < U,
ses

for 5> s, Hence there is a positive integer k such that Y, c U,,, a contradiction.
Recall that a tree is a partially ordered set T such that, for each 7€ 7, the set
{seT: s<t} is well-ordered. Recall also the following simple fact:

3.3, LEMMA. (Konig's Lemma, see for example [8]). If T'is an infinite tree with
Finitely many minimal elements and each element of T has finitely many immediate
successors, then T contains an infinite linearly ordered subset.

3.4, LEMMA. Let X be a locally connected continuum without cut points and let
Ay, Ay, ... be T-sets in X such that Ay < Ay < ... and if Y is a component of X—A4,
for some ne{l,2,..}, and Z is a nondegenerate cyclic element of Y then
{yeY:ycuts YAy, and |Z.0 414> 2. -

Then \J A, is dense in X and for each open covering U of X there is a positive
nz1

integer ny so that the closure of each component Y of X—A,, is contained in some
member of U.

Proof. Put 4 =“U A, and suppose that xe X—A. For each n let Y, be the
nz1
component of X— A4, so that xe ¥,. Put H= () ¥,. By Lemma 22 Aisa T-set

nz1 .
in X, bd(¥,) = {a, b}, the limits « = lima, and b = limb, exist, a # b, and
H=1la,b} UH, U..U H, where Hy, ... H, are components of X—A such that
bd(H) = {a, b}, for i = 1, ..., k. For each positive integer 7, let Z, denote the
cyclic element of ¥, such that x € Z,. Since X has no cut points, Y, is a Eyclic chain
from a, to b, ([28], p. 71), and so bd(Z,) = {z,, zy} for some z,,2,€Y,, z, # z,.
Since {ye Y,: y cuts ¥,} U {a, b} < Ay, it follows that bd(Z,) < 4,+; and
therefore a, ., , bys4 € Z,. Let F, denote the component of Z,—{@y51. bys1} such
that x € F,. Observe that F, is also a component of X—A,1,; 80 F, = Y,y Since
|Z, " Ayrq] >2 and F, N 4,1 = O, there is a component G, of Z,—{@ys15 bus 1}
such that x ¢ G,. Note that G.= LsG,is a subcontinugm of X anda,be G= \ Z,

nzi
c N Y, = H. Hence there exists a point y € G n (H~ {a, B}). Then V = H— {a.‘b}
LES) :
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is a neighbourhood of y such that ¥ n G, = @ for cach n. Therefore y ¢ G, a con-
tradiction.
Let U be an open covering of X. For each n put

S,={Y: Y is a component of X— 4, so that Y is not

contained in any member of U}.

Put § = {J S, and observe that § ordered by reverse inclusion is a tree, The sets S,
nz1

are levels of (S, =). By Lemma 3.2, (§, =) has only finitely many minimal elements
and each member of § has only finitely many immediate successors.

Suppose that §'is infinite. By Lemma 3.3, there is §' < S such that § is infinite
and (§', @) is linearly ordered. We may assume that S’ is maximal. Therefore
§'n S, = {V,} for each n. Since 4 = X, the set () ¥, consists of a single point v,

nzl
Let Uye U be such that v e U;, There is an integer m such that V,, < U;. Hence
V., ¢S, a contradiction.

We have thus shown that S is finite. Since no component of X— 4, is a com-
ponent of X — A4, when n < k, the families S, and S, are disjoint when n % k. There-
fore there is a positive integer 7y such that S,, = @.

3.5. LeMMA. Let X and Y be locally connected continua and let 4, B be T-sets
in X, Y, respectively, such that all components of X—A and all components of ¥— B

are homeomorphic to 10, 1[. Suppose that there is a homeomorphism ¢: A — B
such that there is a bijection

fi {U: U is a component of X—A} — {V: V is a component of Y~ B}

such that g(bd(U)) = bd(f(U)) for each component U of X—A. Then there is
a homeomorphism G: X — Y such that Gl, = g and G(U) = f(U) for each com-
ponent U of X~ A.

Proof. For each component U of X—d, write bd(U) = {ay, ¢y} and let
gy: U = f(U) be any homeomorphism such that gulay) = glay). If xe X, then
put G(x) = g(x) provided x e 4 and G(x) = gu(x) if x € U for a component U of
X—A4. Note that G is one-to-one and onto, and use Lemma 3.1 to show that G is
continuous.

3.6. LEMMA. Let X be a locally connected continuum, 4 a T-set in X, and H any
Jamily of components of X—A so that VAW = @ fV,WeH, V+# W. Let G be
the decomposition of X into points and the sets W Jor We H. Then G is upper semi-
continuous.

Proof. This follows from Lemma 3.1,

37. LeMMA. Let X be a locally conmected continuum, A a T-set in X and
U= {Uy, ..., U,} an open covering of X. For every component Z of X (— f4(A) let Yy be
the unique component of X— A so that £,(¥,) = Z. Write bd(Yy) = {ay, b;} and let
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Pz» 4z Tz be poinis of Z such that filaz) <pz < gz <rz <f4(bz) in a natural ordering
of Z. Let '
H={Z: Z is a component of X, —Fu( DY,
Ul =fydn U)o U{ZeH: Yo Ut v
U U {Ifu(@2), 4zlz: Ze H and aze U} v

O U {l4z.fu(b)lz: Ze H and by e Uy}
fork=1,..,n and

UL =\ {Ipz. r2lz: Z e H and Yy is not contained in any member of U} .

Then U = {U§, ..., Ut} is an open covering of Xj.
Proof. Tt is obvious that U# is open. We show that X,— U is closed for
k =1, ..,n Suppose that

ze X~ Ur—(X,~ U = X~ UL n UL,

Note that z € f4(4) — indeed, each point z’ € Z of some component Z of X " —fa(4)
such that z’ € Uz has an open neighbourhood ¥'so that ¥ = Z n U There is anet z,
se S, of points of X, — Uf which converges to z. Observe that (Xi—=Ud) 0 fu(4)
is closed, and so we may assume that each z, belongs to some component Z, of
X, —fa(4). Using nets finer than Z,, s € S, one can easily show that (by Lemma 3.1)

lim Z, exists and is equal to {z}. Let x be the unique point of 4 nf@);soxely.
¥ 1~
;: follows that lim Y,,, exists and is equal to {x}. Observe that, for each s € S. there
ses . i
exists a point x, e Yy, so that x, ¢ U;. Note that lim x, = x €& U,. Thus Uy is not

: s
open, a contradiction. se
We show that U4 covers X,,. Observe that

£id) =70 Uyn A e U U
k=1 k=1

Suﬁpose that ze Z for some component Z of X —f4(4). If Yz= Uy for son::}e1 k
then ze U, and if ¥ is not contained in any membc?r of U and z # qf, ~ en
ze U for each k such that ay € U, (resp. bye U,f) proyxded ze fy(az), qz[é (131513.
z€ 195, f4(b) 3. If z = g, and ¥z is not contained in any member of U, then

ze UZ.

4. Metrizability of special I'-sets.

4.1. LemMA. If X is a locally conmected continuum and E is a metrizable T-subset
of X, then X—E has only countably many components.

Proof. Let ¢ be a metric on E. Suppose that X—E has uncountably many
components. For some positive integer m, we can find a sequence Wy, Ws, ... of

distinet components of X — E such that bd (,) = { b,}, a(a,, by) = 1/m, lima,.th= a
and limb, = b. Hence o(a, b) > 1/m; so a # b. Let W,, se S, be a net finer than
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W..ne{l,2,..}, such that W = lim W, exists. Note that a,be W. This con-
tradicts Lemma 3.1, sed

4.2. Lemma. If X is a locally connected continuum and E is g metrizable T-set
in X such that each component of X~ E is homeomorphic to 10, 1Y, then X is metrizable.

Proof. By Lemma 4.1, the set X~ has countably many components, One
can find a countable basis for a Hausdorff topology on X weaker than the original
topology of X (for points of E, define basic neighbourhoods similarly to the de-
finition of the sets Uz in Lemma 3.7). Since X is compact, the new topology of X
coincides with the original one.

Recall that a continuum X is said to be hereditarily locally connected provided
each subcontinuum of X is locally connected. Tt is not difficult 1o show that each
hereditarily locally connected continuum is arewise connected ([24], Corollary 4,
p. 125).

If Xis a continuum such that, for each open covering U of X, cvery family X
of pairwise disjoint subcontinua of X, none of which is contained in a member of U,
is finite, then we say that X is a Jnitely Suslinian continuum. A continuum X is said
to be rim-finite if each point-of X has arbitrarily small open neighbourhoods with
finite boundary. Recall that every rim-finite continuum is finitely Suslinian and every
finitely Suslinian continuum is hereditarily locally connected ( [24]). Note that a con-
tinwum X is finitely Suslinian if and only if, for any two disjoint closed sets F,Ge X,
each family H of pairwise disjoint subcontinua of X with the property that
YnF+#@# YnGfor Ye H is finite. Observe also that if a Hausdorff space 2 is
the image of a finitely Suslinian contintum X under a continuous and monotone
mapping, then Z is also a finitely Suslinian continuum.

4.3. LemMA. If X is a locally connected continuum and A is a zero-dimensional
T-set in X such that each component of X— 4 is homeomorphic to 10, 1[, then X is
rimfinite, and so finitely Suslinian,

Proof. Let xe X. If xe X—A then x has arbitrarily small neighbourhoods
with two-point boundary. Suppose that x € 4 and let U be any open neighbourhood
of x. Since A4 is zero-dimensional, there is an open set ¥ such that xe Ve U and
bd(¥) N4 = @. By Lemma 3.1, bd(¥) intersects only finitely many components
of X—A. Let W be the component of ¥ so that x e W, Since X is locally connected,
W is open. Moreover, bd(W) < bd(¥). Thus bd(W) n 4= @ and bd (W) intersects
only finitely many components of X4, Since ¥ is connected and the ¢
of X—4 are homeomorphic to 10, 1], bd (W) is finite.

Remark. The result of Lemma 4.3 was used in the proof of Lemma 2 in [20],
P. 85, without being proved there. See also [15], p. 340, for a weaker result.

4.4. LEMMA. Let X be a hereditariiy locally connected continuum, A a closed sub-
set of X, W a component of X—4, x a point of W, ¥ a point of bd (W), and U an open

set such that y e U, Then there exist g point ze A U and an arc I X with end-
points x, z such that In A = {z}.

omponents
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Proof. We may assume that X = 4 U W and 4 = bd(W). Note that for any
two points p, ¢ € W there is a subcontinuum Y of X suc}} that p,ge Y= W.(see for
example [6], Theorem 3.7). Thus for each pe W there is an arc ]".c W with end-
points x, p. Let ¥ be a connected open set such that y e V; Ve U Since ye bd (W),
there is a point ¢ such that ge V" n W. Let J be any arc in V with end-points ¢, y.
Observe that there is an arc I'cl,uJ with end-points X, ). M(.)reover,
I'ndcJn AcVn A< Un A Finally, there is an arc I < I' with end-points x, z
such that In 4 = {z}.

4.5. THEOREM. Let X be a hereditarily locally connected continuum. If E is a me-
trizable closed subset of X, then the family

H = {W: W is a component of X—E and |bd(W)| =2}

is countable.

Proof. Suppose that H is uncountable. By Lenmia 4.4, for eac'h component W
of X— E such that |[bd(W)| > 1, there is an arc Jy, < W with end-}')o%nts ay, by such
that Jiy 0 E = {ay, by}. Let ¢ be a metric on E. There are dlStlI?.C:t cqmponents
Wy, Wy, ... of X—E such that |bd(W,)] > 1, land for some positive mteiez m,
o(aw,, bw,) = 1/m, and the limits limay, = a, lln{bm = b exist; so Q(‘i’ b) > &rﬂ
Let U, V be open neighbourhoods of 4, b, respectively, such that Un V = @. We
may assume that Jp, " U # & # Ty, AV, for n=1,2,... Hence, for eac]':\ n,
there is a subarc I, of Jy, such that L,cW, and I, n U # @ # I, nIf_._Smce

W, Wa, ... are pairwise disjoint open subsets of X, it follows that I, n ngekI" =g

for k = 1,2, ... By [17], Theorem 4, p. 246, X is not hereditarily locally connected,
T h A e i
a contradiction. -

Remark. If X is a dendron which contains exactly one point x so that X'~ {x}
has more than two components (i.e., X is a “fan”) gnd, Oreover, X ~{x} }iis tun;
countably many components, then E = {x} x [0, 1] is a closed metrizable ]Sjlll set o
a locally connected continuum ¥ = X'x [0, 1] such that YfEhas urixcoun?a ﬁm?ny
components. However, if we assume in addition that E is zero-dlmensxona., then
Theorem 4.5 remains true for locally connected continua (it suffices to modify the
proof of Lemma 4.1).

4.6 LEMMA. Let Z be a finitely Suslinian continuum, J a separable arc in Z )Zttht
end-points jy, ji, < the natural ordering of J from jo to Jy, and U a countable subse
of J. Put

irwise disjoi) ; mZ, n=1,2,.., with
T = {teJ: there are pairwise disjoint arcs J, in Z, s
{ end-points a,, b, such that J nJ, = {a,, b,} and a, <t <b,}.
hen = J, then J—T is coun-
(@) if Z—J has exqactly one component Wy and bd(W,) = J,

table; . ‘
(%) if Z—J has exactly one component Wo, then bd(Wy)—T is countable;
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(¢) T is always a Gs,=set in J; .
() if J—T is uncountable, then there are two distinct points ¢, deJ—{j, j}

such that either bd(V) < [c, d]; or bd(V) n Je, dly = @ for each component V of

VANE
(e) if T = O, then there are two distinct points e,deJ~(U v {jo, /1)) such
that either bd(V) < [¢, d)y or bd(V) 0 Je, dl; = @ for each component V of Z—J.

Proof. We may assume that, for each component ¥ of Z—J, the set bd(¥)
contains at least two points. By Theorem 4.5, Z—J has countably many com-
ponents denoted by Wy, Wi, ...

(a). Let pe W,. Let 4, be a family of arcs in Z which is maximal (in the sense
of inclusion) with respect to the property: if Ke 4y then the end-points of K are
px=p and gg with Jn K = {gg}, and if K, L& 4o, K L, then KnL={p}
Since Z is finitely Suslinian, 4, is finite. Suppose that, for some 7, countable families
Ay, .., A, Of arcs in Z are constructed such that {J (4o U ... U 4,) is a closed sub-
set of Z. Let A, be a family of arcs in Z which is maximal with respect to the
property: if K € 4, ( then the end-points of Kare pgand gg with U (4o U ... W 4,) 0
nK={pgandJ n K= {g},andif K, Le 4,4, K # L, then K n L {px, g} 0
A {pr, .} The assumption that Z is finitely Suslinian shows that 4,,.., is countable
and (J (4o U ... U 4, U 4,,;) is closed in Z. -

Pat A= U4, W=U4d~{g: Ked} and Y= WU J. Observe that

nz0

W J = @, Wis connected and bd (W) = J; so Yis a continuum and Wis the unique
component of Y—J. It is not difficult to show that bd(W) = J (use Lemma 4.4).
Note that, for any two distinct points x, y € W, there is exactly onc arc [x, y]y
in W with end-points x, y (observe that W is even a rim-finite dendritic space ; see [13],
[14] and [25] for some properties of such spaces which can be useful below). We
use the last fact to introduce a partial ordering < on W if x, y € W then let X<y
provided either x = y or x & [p, y]y. For each x & W write W, = {yeW: x<y};
note that W, is closed in W.

Put S = {px: Ke 4} (so S contains all “ramification” points of W). For
each ne {0, 1, ..}, write

S, = {xeS: x has exactly n predecessors in (S, <)}.

Since Z is finitely Suslinian, it follows that S = {J S,. Morcover, it is easy to give
nz0
an inductive proof that every set S, is finite.
Take any points X, , Xq, ... € S such that x, € S, and x,<x,.( forn = 0,1,..,

and put N = U [%,, %,+ 1], Since Z is finitely Suslinian, it follows that N — N con-

n=0
sists of exactly one point x,; 50 X, = limx,, x,, €J and N is an arc from X, t0 ¥g-
‘We show that, moreover,

{Xe} = "Q‘)Wxn = Dobd(Wxn).

icm
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Suppose that there is a point x # x,,, x € Qobd(W,,"). Let F, G be open sets such
nz
that Fn G = @, N F and x € G. By Lemma 4.4, there is an arc M,c W, with
end-points X, , ¥y, satisfying M, 0 J = {y,} and y,e Gforn = 0, 1, ... Since x # x,,
and limx, = X, it follows that, for each »n, the set M, N {x,, X,+1, ...} is finite,
and so M, n W, = @ for some integer m. Now, it is easy to find pairwise disjoint
ares Lyg, Lygs ooos By <Nz <., such that L, cM, and F L, # 9 # GnL,
for k=1,2,.. Thus Z is not finitely Suslinian, a contradiction.
For each x € S, put

R, = {teJ: t is an end-point of some component of J—bd(W,)};

s0 R, is countable. Put R = {j;,/;} U U R,; hence R is also countable. We now
xeS

show that J—T < R, which will finish the proof of (a).
Let y € J— R. Since S, are finite and bd (W) = J, it follows that J = ) bd (W)

xeSn

for every n. Thus S’ = {xeS: yebd(W,)} is infinite. By Konig’s Lemma (see
Lemma 3.3 above), there are Xo, Xy, .. €S’ such that x, e S, and x,<x,; for
n=0,1,.. Since y¢ R, there are u,, v, € bd(W,,) such that 4, <y <v,. Arguing
as in the above proof that I is an arc, itis easy to find ares Io, Ky in Wy, U {#o, vo}
with end-points ug, vo. and Xo, v, respectively. There is an arc Joc IyukK, with
end-points xo, 1. There is an integer ny such that x,, ¢Jo and 4, ¢bd(W,,);
so J, n Wy, = @. Apply the above argument to find an arc J; in W, U {u;,v:}
with end-points u,, v, €J such that #; <y <wv,. Note that Jy nJ, = @. Proceeding
by induction we find a sequence Jy,Jy, ... of arcs which is required to show that
yeT.

(b). We may assume that bd(W,) is uncountable. Let 4 denote the set of all
condensation points of bd (W) (see [7]); so 4 = bd(Wp) =J is a closed set without
isolated points and bd (W) — A is countable. Put B = {F: Fisacomponeat of J— A}
and let G be the decomposition of Z into points and sets which belong to B. Note
that G is upper semi-continuous and monotone. Let g: Z — Z|G = Y be the quo-
tient map and I = g(J); so I is homeomorphic to [0, 1], Y is a finitely Suslinian
continuum, and ¢ (W,) is the unique component of ¥—J. Moreover, bd(g(Wo) = L
Put § = {rel: g~'(#) is nondegenerate}; note that g7 HS) nbd(Wo) = (UB) n
N bd(W,) is countable. Put

T' = {tel: therc arc pairwise disjoint arcs I, inY,n=1,2,..,
with end-points &,, b, such that Inl, = {ap, by} and g, <t<b,},
where < denotes also a natural ordering of I By (a), 8’ = I—-T" is countable (one
can also prove that ScS'). Observe that bd(Wo)—T < bd(Wo) N g N SuS).

Finally, bd(Wy) n g~}(S u §') is countable.
{c). For each ke{0,1, ...}, let [cy, di]y denote the smallest subarc of J such

3 — Fundamenta Mathematicae 129, 2


Artur


102 1. Nikiel

that bd (W) < ey, Ay o <dy, and put
T, = {teJ: there are pairwise disjoint arcs J, inJ U Wy, n =1,2, ...,
with end-points a,, b, such that J N J, = {a,, b,} and a,<t<b,}
T’ = {teJ: there are pairwise disjoint arcs J, in Z, n =1, 2, ..., with
end-points a,, b, such that J nJ, = {a,,b,} and a,<t<b,, and

if n # m then J, and J,, do not intersect the same component of Z~J} .

Note that T= T"u U Ty. By (b), cach T} is a G,-set. Morcover,
. k20

T= () U le dilys

mz0 kzm
and so T” is a Gjset. Thus 7 is a Gs,-set.

(d). Let T", Ty, and [y, d,]y for k= 0, 1, ... be as in the proof of (c). Suppose
that for any ¢, deJ~{j,,j1}, ¢ # d, there is a component W of Z—J such that
bd(W) n e, dl; # & # bd(Wo~Ic, d] ;

80 : .
[ews didy 0 le, dly # D # e, dily—Ie, dly .
First, we show that
® ifp,,q,€00,1], pa<g,, n=0,1, ..., and for all ¢, de]0, 1], ¢ <d, there
is a nonnegative integer n such that [p,, g¢,] N le, d[ # & # [p,, ¢.1—Ic, d], then
A =10,1[— U Ip,, g.[ contains at most one point.
n20

Suppose that ¢,ded, c<d. If, for some n, [p,. g, ]c,d[ # D, then
Lons gl = e, d] (because c, d ¢ 1745 94D, and so [Pw, @l —[c,d] =9, a contradic~
tion. If [p,, g,]—I[c, d] # @, then [p,, ¢,] N Je, d[ = @, again a contradiction.

Put 4y = 1jo, jils~ L>) Texs dily. By (%), (4o) < 1. Suppose that for some integer

k30
I>0 we have already constructed countable sets Ay, ..., 4; such that
By =bd(Wy)u...ubd(W.)u dyu..u4

is a closed set (we put W., = @). Let C; denote the family of all components of
ljosjalr—=B;. If D = Ip, ql; € C, then, by (%), the set 4, = D~ () ]¢;, di[; contains
124

at most one point. Put 4, =DU Ap, By =bd(Wy) .. ubd(W) v 4y v
eCy

W U dpi g5 80 Ay ds countable and By, is closed (because Apyq < By U Apvy).
Put B = ]yoB, and note that J-B<T". By (b), the sets Ej, = bd(W,)— T,

k =0,1,..., are countable. Since

B-UEuvd)c YT, and T=T' U T,,
k20 k=0 k=0

it follows that J—T is also countable.
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(e). Assume that T=@. Let f: J~—[0,1]x{0} be any homeomorphism.
Let R denote (for a moment) the set of real numbers. First, we construct a subcon-
tinnum Y of the plane R%

Let vy, 0, ... be a sequence of points of £(U)—{(0, 0), (1, 0)} such that each
point appears in the sequence infinitely many times and 0<v,—2"%? <y, +
42 6D < 1. Put

=10, 11x{0} U U{(x,») e R* (x~u)*+)* = 272" and y >0},
k1

S = {{t,0e[0,1]1x{0}: there are pairwise disjoint arcs J, in ¥,
n=1,2,.., with end-points (a,, 0), (5,, 0), where
[0, 11x{0} nJ, = {(4,, 0), (b,, 0)} and a,<t<b,},
S = .(kgl [op,— 2%+ g 12~ EF D] [0}

Note that f(U)—{(0,0),(1,0)} =S<=S’ and [0,1]x{0}—S’ is uncountable

(because ¥ 2-27¢F2) = J < 1),
KZ1
We may assume that Z n ¥ = @. Let G be the decomposition of Z U Y into

points and the sets {#, ()}, t € J; so G is upper semi-continuous. Put X = (Z U Y)/G
andlet g: Z U Y — X denote the quotient map. Observe that X is a finitely Suslinian
continmum and ¢ (J) = g([0, 1]x {0}) is an arc in X. Put

T = {te g(J): there are pairwise disjoint arcs J, in X, n =1, 2,...,
with endpoints a,, &, such that g(J) nJ, = {a,, b,} and a,<t<b,}.

Note that 7" = g(T) U g(S) = g(S); so g(J)—T" is uncountable. Use (d) to find
¢vd' e g(J)~g({Jjo.J:}) such that either bd(V) = [¢', d'Jy¢sy oF

bd(P) 0 1e, d'[jiy = 9

for each component ¥ of X—g(J). Observe that ¢’ ¢ g(U) and d' ¢ g(U). Finally,
let ¢, deJ be the unique points such that g(¢) = ¢’ and g(d) = d".

4.7. Lvmma ([7], § 24, Section VII, Theorem 3, p. 265). Let X be a separable
metric space and {A,: t€[0, 11} a family of closed subsets of X such that A, A
if t <s. Then the equulity A, = U:{s holds for every te [0, 1] except for a countable
set of indices. s<t

4.8. LEMMA. Let I be an arc and C a subset of I such that the end-points of I
belong to C, C is compact, separable and zero-dimensional, and I—C has uncountably
many components. Let Rg be the relation in I defined as follows: xRy provided x =y
or [x, y]—(C n [x, y]) has countably many components. Then Rc is an equivalence
relation whose classes are subarcs of I (possibly degenerate) with end-points in C.
Thus the decomposition G° of I defined by R is upper semi-continuous and the quotient
space J = I|GC is homeomorphic to [0, 1]. Let gc: T — J be the quotient mdp and put
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P={xel: gzl ®) N C|>2}, Q= {xel: |g5'(x) " C|=2}. Then P is coun-
table and [x,y] n Q is uncountable for any x,y€J, x # p.

Proof. Since all decreasing and all increasing sequences of points of C (in a na-
tural ordering of I) are countable, it follows that R is indeed an equivalence relation
whose ‘classes are arcs with end-points in C. Note that J = g(C) is separable and
nondegenerate; so J is homeomorphic to [0,1]. For each xeP, the set
(951 (x)—bd(gc*(®))) n Cis open in C and nonempty. Since these sets are pairwise
disjoint and C is separable, it follows that P is countable.

Let < denote natural orderings on I and J such that g is an increasing map.
Suppose that x, yeJ, x <y, and [x, y] 0 Q is countable. Let u (resp. v) be the first
(resp. last) point of I such that ge(u) = x (resp. ge(v) = ). Since [x,y]n Q is
countable and P is countable, it follows that [u, v]—(C N [u, v]) has countably
many components. Thus #Rcv, and so ge(#) = gc(v), a contradiction.

4.9. TuEOREM. Let X be a locally connected comtinuum without cut points such
that: _

() if Ec E'c X and E’ is separable, then E is also separable, and

(b) if E' is a continuous and monotone image of X and E is a separable continuum

in E', then E is metrizable.
Suppose that A is a closed metrizable subset of X, and A’ is a separable T-set in X
such that A< A'. Then there exists a metrizable T-set B in X such that A< Bc 4',
More precisely, each separable T-subset of X which is minimal with respect to the pro-
perty “contains A” is metrizable.

Proof. Let B be any separable and minimal T-subset of X so that A < Bc A’
(by Lemma 2.4 and assumption (a), B does exist). Because of Lemma 2.1, we may
assume that each component of X—B is homeomorphic to 10, 1[.

Let G be the decomposition of X into the components of B and points. Note
that G is upper semi-continuous and monotone (see [20], Lemma 2, p. 85). Let ¥
denote.the quotient space ¥ = X/G and f: X — ¥ the quotient map. The set f(B)
is zero-dimensional and each component of Y—f£(B) is homeomorphic to 10, 1[.
By Lemma 4.3, Y is finitely Suslinian. Hence Y is arcwise connected.

Let Y; be a nondegenerate cyclic element of ¥ and let r: Y Y ; denote the
unique monotone retraction from Y onto ¥;. Since X has no cut points, it follows
that rf(B) = f(B) n ¥y; so if 1/(B) is nondegenerate, then rf'(B) is a separable
zero~dimensional T-subset of ¥; such that each component of ¥; —rf(B) is homeo-
morphic to 10, 1[. Let {yy, p1, ...} be a countable dense subset of #(B). For cach

a subcontinuum of ¥; such that 7f(B) = ¥{. By (b), Yi is metrizable if and only if
for each positive integer » the set I,~rf (B) has countably many components.

Suppose that ¥; is not metrizable. Hence there is an ny such that I,,—rf(B)
has uncountably many components. Since rf(4) is metrizable, I,,—rf(4) has only
countably many components. Therefore there is an arc I contained in 1,, with end-
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points in rf (B) such that 7~ 1f(4) = @ and I-rf(B) still has uncountably many
components. Put C = rf(B) " I; so C is separable, compact and zero-dimensional.
Let G, be the decomposition of ¥; into points and the classes of the decomposition G°
of the arc I (sec Lemma 4.8). Note that (4 is upper semi-continuous and monotone.
Let Z denote the quotient space Z = Y;/Gyand g: Yy — Z the quotient map. Note
that ¢ is monotone and gf; = g¢ (Lemma 4.8).-Moreover, Z is finitely Suslinian.
Put J = g(I); so J is homeomorphic to [0, 1]. Let j,, j; denote the end-points of J,
put JO = J~{ji,j1}, and let < be the natural ordering of J from j, to j;. Let also <
denote the natural ordering of I such that g|; is an increasing map, Put

P=1{teJ: lg"'¢)n C|>2},
Q= {teJ® |g7'(t) n C| = 2}.

Notc that for each ¢ e Q there is a unique component W, of X—B so that /(i)
is a component of ¥, —f(B) and gf (W,) = {g}. Let H be the decomposition of X"
into points and the sets W,, g€ Q. By Lemma 3.6, H is upper semi-continuous. Put
X, = X/H and let h: X —» X, be the quotient map; so A is monotone. Let
ki Xo—+Z be the mapping defined by the formula: %k(x) =z provided
gif (h~3(x)) = {z}. It is easy to see that k is well-defined, continuous (see [3],
Theorem 6.3.2, p. 123) and monotone. Put X’ = f~Y(7) and X3 = h(X’). We show
that X} is metrizable. : '

For each pe P pul X, = ! (g"i(p)); 5o X, is a subcontinuum of X’. Note
that each X, is a union of some subset of B and of countably many components
of X—B. By (a), X, is separable for each p e P. Observe that

b =h(UX)uh(BnX).
: pepP

Since P is countable (Lemma 4, 8) it follows that Xj is separable and so metrizable
(by (b)). Let ¢ denote a metric on Xg. ) )
Observe that k(Xp) = J and define k': X5 — Jas k' = k|xz; so k' is continuous.

Note that k' is also monotone and write M, = (k") *(?) for each teJ. For each
positive integer »n put R, = {f'eJ: diamM,> 1/n}, R = 91R”' Note that R, are
closed. Put ‘ "
T = {teJ: there arc pairwise disjoint arcs J, inZ n=1,2,., .
with end-points a,, b, such that _
JnJ, = {a, b} and a,<t<b,}.

Suppose that te T'n Q. LetJ,,n=1,2,.., be pairwise disjoint arcs in Z with
end-points a,, b, such that J nJ, = {a,, b,} and &, <t <b,. Let a (tresp. b) denote

“the first (resp. last) point of I which is mapped by g onto ¢ (so a # b), and put

L={yel. y<a}, I,={yel: b<y}. Note that 9'1(1,.),_171 =1,2,.., are
pairwise disjoint continua in ¥ such that g™*(J,) n I, # B # ¢ (J,,) N I,. Since I,
I, are closed and disjoint, ¥ is not finitely Suslinian, a contradiction.


Artur


106 J. Nikiel

This shows that Tn Q = @. Now, we prove that Rn 0 is countable.

For each teJ put Ny = (&)™ (o, 1) NY = ()G 4L so
M, = N o N;. Take any point t € Q. Then L(W,) consists of a single point m, e M,
such that m, cuts X, between M;, and M. Write g™t t) n C = {a,, b}, where
a,<b,, and put hf (a) = M;, if~'(b) = M;". Note that M, = M U M and
M; A M} = {m}. Moreover, UN. AM} = {m} and IL<)$ NS M7 = {m).

s<t El

Therefore if M; # {m}then U NS # N, and if M s {m}then U N # N;.
t<s st

Thus if e R~ Q, then either U Ny # Ni° or U Ny # N By Lemma 47,
RN Q is countable. fes A

Since I~ rf(4) = @, it follows that J N grf (4) = @. Therefore there are only
finitely many components of Z-J which intersect the closed set grf(4). Moreover,
the boundary of each such component is nowhere dense in J. Indeed, if- I is a com-
ponent of Z—J so that bd () contains a nondegenerate subare J' of J, then J'~T
is countable (see Lemma 4.6(a)), Tn @ =@, and J'n @ is uncountable
(Lemma 4.8), a contradiction.

Thus we can find a nondegenerate subarc K of J with end-points &, and ky,
where j, <ko <k <j;, such that bd(#) n K = & for each component W of Z~J
so that grf (A) n W # @.

Note that K—(Ru T) is a Borel set in K, because R is an F,-set and T is
a Gy-set (Lemma 4.6(c)). Since Q n R is countable, N T =@, and Kn @ is
uncountable (Lemma 4.8), it follows that the set K—(Ru T) is uncountable.
Therefore there is a subset K’ of X—(R u T') which is homeomorphic to the Cantor
set (see for example [7], § 37, Section I, Theorem 3 (of Alexandrov-Hausdorff),
p. 447). We may assume that kg, ky € K'.

Let H' be the decomposition of Z into points and the sets W for each compo-
nent W of K— K’. Thus H' is upper semi-continuous and monotone. Put Z; = Z/H’
and let /: Z — Z, denote the quotient map. Then Z, is a finitely Suslinian con-
tinuum. Put L = I(K) = I(K'); so Lis a separable (nondegenerate) arc in Z;. Let <
denote the natural ordering of L such that /|y is an increasing map and put
Iy = Uky), Iy = I(ky); so I, I; are the end-points of L and /, </y. Put

T’ = te L: there are pairwise disjoint ares J, in Z;, n=1,2, ...,
with end-points a,, b, such that
LnlJ,={a,b}and aq,<t<b,}.
Since T'n K’ = @, it follows that 77 = @.

Put U, = {reL: I"*(¢) is nondegenerate}; so U, is countable. Observe that
P < R. Therefore I(Pn K)< /(RN K) <= U,. Put

U, = {teL: there is a component W of Z;—L such that
tebd(W) and bd(W) is nondegenerate} .

Because of Lemma 4.6(b), the boundary of each component of Z,~L is countable
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(since " = ). By Theorem 4.5, U, is countable. Now, put U = U, u U,; so U is
countable.

By Lemma 4.6(c), there are ¢, de L—(U v {l,]}), ¢ <d, such that either
bd(W) = [¢, d], or bd(W) n ]e, d[, = & for each component W of Z; — L. Moreo-
ver, if W is a component of Z;—L such that {c,d} n bd(W) # @, then either
bd(W) = {c} or bd(W) = {d} (because ¢, d¢ U,). Put

V= le,dl, w0 U {W: Wis a component of Z; ~L such that bd(W) < e, d[;}

and note that ¥ is a component of Z; —{c, d}.

Since ¢, d # Uy, each of the sets I”*(c) and I7%(d) consists of exactly one point
which docs mnot belong to P. Therefore each of the sets g~*I"%(c) n C and
g~ 1" (d) n C consists of either one or two points (which obviously belong to I).
Put ¢; = max(g™ ' ") N C), dy =min(g” 1" d)n C); so ¢;<d; Recall
that (RN K)cU;. Hence ¢, di¢g™'(R), and so f~c) = {c,} and
FUdy) = {d,} Tor some points ¢;, d, € B.

We show that ¥V, = g~ 1" !(V) is a component of ¥;—{¢,, d,}. Since g, [ are
monotone mappings, it follows that ¥y is a component of ¥;~g~*I"*({c, d}).
It suffices to prove that bd(V;) = {c, d}. Observe that

Vy=les, dilyw U {W: W is a component of ¥;—g~tI"}(L)
such that bd(W) < ley, di[r}

(because ley, di[y = g~ 11" (Je, d[r)). Since ¥y is locally connected, it follows
that 7, = ¥, U {¢(, d;}, and so bd(Vy) = {¢;. d;}.

Now, we prove that ¥, = f~*r~!(¥,) is a component of X~ {cs, d;}. Since r, f
are monotone mappings, it follows that ¥, is a component of X— £ ({ey, di D).
Since f™X(ey) = {c,} and F~Y(d;) = {d,}, it suffices to show that r~*(c;) = {es}
and r=(d,) = {d,}. We check that ~(¢;) = {c,}; the proof of the second equality
is analogous. ‘ : »

Suppose that »~1(¢,) is nondegenerate. Hence ¢; is a cut point of ¥. Let W be
any component of ¥—{¢;}. Since f is monotone, f ~{(W) is a component of
X—f~Ye,) = X—{¢,}. Thus X has cut points, a contradiction.

Put D = B-V,. Recall that bd(W) n K = @ for each component Wof Z—-J
such that grf(A)~ W & and, moreover, K grf(d) = @. Therefore
lerf(A) o V=@, and so Ac D (because 4 < B). Since Igrf(B) nle, dlr # 9,
it follows that D # B. Moreover, B—D < V, and ¢, d, € D. Hence if W is a cora-
ponent of X—D, W # V,, then W n (B~ D) = @, and so W is also a component
of X—B. Thus D is a T-set in X such that 4 = D Band D # B. This contradicts
the minimality of B.

We have finished the proof that Y7 is metrizable. By Theorem 4.5, ¥;— Y1
has countably many components, By (b) (see also Lemma 4.2), T; is metrizable.
We have shown that each cyclic element of ¥ is metrizable.
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From now on, the only notations from the above part of the proof which will
have the same meaning as previously are: X, 4, B, f, Y. ‘

Let {$o, 71, -} be a countable dense subset of £ (B). For each positive integer n,

let I, be an arc in ¥ with end-points yy, y,. Put ¥’ = DT,, and observe that (by (b))

nz1
Y’ is metrizable if and only if for each positive integer n the set 1, —f(B) has countably
many components.

Suppose that ¥’ is not metrizable. Hence there is an ny such that I, —f(B) has
uncountably many components. Put C = f(B) N L,; so C'is separable, compact and
zero-dimensional. Let GF be the decomposition of I, as in Lemma 4.8, write
J =I,,/G°, let g¢: I, — J be the quotient map and Q = {ted: lgg*(t) A C| = 2}.
Put X' = f~%(L,); so X' is a subcontinuum of X. Note that for each ¢ € Q there is
a unique component W, of X'~ B so that g¢ f (W) = {q} (W, s also a component
of X—B). Let H be the decomposition of X’ into pomts and the sets W, g€ Q.
By Lemma 3.6, H is upper semi-continuous. Put X; = X'/H and let : X' — X,
be the quotient map; so 4 is monotone. As in the first part of the proof, X is sepa-
rable, and so metrizable. Let k: Xg -~ J be the mapping defined by the formula:

k(x) = zprovided gcf(h™*(x)) = {z}. Then k is well-defined, continuous and mono- -

tone. Put M, = k~*(t)for reJ,and R = {teJ: M,isnondegenerate}. As previously,
R n Q is countable (by Lemma 4.7). Since Q is uncountable (Lemma 4.8), there
exists a point @ € 0— R which is not an end-point of J. Since M, is degenerate, it
follows that if beggi(a) n C, then f~(b) is also degenerate, say f~*(b) = {c}.
We show that ¢ is a cut point of X.

Let L denote the cyclic chain from y, to y,, in ¥, i.e.. L = DU S, where
D = {yg, Yo} W {y € Y1 y separates y, and y,,} and S is a union of the family T
of nondegenerate cyclic elements of ¥ such that Ze T if and only if Z contains
exactly two points dy, dy from the set D. Note that {ye ¥: {y} is a cyclic element
of }eDeCcel,cL (Dc C because X has no cut points) and recall that each
nondegenerate cyclic element of L is a cyclic element of Y. Since each cyclic element
of ¥ is metrizable, it follows that if Z is a cyclic element of L, then the set IL,nZ
is a separable arc with end-points dy, d;. Hence the set g¢(Z,, 0 Z) consists of a single
point e, for each cyclic element Z of L. Define g: L — J by the formula g () = ¢,
provided Z is a cyclic element of L such that y € Z. Obviously, gg '(¢) = ¢~ (&) O L.
Since ae Q and D<= C, it follows that Z = g~(a) is a cyclic element of L and
b e {dy, dz}. Since a is not an end-point of J, b is a cut point of L. Therefore & is
a cut point of Y. Since fis monotone, it follows that-c is a cut point of X, a contra~
diction. i

We have thus proved that ¥ is metrizable. Hence ¥'—f (B) has countably
many components. Put Z = f~Y(¥’) and note that Z is'a subcontinuum of X,
BcZ, and Z—B has countably many components (each homeomorphic to

10, 1]). Hence Z is separable and, by (b), metrizable. Therefore B is also metri-
zable,
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4.10. COROLLARY. [f X is a locally connected continuum without cut points which
is a continuous inage of some compact linearly ordered topological space, and E is
4 closed metrizable subset of X, then there is a mefrizable T-set E' in X such that
EcE'.

Proof. See Chapler 6, the proof of the implication (iv) ~ (v) of Theorem 1.1.

5. Approximation by finite dendrons. Let X be a continuum and J a family of
finite dendrons which approximates X. Recall that X is locally connected (this follows
from o theorem of L. E. Ward, [26], Theotem I, p. 370).

Ifa, be ) Jthen there is a unique arc [a, b1, contained in X with end-points a. b
such that [u, b), < T for cach T'eJ with a,beT. Write

n

J@) ={ Ul bl beUL k=1,.,n0=12, e}

k=1
for each ae U/, and
J'= U [@: aeUJ} = {T: Tis a finite dendron and

Te T for some T'eJ}.

It can casily be shown that JeJ', UJ=U Sy = UJ [x.0 = [.\',)']Ji(u)
= [x, pls for all x, pe JJ, and each of the familics J%(a) and J® consists of finite
dendrons and approximates X. .
Now, we recall some definitions and facts from [26]. X is still a continuum
approximated by a family J of finite dendrons. If T and 7" are dendrgns and T T’
then there is a unique monotone retraction r: T' — T. Hence J is an inverse system
of dendrons, where the ordering of J is inclusion and bonding maps are monoton.e
retractions.'Write Ty = liminvJ; so T; is a dendron. If (xp)eT; then (xg) is
a convergent net in X, Moreover, the function g,: Ty — X defined by HJ((XT)) =

= limxy i$ a continuows surjection,
Ted
If TeJ then we can treat T as a subdendron of Tj:

T e {(JCS)E TJ: Xg = Xr if T S} .

Put T, = U J; s0 T, < Ty, and note that Ty—T,, is a subset of the set of all end-
points of T,. ;

5.1. LEMMA. Let X be a continuum which is upproximated by a Samily J of finite
dendrons, and let A be « subset of X such that \J J = A. Then there is a family J' of
finite dendrons such that J' approximates X and UJ' = A. In particular. X can be
strongly approximated by finite dendrons.

Proof. Let @ be a fixed point of U J. For each xed—\J choose (xr)& Ty
so that gy((xy)) = x. Note that the image g J([a, (xp)]) of the subarc [a, (xr)] of Ty
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is an arc in X — indecd, gylpa, uyy7 is One-to-one and continuous. Let

J'={ U Ly either L, = [a, "], for some a* & ) J or Ly = g,([a, (x&)))
k=1

for some x*e A—{JJ; k= 1,..,n; n = 1,2,..}

and observe that J is a family of finite dendrons such that J«) =J" and U J' = 4;
so (JJ' is dense in X. Obviously J' is directed by inclusion

Let U= {U, ..., U;} be an open covering of X and Iet V= {V,, ..., ¥;} be
a shrink of U, i.c., ¥is an open covering of X so that ¥y < U, for i = 1, ..., I (see [4],
Theorem 1.5.18, p. 67). Let Ty, € J°(4) be such. that, for cach T'e J*(), each compo-
nent of I'— T is contained in some member of V. We show that if § e J”, then each
component §* of §—7y is contained in V; = U; for some 7. This will finish the proof,

Let sy, ..., s, denote all end-points of §. There is a directed sot B and dendrong

SyeJ(a), be B, such that S—{s;,...,s,} = US,=&§ and §,<S, if b<e. For
bel
cach be B let Sy denote the component of S,— T} so that S $’. Hence Sy S,

if & <c. Therefore there is an index iy&{l,...,/} such that S, < Vi for beB,

Since S'—{s1, ..., Spc U Sp 8, it follows that §” S
beB

52. LeMMA Let X be a locally connected contimum, The Jollowing conditions are
equivalent:

(i) X can be strongly approximated by finite dendrons,

(i) each cyclic element of X can be approximated by finite dendrons.

Proof. We show that (ii} implies (i). The implication (i) = (ii) will not be used
in this paper (it can be derived from Theorem LI,

For each cyclic element Y of X let Jy denote a family of finite dendrons
such that Jy strongly approximates ¥ (Lemma 5.1) and Jy = J§. Let « be a fixed
point of X. For each point b & X let C(a, b) be the cyclic chain from a to b, i.e.,

Cla, b) = {a, b} v {xe X: x scparales « and bl wC,

where C'is the union of the family H of nondegenerate eyclic clements of X defined
asfollows: Y e H if and only if ¥ contains exactly two points xy and yy from the set
{a, b} U {x: x scparates @ and b}. Put

la, b1 = {a, b} U {x: x separates a and by U [xps ylsy
Yall
and mote that [a, b] is an arc (see [2], p. 254). Observe that

n

J = {kpl[(l,bk]l [JkEX, k= ],,,,,ﬂ’ 1 o= '[,2,.,}

is a directed family of finite dendrons and UJ = X. Now, use [2], Lemma 2, p. 256,
to finish the proof that J approximates X.

5.3. LEMMA. Let X be a locally connected continuum and let a,be X be such
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that X is a cpelic chain from a lo b. Suppose that
(iy each cyelie clement of X which docs not contain a can be approximated by

Sfinite dendrons, and

(i1) either {a} is a degenerate cyclic element of X or the unique cyclic element Y
of X which containg a can be approximated by a family J of finite dendrons such that
UJ = Ve {ut). | -
Then X can be approximated by a fumily K of finite dendrons such that ) K = X~ {aj.

“ Proof, The family K can be constructed as in the proof of Lemma 5.2

5.4, LeMMA. Lot X be a metrizable locally connected continuum. If a is a non-cut
point of X, then there exists a fumily J of finite dendrons such that J approximates X
and \J J = X {a}. ‘ =

Proof, It can casily be shown that X— {a} has property S (observe that if « is
a local separating point, then U—{a} has only finitely many components for cach
connceted open neighbourhoed U of @). By [1], Theore.m 1, p. 1103 and Theorem ?,
p. 1104, then set X {a} is partitionable (for the definition see [1] or [27].). Nowj it
is easy to apply the metheds of L. E. Ward, [27], pp. 286-287, tolﬁnd an increasing
sequence Dy, Dy, ... of finite dendrites such that {Dy, D, ...} approximates X
and « ¢ U D,. By Lemma 5.1, there is a family J of finite dendrites such that J approxi-

niz )
mates X and U J = X {a). . ’ l

5.5. LEMMA. Let X be a contimum, J a family of finite dendrons which strongly
approximates X, and A a T-set in X such that each component of X — A is homeomor-
phic to 10, L[. Then there is a fumily J' of finite dendrons such that:

(i) J' strongly approximates X, . ' ’
(ii) for each component Y of X—A there is v point dy € bd(Y) such that the arc
) ] B [ Lo '/Z)’EY,
[dy, p)y. is contained in Y U {dy} for cac . . ‘

(iif). if Y is u component of X—A and debd(Y) is a point .w;c/z t/?at, for c;{;ﬁ
ye Y, [dyl,< Y u ld}, then also, for each ye ¥, [d,ylp = YU {d} (i.e., one
take dy = d), and

(iv) [u, b1y = la, bly Jor all a,be A.
f [he e

Proof. Let H be the family of all components Y of X—A4 such Lhr.zt lthei:h2~3
x,pe ¥ owith the property [uy, XL #&Y U {“)j} and [b)’syg.l';f] Ytueith:;{"
bd(¥) = {ay, by}, Hence there is a unique point zy € Y such thal

(1) Tay, 2l @ ¥V lay) and lay, X1, & YV fay} for x e V—Ilay. zxls:
or .

@) [by. 2yls € YU {by} and [by, ply & Y U {by} for pe Y= [by,;r]Jc{ e put
4 ) if 3 1 ar
Define dy to be by if (1) holds, and ay if (2) holds. Let ce A be fixe
" ) ) "
J' = { Ly either Ly = [¢, x;]; for some x, € X UH
k=1 - )
or Ly, = [¢, dyJ; v [dy,.» x]g, for some

xeV,eHy k=1,.,mn= 1,2,..}
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It can easily be shown that J' is a family of finite dendrons which approximates x
(use Lemma 3.2), UJ' = X, and J' fulfils (ii)-(iv).

5.6. LEMMA. Let X be q locally connected continuum without cut points and let 4
be a T-set in X. Suppose that

() X4 can be strongly approximated by a fumily J of finite dendvons such that for
each component Z of X, —fu(A) there is a point dy & bd(Z) so that, for cach z e Z,
the arc [dy, 2), is contained in Z O {dy}, and

(i) if Y is a component of X— A, then ¥ can be upproximated by « family Jy of

Jinite dendrons such that \)Jz = Y~{bs}, where Z is the unique component of

Xp=Su(d) such that fY)<Z, and by ebd(Y) is the unique point of
A0 £ (bd(2)—{dy}).

Then X can be strongly approximated by a family K of finite dendrons such that
Julps @l) = [fa(p)s Sul@))s Sor all p, g & A.

Proof. For each component Z of X, —‘/;I(A)“lct Yy denote the unique compo-
nent of X—4 so that f,(Y;) =Z and let bd(Z) = {d;, ¢;}, bd(Y,) = {a, by}, so
Jalaz) = dy, and fy(b,) = e,. Let H be the family of all components Z of Xy —f(4)
such that [dz, e;]; # Z. Now, put J, = Jy, if Ze H; for Z ¢ H lot Jy be any family
of finite dendrons which strongly approximates’ Y, (see Lemma 5.1).

Let aed. Observe that if Z is a component of Xa—=Sa(A), then either
ez ¢ [f4(a), dgl; or dy ¢ [f4(a), es];. For cvery xe X put:

WL = (A AT (@), £401) © U {025 blsyt Z = LEa(a), fu(3)]; and Z
Is a component of X,~f,(4)} k
if xe A,

) L(x) = L(ay) v [ag, x] 1, if x€ Y, for a component Z of X, —f4(4) so that
ez & [fu(@), dy];, and

(3) L(x) = L(by) v [by, x] 72 if x € Yy for a component Z of X,—f,(4) so that
dy ¢ [fu(a), ez]; (note that in this case Z¢H).

We show that the sets L(x), xe X, are arcs.

First consider the case x& 4. Suppose that therc is a f)oint yel&%L(Af).
If y ¢ A, then there is a component ¥ of X—A such that ye ¥, ¥ = Y, for some
component Z of X,—f,(4). Observe that Z < LA4(@), f4(x)]; because x & 4. There-
fore L(x) N Yy = [a,, b,] iz a0d Yy~ [az, by, is a neighbourhood of » disjoint
from L(x), a contradiction which shows that y &€ A. Note that

f[%[.ﬁ(@nﬂ@?b} nd=Lx)n4

is closed and f,(3) [fu@). fu@)]; = [fa(@), fa(®))s3 50 y € L(x) A 4, again a con-
tradiction. Thus L(x) is compact. Put .

L = (4 nfi 1@, £0l,) v U {Yz: Z is a component of

Xa—Fu(d) and Z < [ f4(a), f4()]y} -
By Lemma 2.3, L is a continuum such that
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(%) if cither M = {y} and yeL n4—{a,x}, or M is a component of X— A4
so that M < L, then L~ M is a union of two mutually separated connected sets P, Q
such that ae P and x& Q.
Observe that L(x) < L and L(x) 0 4 = L n A. Suppose that L(x) is not connected,
i.e. there are two closed disjoint and nonempty sets F, G such that L(x) = Fu G.

Put ) )
Fr= B o { Y lag, buls, < L(x) and [ag, byly, N F # @},

G G U {YZ: [ﬁz, bZ.IJz(:L(x) and [az, bZ]Jz NG # @} .

and note that /, G’ are closed, disjoint and L = F' U @', a contradiction. By (),
it follows that cach point of L(x)—{a, x} is a cut point of L(x), and so L(x) is an
arc ([6], Theorem 2-25).

If x ¢ A, then L(x) is a union of two arcs with exactly one common point which
is an end-point of cach of them. We have thus shown that L(x) is an arc for each

xe kX ) ‘
Let x, x' € X. We show thal L(x) n L(x') is connected. Note that if suffices
to consider the case x, x’ € 4. In this case, f4(L(x)) = [£u(@),f(x)]; and f4(L(x")

= [f,t(a)', JFa(xN]y. There is a ze X, such that
LFa(a), £4(]s O [a(@), fa(x))y = [Fa(@, 2] -
Obviously, zefy(d). Let x, be the unique point of fg .’(z) N 4; note that
L(x) n L(x") = L(xp). Therefore L(xy) v ... wL(x,) is a finite dendron for any
Xisoa¥y€X, n=1,2,.. Put
DK = {Lx) U WL0G): Xpy e x,€ X, n=1,2, i}

Then K is a family of finite dendrons such that J X = X and X is direc.ted 1?y inclu-
sion. Morcover, the equality [f4(@),/4()]; =fu(L(x)) for xeA implies that

W = [ for L(x) = [a, x]x for xe X).
Fullp. a1 = [£4(p)s Su@)]s for all p,ged (because
l Let KU = {Uy, ..., U,} be an open covering of X. For each component Z of

 X,~fu(A) choose py, gz, ¥z € Z such that dy <ps <gz<r7<e in a natural or-

dering of Z. Let U4 = {U{,‘, s US) be an open covering of Xy constructed in
Lemma 3,7. Put
D= {Z: Z is o0 component of X, ~fa(A) such that Y, is
not contained in any member of Ut
so D is finite (Lemma 3.2). For cach Z & D let Ty & J, be such that, for each Ty €J;
and each component Ty of Ty~ Tg, Tf is contained in some member of the open

covering {Uy A Pyo ooy Uy 0 ¥y} o Ty e
Let Sy e J be such that for cach SeJ and each component S’ of SZ S;,) ﬂ:;:;
is a k such that §' < U,:“ We may assume that Sy nZ # @ for each Z€ D,

that ‘ i
Sy = U Lf@.fal@)ls v ‘Ul[f,{(a), gzl
i= =
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for some ay, ...,y 4 and some components Zy, ..., Z,, of Xy fu(4) such that
Z,w,2Z,eH Put

n

!
Ty=UL(@)v ULlaz) v U {LE): x is an end-point ‘
=1 i=1

of T3 for some Ze D) ;

s0 Ty € K. Let T" be a component of 7T}, for some T'¢ K, and let £ be the unique
point such that 7" is a component of T-~{t}; so te€ T Ty. We show (hat 7 is
contained in some m.mber of U.

First, suppose that ¢¢ 4. Hence te ¥, for some component Z of X~ f,(4).
If Ze H then aze R for each Re K such that R A Yy # &, Morcover, by, ¢ VAN
and so T"< Y5. If Z¢ H then az, by e Ty. Thus 7' c Y. If Ze H then Ze D,
so Ty < Ty. Therefore T" is contained in some component T* of Fpn1y-1¥
(note that ¥; n T is a dendron belonging to J,;), and there is an /e {1, .., n} such
that T'eT"c Y, n U;c U, If Z¢ D then T'c Y, < Yy < U, for some i,

Now, suppose that #e 4. We may assume that 7" r Yz = & for each compo-
nent Z of X, —f,(d) such that Z n Sy # @ (because if T° ~ Yy # @ for some Z
which intersects Sy, then the same argument as in the case #¢ 4 can be applied to
show that 7' = ¥, and so ' U, for some ). Hence T ~ ¥, = @ for cach Z & D.
Pat

8= U{IA®. L) ¢ is an end-point of T/ and cedlu
v U {110, g215: some end-point of T" belongs to Y.}

and note that S = §' U SyeJ and S’ is a component of §—-Sy. Hence there is
an i€{0, ..., n} such that S’ = UA Observe that ; # 0. We show that 7" < U,.

Note that Uynd =f7 US4 and T~ 4 =17V A 50 "N de
cU;nAdcU;. Take any xeT'— 4 and let Z be the component of Xy~ f4(4)
such that xe ¥;. Observe that Zn §' % @, If Zc g then Z< U, and so
xe Y, Y,cU,. If Z&S', then gz€ 8" (because Zn S % ). Thus gye U
and i # 0. Therefore ¥,< U,.

S.7. LeMMA. Let X be a locally connected continuum without cut points, and
let Ay, Ay, ... be T-sets in X such that A 1Sy < and if Y is a component of XA,
Jor some ne{l,2,.) and Z is 4 nondegenerate cyelic element of 'Y, then
{ve Yy cuts Yy 4\, and 1Z 0 Ayy i) > 2. Suppose that, Sor each n, there is
d family J, of finite denidrons which strongly approximates X, A Such that for each com-
ponent Z of X, —f4.(4,) there is a dz € bd(Z) so that, for each z e Z, the arc [dy, z)

is contained in Z U {d,}. Put
a2 9) = (i (Ul Sad @) 0 A4) O U LY ¥ s 4 component

of X4, such that Ja(¥) e [fa(2)s S (@15}
Jor each ne{l,2,..} and all p,ge d .

In
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if there is an a ¢ Ay such that Ly, (@, p) < La, p) for each ne (1,2, ..} and
cach 'p e Ay then X can be approximated by finite dendrons.

Proof. Put A4 = ) 4,5 50 4 is dense in X (Lemma 3.4), If pe 4, for some n,
0 14,:&/: p). Thus L{p) is defined for cach pe 4.

Take uny p c(:'/;' and let n be so that pe A,. Since L(p) is an intersection of
a deercasing sequence of continua, il is a subcontinuum of X. Obviously, «, peL(p).
I xeL(p)n A and ¢ # x % p, then x is a cut point of L(p) - ~‘indecd, xisacut
point of Ly,(¢, p) provided x ¢ A4, and m 2 n. Suppose that x € L(p)~4. For each
k, kzn, let ¥y be the component of X-- A4, so that x € Y. Note that ¥, = L(a, p)
for cach kzn By Lemma 22, k(;\“ ¥ = {x}. Moreover, the sets bd(¥),

then let L(p) =

k=i, 041, .., can be labelled {a,, &} in a unique manner such that there are
components Gy of L(p)~{ac} and Hy of L(p)~{h} so that H, n G, = @, aeG,,
and pe H), (see Lemma 2.3). Note that G, Hy are open in L(p). Put G = |G,

kzn

and H = ) H,. Observe that ¢ H = L(p)~-{x} (because G,u H, U {a, by}
kzn

cL(p) =G il 0 {a, b} v Y, and Gya Gy, Hic Hy if k<k), G N H'= g,
and G, H are both open in L(p) and connected, We have shown that each point of
L(p)~{a, p} is a cut point of L(p). Thus L(p) is an arc ([6], Theorem 2-25; see
also [21], the proof of Theorem 9).

Take any p, ¢ € A. We show that L(p) n L(g) is connected. Let n be such: that
P, qe d,. Observe that '

L@ fa (D) ry O [a @) fa D = [f4(@) s S5,
for some re A,. Thus La, p) n L(«, q) = L,(a, r). Since
Lip)n A= k&) (Lila. p) N 4y),

it follows that reL(p) n L(g). Therefore, for each k2 n, re La,p) N Lla, q).
It follows that Ly(a, ) = Lifa. p) o Li{a. q) for cach k2 n. Thus L) = L(p) N
N L{g), and so L(p) v L(g) is connected, Put

m

Hence X is a family of finite dendrons which is directed by inclusion. Moreover,
A= UK, and so U K is dense in X, .

Let ;,/ = {Uy, v Uy} be an open covering of X. By Lemma 3.4, theret 1; al}
integer # so that ¥ is contained in some member of U, for each component ¥ o
X~ Ay . .
Let Z be o component of "X, =Fu (A Wute. bd(Z) = {dz’tez}f: ;ﬁi
ldz, 20, Z U {dy} for cach zeZ. Let Y, be the unique component o j A
such that f, (¥,) <2, and write bd(Yp) = {az, by}, where f,(az) = dz 2
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Fulbz) = ez. Let pg,qz.rz€Z b. such that dy <pg<qy<rz<e, in a natural
ordering of Z.

Let U* = {U3", ..., U™} bean open covering of X, constructed in Lemma 3,7,
Observe that Ug" = @. Let SyeJ, be such that for cach S'eJ, and each compo-
nent S’ of S—.Sy there is an m such that S’ < Udr, We may assume that

j 1
Sy = U1 (@) s L], ¢U1 L@ a2,
i= =

for some dy, ..., 4; € 4, and some components Zy, . ., Z; of Xy, ~fy,(4,) such that
ZyywZye F={Z: Z is a component of X, =1y (4,)
‘ such that [dy, ¢z)y, # Z}
Put
j ! ;
Ty= UL@)v U]L(az,) ;
.11 =

so Tye K. Let T' be a component of T~ Ty for some T'e K and let ¢ be the ynique
"point such that T is a component of T~ {t}; so t& T'n Ty, We show that 7" is
contained is some member of U.

Suppose that ¢ ¢ 4,. Hence te ¥y for some component Z of X, —F, (4,).
Observe that Z ¢ F; so ay, bye Ty, Thus 7' < ¥y, and thecefore T' is contained
in some U;e U.

Suppose now that t e 4,. We may assume that 7" n Y, = & for cach compo-
nent Z of X, —f4,(4,) such that Z n Sy # & (because if not, then 1" < Y, < U,
for some 7). Put

S’ = U {1/£4.(), f1,()s,: ¢ is an end-point of T and ced,}u
ol {1£4,(0). q,1,,: some end-point of T belongs to Y.}

and note that S = S’ v Sy € J, and § is a component of §'-- Sy, Hence there is an
i€ {l, .., k} such that S’ = U/ An argument analogous to that used at the end of
the proof of Lemuma 5.6 shows that T" < U,. We have thus shown that X is a family
of finite dendrons which approximates X.

6. Proof of Theorem 1.1, (i) — (ii) is obvious.

(i) — (iii) was shown by L. B. Ward, [26], Theorem 1, P 370,

(iii) — (iv). Recall that each arc is a compact lincarly ordered topological space,
Moreover, each arc is locally connected; so cach Hausdorfl space which s a con-
tinuous image of some arc is locally connected ([6], Theorem 3-22),

(iv) = (v). Let ¥ be any cyclic element of X3 so ¥ is locally conneeted con-
tinuum without cut points which is a continuous image of some compact Jineatly
ordered space. L. B. Treybig has shown ([21], Theorem 4) that for cach countable
subset B’ of ¥ there is a separable T-set £ in ¥ such that £’ = E. Thus we get (a).
Condition (b) follows immediately from [18], Lemma 2, p. 867; sce [4], Problem
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(read: Exercise) 3.12.4(c), p. 281, for more gencral facts, Condition (c) follows
immediately from a result of L. B. Treybig ([19], Theorem 1, p. 417,

(v) = (vi) Follows from Theorem 4.9.

(vi) = (vii). Let ¥ be any nondegenerate cyclic element of X, Let D, g, 1 be any
distinct points of ¥ and let A4, be a metrizable Toset'in ¥ such that Prq,red;;
so (D) holds.

Suppose that we have already constructed a Teset 4, in ¥ for some positive
integer . Put I = {22 Z 05w component of Y—4,} and, for each Z e H, put
Hy = {C': € is a nondegenerate cyclic clement of Z}, {ay, b,} = bd(Z) (recall
that Z is a cyclic chain from a, 1o by), and Ay = {uz, b,} U {yeZ: y cuts Z}
(recall that A% is a closed subset of ).

Take any Z & Hand Ce 1. Note that ¢ A7 consists of exactly two points pg
and ¢e. Let rg be any point of C--{pe, geb. Lot Af be a metrizable T-set in ¥ such
that pe, ge. 1o € Ag, and put ¢ = ' n Ag. Observe that dg is a metrizable T-set
in C such that pe, gesre€ de. Pul dy = Ay U ) {de: Ce Hy). Then Ay is a Teset
in Z — indeed, Ay is closed and each component of Z— 4, is a component of C— A,
for some Ce H,.

Now, put dy.q = A, W () {4, Ze H}. By Lemma 3.1, 4,,.., is a closed subset
of Y. Note that il Z" is o component of Y-~ A, , then there is 4 Z € H such that Z'
is a component of Z~A, (becuuse A, A,y (). Therefore A,.; is a T-set in Y,
It is obvious that conditions (B) and (C) hold,

(vii) = (i), Let ¥ be a nondegenerate cyclic element of X, By Lemma 5.2, it
suffices to prove that ¥ can be approximated by finite dendrons. By Lemma 5.7,
we have to show that, for cach positive integer », there is a family J, of finite dendrons
which strongly approximates ¥, in such a manner that: )

(1) for cach component V of ¥, ~fy,(4,) therc is a dy e bd(¥) so that, for
each ve V. the arc[dy, v];, is contained in VU {dy}, and

(2) there is an a e 4, so that, lor cach ne {1,2,..} and be 4,, the following
inclusion holds: L, (b) & L,(h), where

L) = (/0. ULl fu (BD1),) A 4,) W U {U: U is a component .
of Yo A, such that £ (U) < [Fa(@ f1,(0)]} -

Choose any point «e A, Since A, is metrizable, Y, is a metrizable locally
conneeted continuum (Lemma 4.2). By [26], Theorem 2, p. 373, ¥, can be approxi-
mated by linite dendrons, By Lemma 5.5, there is a family J, of finite dendrons which
strongly approximates ¥, in such a manner that (1) holds.

Suppose that for some positive integer # a family J, of finite dendrons is already
constructed such that J, strongly approximates ¥, and (1), (2) hold.

Note that A = fy . (4,) is a Teset in Z = Y,,,, and let g: Z—~Z|Gy = Z,
be the quotient map (here G 4 is as in Lemma 2.1). By Lemma 3.5, there is a homeo-
morphism i1 ¥, -+ Z, such that Ay, (B) = gf4,,,(b) for each b € 4,, and moreover:
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(%) if Uis a component of ¥~ 4,, if ¥ is the unique component of Z~ 4 sych
that f,,,(U) « Vand if # is the unique component of Z, - g (4) such that g (V) < w,
then W is the unique component of Z,—g(4) such that both ¢fy,  (U) =W and
W (U) < .

Put J = {A(T): TelJ,}; so Jis a family of finite dendrons which strongly
approximates Z, and, by (1), for cach component NV of Z ;g (4) there is a oy & bd ()
so that, for each ze N, the arc [dy, 2], is contained in N U {dy}.

Let NV be a component of Z4—g(4). Let My be the unigue component of - 4
so that g(My)c N and let ay be the unique point of 4~ g~ (dy). Hence
ay € bd (My); let by be the second point of bd(My). Note that My is a cyclic chain
from ay to by. Let € be a nondegencrate cyclic clement of M. Put

AC =( nj;ium(Arr!vl) .

Note that if U is the unique component of ¥~ A, such that S (U)e: My, then
there s a unique cyclic element C” of U such that £y, ,(C’ 1 dyy () = Ag. By (C), 4,
ismetrizable. Since A is a T-setin Cand each component of C A, is | wmeomorphic
to 10, 1[, it follows that Cis metrizable (Lemma 4.2). Thus € is a metrizable locally
connected continuum. By [26], Theorem 2, p. 373, C can be approximated by finite
dendrons. Moreover, if by € C, then by is a non-cut point of ¢’ so ¢ can be approxi-
mated by a family 7 of finite dendrons such that | J = ¢ {by} (Lemma 5.4). By
Lemma 5.3, My can be approximated by a family J3, of finite dendrons such that
UJy = My~ {by}.

By Lemma 5.6, Z can be strongly approximated by a family X of finite dendrons
such that g([p, qlx) = [g(2), g(g)]; for all p, ge A. By Lemma 5.5, there is a fa-
mily K’ of finite dendrons which strongly approximates Z such that [, qlg = [p, qlx
for all p, g € A and, moreover, for each component ¥V of Z—fy  (dysq) = Y4~
~Sanss(dyr 1) there is a dy € bd (V) so that, for each v & V, the arc [dy, v]g is contained
in Vu{dy}.

Put J,.. = K'; s0 (1) holds. Moreover, g([p, ¢ly,,,) = [¢(7), g(¢)], for all
p,qed =fy, . . (4,) (Lemma 5.6).

Let bed, be a fixed point. We show that Ly y(B) 2 L, (b), Obscrve that
91D Fotn s ®sat) = [0, ot 1. 1t Tollows that

(**) }l_lg([f;;,,“(ﬂ),f,t,,“(b)].l,.,.. 1) = hw‘l([g-//‘.(n-u(a)ﬂ !/f;ln + 1([’)]1) =
= U0 s b gy (O = L) Fan(B i -
Therefore I, = int
thatry(;rL”(g; 1(8) N 4, = L(b) " 4,. Take any point Y& Ly, ([b)—~A,. We show
Let U be the component of ¥ —4y such that ye U, let ¥ be the unique com-
ponentof ¥, .. —fy.. (4,) = Z~ A4 such that S (U) & 7, and Iet W be the unique

component of Z,~g(4) such that g(¥) = W, Thus W is the unique component of
Z4—9(4) such that gf, . (U)<W. :
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Since Ly By N A, = LD) v 4,, U is a component of Y-4,, and
U Ly (b) # @, itfollows that bd (U) N L, 4 (b) # . Suppose that bd (U) = {e, d}
is not contained in Ly, ;(b). We may assume that ¢ € L, (b)) and d ¢ L, (b). Suppose
that ¢ ¢ {a, b}. By Lemma 2.3, L, (b))~ {c} has exactly two components P, Q so
that ae P and b e Q. Note that the nonempty set U n L, ((8) is 2 union of some
family of components of Ly, 1(B)~{¢} (since d ¢ L, (b)) but @, b ¢ U, a contradic-
tion. Suppose that ¢ € {«, b}. Hence L, .;(b) - {¢} is connected; s0 L, ., () = U U {c},
again a contradiction (because L, 4 ,(b) is nondegenerate, and so a # b). We have
thus proved that bd(U) e L. (D).

Since Lyy4(0) is a continuum, bd(U) =L, (), and ye UnL,,(®) # @,
it follows that I,,.,(5) n U is a continuum. Since W is homeomorphic to 10, 1l,
W= gf1,.(0), and bd(W) = g(bd(¥)) = gfy,,,(bd(L)), it follows that
F (L 1(8) N T) = W. Observe that, by (wx),

W < g/A,, e 1(Lu -+ i(b)) = g([flln-l- 1‘(‘0 9fA,. + 1(b)].fn+1) = h([fAn(a) JfAn(b)]Jn) ’

and so A7YW) < [ f4.(@), f1,D))s.- By (%), A7(W) is the unique component of
Yy, —fal4,) such that fy (U)sh™ (W)= h"(W). Therefore ye Uc L)
This proves (2). :

Adeed in proof. We have pointed out a mistake in the proof of the main result of [15]
(sce Introduction, above). Recenily we have proved that each hereditarily locally connected
continuum is a continuous image of an arc, thus the proof in [15] cannot be repaired.
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On irreducibility and indecomposability of continua
by

Roman Mafika (Warszawa)

Abstract. Kuratowski (1927) showed that in metric continua their points of indecomposability
are always points of irreducibility. The aim of this paper is to exhibit a general form of those
Hausdor{f continua for which the result of Kuratowski does not hold..

L. Introduction and preliminaries. In this paper X will always be a Hausdorff
continuum, shortly a " ,-continuum, i.e. a connected and compact topological space
which satisfies the 7 ,-axiom of separability. A point @ of X is said to be a point
of indecomposability of X if there is no decomposition of X into two proper subcon-
tinua which both contain a, i,c¢. for every two subcontinua X and K, of X'

(L1) ee Ky n K, and K, WK, = X imply Ky =X or K, = X.

A point ¢ of X is said to be a point of irreducibility of X if there is b € X such that no
proper subcontinuum of X contains both ¢ and b, i.e for every subcontinuum X
of X

(1.2) ae K and be K imply K= X;

X is then said to be irreducible between a and b.

Direcily by the above two definitions, every point of irreducibility is a point of
indccomposability, and the converse assertion:

(1.3) Bvery point of indecomposability is a point of irreducibility
has been proved for metric continua in [10] (Théoréme XIX, p. 270). In connection
with some fixed point theorems [4], [12], [13] and [15], the assertion (1.3) has been
proved for hereditarily decomposable & ,-continua in [14] (Theorem 1, p. 52, where
in fact no axiom of separability is used), In [2], & 7,-continuum has been constructed
which is indecomposable but not irreducible, i.e. its every point is a point of inde-
composability but no point is a point of irreducibility, so that the above assertion (1.3)
is not true for an arbitrary Z,-continuum X. )

In the present paper, we shall characterize those 7 ,-continua X which have
this singularity, i.e. such X that

(1.4) There exists a point of indecomposability of X which is not a point of
irreducibility of X;
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